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Characterization of antiseizure
medications effects on the EEG
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dimension
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Objectives: An important challenge in epilepsy is to define biomarkers of
response to treatment. Many electroencephalography (EEG) methods and
indices have been developed mainly using linear methods, e.g., spectral power
and individual alpha frequency peak (IAF). However, brain activity is complex
and non-linear, hence there is a need to explore EEG neurodynamics using
nonlinear approaches. Here, we use the Fractal Dimension (FD), a measure of
whole brain signal complexity, to measure the response to anti-seizure therapy
in patients with Focal Epilepsy (FE) and compare it with linear methods.

Materials: Twenty-five drug-responder (DR) patients with focal epilepsy were
studied before (t1, named DR-t1) and after (t2, named DR-t2) the introduction
of the anti-seizure medications (ASMs). DR-t1 and DR-t2 EEG results were
compared against 40 age-matched healthy controls (HC).

Methods: EEG data were investigated from two different angles: frequency
domain—spectral properties in §, 6, o, p, and y bands and the IAF peak, and
time-domain—FD as a signature of the nonlinear complexity of the EEG signals.
Those features were compared among the three groups.

Results: The & power differed between DR patients pre and post-ASM and HC
(DR-tlvs. HC, p<0.01 and DR-t2 vs. HC, p < 0.01). The 6 power differed between
DR-t1 and DR-t2 (p = 0.015) and between DR-t1 and HC (p = 0.01). The o power,
similar to the §, differed between DR patients pre and post-ASM and HC (DR-t1
vs. HC, p<0.01 and DR-t2 vs. HC, p<0.01). The IAF value was lower for DR-t1
than DR-t2 (p = 0.048) and HC (p = 0.042). The FD value was lower in DR-t1 than
in DR-t2 (p=0.015) and HC (p =0.011). Finally, Bayes Factor analysis showed
that FD was 195 times more likely to separate DR-t1 from DR-t2 than IAF and
231 times than 6.

Discussion: FD measured in baseline EEG signals is a non-linear brain measure
of complexity more sensitive than EEG power or IAF in detecting a response to
ASMs. This likely reflects the non-oscillatory nature of neural activity, which FD
better describes.
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Conclusion: Our work suggests that FD is a promising measure to monitor the
response to ASMs in FE.
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1 Introduction

Epilepsy represents one of the most common neurological
conditions, affecting up to 1% of the world population. The clinical
management of epilepsy patients is largely based on clinical judgment
and is essentially qualitative. For instance, the choice of the first
medication—after a diagnosis of epilepsy is made—is based on the
clinical features of the seizures and the potential side effect profile of
the medication. Similarly, the efficacy of response is established based
on the reduction of the number of seizures or the qualitative
improvement of inter-ictal EEG signals. Currently, there are no
quantitative biomarkers for the prediction of pharmacological efficacy
at the population or individual patient level.

The objective of this study is to quantitatively assess the effects of
ASMs on brain signals to predict the likelihood of response through
an automated algorithm leveraging quantitative analysis of clinical
EEGs (qQEEG) (Park et al., 2020). Quantitative EEG is a promising
branch of clinical neurophysiology that explores local and global brain
dynamics. When coupled with drugs (Jobert et al., 2012) qEEG is a
promising tool to study the response to new drugs and has become an
established technique for their classification (Galderisi et al., 1994;
Mucci et al., 2006; Fink, 2010; Iosifescu, 2011).

So far, the two most reliable EEG biomarkers of ASM response are
the interictal epileptiform discharges and the power spectral analysis,
while the use of the Individual Alpha Frequency (IAF) peak is still
debated but may represent a promising biomarker (Reynolds et al.,
2023). However, these linear methods mainly capture the oscillatory
component of the EEG signal and do not consider non-stationarities
and non-linearities present in EEG signals (Stam, 2005; Klonowski,
2009). As stated by Cole and Voytek and by Jones and colleagues
(Jones, 2016; Cole and Voytek, 2017), brain signals do not simply
represent a sustained oscillation at a particular frequency but rather
brief bouts of activity that repeat intermittently (Feingold et al., 2015;
Lundgqyvist et al., 2016). Neuromodulation studies demonstrate that the
application of complex and non-sinusoidal waveforms is more
effective than sinusoidal oscillators in modulating brain (Somers and
Kopell, 1993; Frohlich and McCormick, 2010; Frohlich, 2015; Dowsett
and Herrmann, 2016; Cottone et al., 2018; Porcaro et al., 2019) and
entraining brain rhythms (Somers and Kopell, 1993; Dowsett and
Herrmann, 2016). This “hidden information” captured by non-linear
methods such as fractal dimension analysis may be additional and
complementary to linear methods and could shed light on the
physiological neural communication, computation, and cognition in
healthy as well as patients with neuropathological conditions
(Goldberger, 2001; Goldberger et al., 2002; Zhang and Raichle, 2010;
Rodriguez-Bermudez and Garcia-Laencina, 2015; Porcaro et al., 2017,
2019, 2020a,b, 2022). This is the reason why time-series fractal analysis
is more and more used in different research fields ranging from basic
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neuroscience (Di leva et al., 2014, 2015; Moaveninejad et al., 2024),
neurophysiology (Adeli et al., 2008; Ahmadlou and Adeli, 2012;
Ahmadlou et al., 2012a,b), translational neuroscience (Smits et al.,
2016; Porcaro et al., 2020b, 2021, 2022; Fiorenzato et al., 2024;
Olejarczyk et al., 2024) to genetic variability in human phenotypes
(Cattani and Pierro, 2013; Lee, 2020; Borri et al., 2022).

The purpose of our study is, therefore, to compare EEG signals in
newly diagnosed patients with focal epilepsy patients before and after
the initiation of therapy and examine their normalization using both
linear (power spectra and IAF) and non-linear methods (FD).
Specifically, we are interested in evaluating which method is more
sensitive in detecting differences pre- and post-therapy with ASMs.

2 Materials and methods
2.1 Patients and data collection

We retrospectively reviewed the data of 25 newly diagnosed focal
epilepsy patients and a control group of 40 healthy subjects enrolled
at the epilepsy clinic of the Neurophysiological Unit of the Padua
University Hospital (see Table 1). Epilepsy patients fulfilling the
following inclusion criteria were included: (i) focal epilepsy according
to the
recommendations (Scheffer et al., 2017); (ii) > 16 years old; (iii) no

International League Against Epilepsy diagnostic
previous ASMs therapy (drug-naive patients); (iv) at least two routine
EEGs performed before (i.e., <30 days - DR-t1) and 6-12 months after
(DR-t2) the beginning of treatment; (vi) EEGs included 5+ min of
artifact free wakefulness; (vii) clinical follow-up at two-years. The
exclusion criteria were: (i) other drugs acting on the CNS; (ii)
medication change between EEG recordings. All patients underwent
neurophysiological assessment, EEG, and brain MR], as per standard
of care (Koutroumanidis et al., 2017a,b; Scheffer et al., 2017).

Healthy subjects were volunteers. They were interviewed by a
neurologist to rule out medical conditions potentially biasing the
study. Healthy subjects met the following inclusion criteria: (i)
age>16years; (ii) no medical or psychiatric conditions; (iii) no
neuroactive drugs.

The study protocol was approved by Padua University Hospital’s
ethics committee for a retrospective study.

2.2 EEG recording

Nineteen channel EEG was acquired with a EB-Neuro Galileo
(Mizar 40) recorder. The electrodes were placed according to the
international 10-20 system (Fpl, Fp2, F3, F4, C3, C4, P3, P4, F7, F8,
T3, T4, T5, T6, O1, O2, Fz, Cz, Pz). The reference was placed on FPz
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TABLE 1 Demographic characteristics of the sample by group.

Age (years) Gender Etiology
Mean SD
EPI 25 39.8 17.0 18 7 18 7 15 5 5 ‘
HC 40 389 160 23 17 ‘

EPI, focal epilepsy patients; HC, healthy controls; N, number of individuals; SD, standard deviation; U, Unknown origin; S, Structural origin; LEV, Levetiracetam; LTG, Lamotrigine; LCM,
Lacosamide.

and the ground on FCz. Impedance was kept below 10 kOhm for all  the spectral properties of the EEG total power in the classical frequency
electrodes. The sampling rate was set to 256 Hz. EEG recordings for ~ bands, such as 8 (1-3Hz), 6 (4-7Hz), « (8-13Hz), f (14-30Hz), and
patients lasted at least 20 min as per standard of care. This included  y (31-48Hz) bands (Chatrian et al., 1974). In addition, IAF was
5 min of EEG eyes closed, which was selected for the purpose of this  defined as the exact frequency in the o range containing the maximum
study. The remaining 15min included eyes open recording, reactivity ~ power. It was calculated using an automated peak-detection algorithm
to eye closure and opening, intermittent photic stimulation, and  (function RestingIAF on EEGLab) (Corcoran et al., 2018).
hyperventilation, as per common clinical practice. The healthy control

group performed 5 min of EEG recordings with open eyes and 5 min

of EEG recordings with closed eyes. 2.6 Higuchi's fractal dimension

FD (Higuchi, 1988) is a non-linear measure of waveform

2.3 EEG pre-processing complexity applied in the time domain. Discretised functions or

signals can be analyzed as a segment of data X(1), X(2), ..., X(N),

Quantitative EEG analysis was performed using the EEGLab  where N is the total number of samples. From the starting time

Toolbox for Matlab' and in-home Matlab code. Offline data  sequence, a new self-similar time series X % can be calculated as Eq. 1:
pre-processing included: (i) visual inspection for rejection of possible
interictal and ictal epileptiform activity; (ii) DC removal; (iii)

k. . [N—-m
bandpass filter between 1 and 48 Hz (linear phase finite impulse X x(m).x(m o+ k).x(m+ 2k),...,x(m+1nt( k jkj M
response filter); (iv) EEG re-reference to average; (v) correction for

pulse and eye blink artifacts using Independent Component Analysis

(ICA) (Barbati et al., 2004; Porcaro et al., 2015). Visual identification form=1,2, ..., k where m is the initial time; k is the time interval,
of interictal and ictal abnormalities was performed by experienced k=1, 2, ..., ks ko is @ free parameter, and int() represent the
neurophysiologists blind to the clinical data as well as 5 min of EEG  integer operator.

eyes closed (FE, CL, FD). The length, L,,(k), of each curve X*, is calculated as Eq. 2:

2.4 Characterization of
electrophysiological neural activity at rest

% > |X(m+ik)—X(m+(i—1))k| Z:Im )
We considered signal properties in the frequency domain (PSD) izl,iﬂ{%) 1nt( 2 jk
and time domain. The PSD is the squared modulus of the continuous
Fourier transform. It is particularly useful for studying brain
oscillations on a time scale of minutes, typical of an individual’s where N is the length of the original time series X and
“stable state” (Schomer and Lopes Da Silva, 2012). As for the time
domain, the signal power of neuronal assemblies, as a function of N-1 is a normalization factor.
frequency, displays a “power law” function (Ramon and Holmes, int[N "M
2015), and the exponent of this function corresponds to its fractality.
Thus, we used temporal Higuchi’s fractal dimension (FD) (Higuchi, L,,(k) was averaged across all m forming the mean value of the
1988) as a signature of neural dynamics underlying brain functions.  curve length L(k) for each k= 1,..., k., as Eq. 3:
i (k)
2.5 EEG power spectrum L(k)=="= = (3)
We calculated the PSD using the Welch procedure (256 time points
duration, Hanning window, and 60% overlap). We then investigated An array of mean values L(k) was obtained and the FD was

estimated as Eq. 4:

FD=log(L(k))/log(1/k)  for k=12, . kmex (4)
1 https://sccn.ucsd.edu/eeglab/index.php
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In practice, the original curve or signal can be divided into
smaller parts with or without overlap, called “windows” Then, the
method for computing the FD should be applied to each window
where N should be seen as the length of the window. Individual FD
values can be averaged across all windows for the entire curve (or
data time-series), and the mean FD value can be used as a measure
of curve complexity. Additional analysis demonstrated that FD
measurements were not dependent on the choice of window length
and overlapping windows see Smits et al. (2016), Marino et al. (2019),
and Porcaro et al. (2020a) for details. Here, for each EEG channel,
we calculated FD in non-overlapping time windows of 1s
(corresponding to 256-time points since our sample frequency rate
was 256 Hz) as a good compromise between the window length of the
data and computational time. The choice of the free parameter k has
a crucial role in FD estimation; for this reason, for each window,
we estimated 127 values of FD for all the possible k values (i.e., k=2,
..., 128).

The value 128 was equal to half of the samples within our 1s
window (i.e., 128-time points are the maximum that can be chosen
since the maximum k value is equal to half of the window length). For
the subsequent FD analysis, we set k=25 (Smits et al., 2016; Marino
et al., 2019; Porcaro et al., 2020a, 2022).

2.7 Statistical analysis

Shapiro-Wilk test for normality revealed that PSD, IAF, and FD
values did not differ from a Gaussian distribution (p>0.200).
Repeated-measures analysis of variance (rm-ANOVA) was performed
on PSD values to investigate the interaction effect GROUPs x BANDs
(the three GROUPs as a between-subject factor: DR-t1, DR-t2, and
HC); the five BANDs as a within-subjects factor (5, 6, «, f, y). The
sphericity of the covariance matrix was verified with the Mauchly
sphericity test. In the case of violation of the sphericity assumption,
the Greenhouse-Geisser epsilon adjustment was used. One-way
ANOVA was also applied to investigate the GROUPs effect (between-
subject factor: DR-t1, DR-t2, and HC) on FD and IAF. The results
were analyzed only for all ANOVA models if the Wilks’ Lambda
multivariate significance criterion was achieved. In the case of
violation of the sphericity assumption, the Greenhouse-Geisser
epsilon adjustment was used. Post-hoc analysis was performed using
the Bonferroni correction method for multiple comparisons. Finally,
the three measures (PSD, IAF, and FD) were analyzed using a
Bayesian approach to test which of the three methods was better able
to discriminate between DR-tl and DR-t2 conditions. We have
performed the same ANOVA test as above on a single drug to test for
any drug specificity. The drug chosen was LEV since it has higher
numerosity, with the number of subjects being 15. All the analyses
described above were conducted in JASP software (v0.17.2-1—jasp-
stats.org/).

3 Results
3.1 Demographic results

A one-way ANOVA model found no significant age difference
among groups [F(2, 89)=2.24, p=0.129].
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3.2 EEG power spectrum and IAF

3.2.1 Alldrugs (LEV, LTG, LCM)

A repeated measure ANOVA (rm-ANOVA) for the PSD with a
Greenhouse-Geisser correction (Mauchly’s W=0.005, p<0.001,
€=0.369) revealed a significant GROUP x BAND interaction [F(8,
356)=16.4, p<0.001]. The between-subjects factor GROUP also
showed a difference [F(2, 89) =26.1, p <0.001]. Post-hoc tests using the
Bonferroni correction revealed that the & band was different between
DR-tl and HC (p<0.001) and between DR-t2 and HC (p<0.001).
There was no significant difference between DR-t1 and DR-t2. The 0
band differed between DR-t1 and DR-t2 (p=0.015) and DR-t1 and HC
(p=0.01), but not between DR-t2 and HC. Finally, the a band
significantly differed between DR-t1 and HC and between DR-t2 and
HC (p=0.002 for both), but there was no difference between DR-t1
and DR-t2. No significant differences were found for other frequency
bands (Figure 1A). The IAF ANOVA model revealed a statistically
significant difference between GROUPs [F (2, 89) = 3.29, p=0.042].
Bonferroni corrected post-hoc tests revealed that the IAF value was
lower for the DR-t1 as compared to the DR-t2 (p <0.048) and the HC
group (p=0.042). No difference was observed for the DR-t2 vs. HC
(Figure 2A, Up).

3.2.2 Only LEV

rm-ANOVA for the PSD with a Greenhouse-Geisser correction
(Mauchly’s W=0.0113, p<0.001, £=0.410) revealed a significant
GROUP x BAND interaction [F(8, 268)=14.2, p<0.001]. The
between-subjects factor GROUP also showed a difference [F(2,
67)=18.9, p<0.001]. Post-hoc tests using the Bonferroni correction
revealed that the & band was different between DR-tl and HC
(p<0.001) and between DR-t2 and HC (p<0.001). There was no
significant difference between DR-t1 and DR-t2. The 0 band differed
between DR-t1 and DR-t2 (p=0.008) and DR-t1 and HC (p=0.001),
but not between DR-t2 and HC. Finally, the a band significantly
differed between DR-t1 and HC (p=0.015) and between DR-t2 and
HC (p=0.006), but there was no difference between DR-t1 and DR-t2.
No significant differences were found for other frequency bands
(Figure 1B). The IAF ANOVA model only showed a tendency to
significantly differ between GROUPs [F (2, 67) = 2.455, p=0.09;
Figure 2B, Up].

3.3 Higuchi’'s fractal dimension

3.3.1 All drugs (LEV, LTG, LCM)

The ANOVA model for the FD feature also revealed a significant
GROUP effect for FD [F(2, 89) = 5.537, p=0.005]. Bonferroni
corrected post-hoc tests revealed that FD was lower for DR-tl
compared to DR-t2 (p=0.015) and the HC group (p=0.011). No
significant difference was found for DR-t2 vs. HC (Figure 2A, Bottom).

3.3.2 Only LEV

The ANOVA model for the FD estimated only on the LEV drug
revealed a significant GROUP effect for FD [F(2, 67) = 5.903,
p=0.004]. Bonferroni corrected post-hoc tests revealed that FD was
lower for DR-t1 compared to DR-t2 (p=0.024) and the HC group
(p=0.004). No significant difference was found for DR-t2 vs. HC
(Figure 2B, Bottom).
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FIGURE 1

only LEV drug.

Panel (A) all drugs, Delta (Upper panel), Theta (Middle panel), and Alpha (Bottom panel) values among groups [healthy controls (HC), patients before
pharmacological intervention (DR-t1), and patients after pharmacological intervention (DR-t2)]. The horizontal bar indicates which contrast reached
the significant level at p <0.01 (**) and p < 0.05 (*). Black points and error lines represent the mean and the standard error. Panel (B), as panel (A), but for
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FIGURE 2
Panel (A) all drugs, IAF (Upper panel) and FD (Bottom panel) values among groups [healthy controls (HC), patients before pharmacological intervention
(DR-11), and patients after pharmacological intervention (DR-t2)]. The horizontal bar indicates which contrast reached the significant level at p <0.01
(**), p<0.05 (*) and (+) p = 0.09. Black points and error lines represent the mean and the standard error. Panel (B), as panel (A), but for only LEV drug.

3.4 Is FD more sensitive than PSD or IAF in
detecting drug response effects?

We used Bayesian Paired samples ¢-tests to compare the relative
sensitivity of FD vs. PSD in discriminating DR-t1 vs. DR-t2 patients.
There are several advantages to using Bayesian methods. First,
Bayesian methods allow inferences about both the null and alternative
hypotheses. Second, it is possible to compare Bayes Factors (BF)
across analyses and, based on the magnitude of the BF, derive whether
one result is more robust than another.

We found a significant difference between DR-t1 and DR-t2 for
FD [Student’s t (25) =—5.172, p<0.001, BF,,=973.069], 0 band power
[Student’s t (25)=2.730, p=0.011, BF10=4.220], and IAF [Student’s ¢
(25)=-2.816, p=0.009, BF,,=4.994]. However, the magnitude of BF
was higher for FD than 6 band or IAF (BF FD=973.069; BF 0
band =4.994; BF IAF=4.220). Accordingly, FD was 195 times more
likely than IAF, and 231 times more likely than 6 band to distinguish
DR-tl from DR-t2. Figures 3, 4 show the descriptive statistics. In
particular, Figure 3 shows the value for the 0 band, IAF, and FD and
each patient before and after the pharmacological intervention; the
gray line that conjuncts the green circle with the orange circle
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emphasizes the trend obtained for each patient. The more the trend
follows the same direction (i.e., from higher to lower 0), the higher
will be the statistical effects. Figure 4 displays the individual cases
(green dots), box plots, and density for the difference between the
measures. In our case, FD (Figure 4, Bottom panel) clearly shows that
the pharmacological intervention decreases the brain complexity
estimated by Higuchi’s FD in all patients.

4 Discussion

The issue of assessing the response of ASMs in newly diagnosed
epilepsy patients is an important clinical problem with important
implications for health national systems. Research in the last 40 years
has been devoted to developing EEG biomarkers as reliable indices of
favorable response (Porcaro et al., 2019, 2020a, 2022; Comanducci
et al.,, 2020). Compared to MRI and PET scans, EEG has many
advantages, including low costs, widespread availability in
economically less developed countries, non-invasiveness, and
portability. However, EEG biomarkers are not routinely used in
clinical practice to assess response. Patients are still evaluated based
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FIGURE 3
Single subject representation for theta value [upper panel—before
(DR-t1) and after (DR-t2) pharmacological intervention], IAF value
[middle panel—before (DR-t1) and after (DR-t2) pharmacological
intervention] and FD value [bottom panel—before (DR-t1) and after
(DR-t2) pharmacological intervention]. Each circle represents a
subject, and the gray line connects the same subject before (green
circle) and after (orange circle) pharmacological intervention.

on clinical response and a qualitative evaluation of EEG recordings
and interictal abnormalities.

The research area exploring the relationship between fractal
dimension and epilepsy is a novel and promising field, delving into the
dynamics of brain activity. The Fractal dimension is a measure of the

Frontiers in Neuroscience

4 N\
© | .
)
(]
<
'—
530 .‘;
o‘o‘ ? ° .
I T I T T T T 1
-0.04 -0.02 000 0.02 004 006 0.08 0.10
L DR-t1 - DR-t2 )
4 N

IAF

rd N\
L 1
o -

e
L ] L °
. R e
I T T T 1
-0.3 -0.2 -0.1 0.0 0.1
L DR-t1 — DR-t2 )
FIGURE 4

Single subject difference distribution density for theta value [Upper
panel—before (DR-t1) and after (DR-t2) pharmacological
intervention], IAF value [middle panel—before (DR-t1) and after (DR-
t2) pharmacological intervention] and FD value [bottom panel—
before (DR-t1) and after (DR-t2) pharmacological intervention]. Each
green circle represents the subject difference for each feature under
investigation (Theta Band, IAF, and FD) before and after
pharmacological intervention. The green area under the curve
represents its density distribution. In the box plot, the bold black line
shows the sample median. The hinges indicate the 25th and 75th
quantiles and the whiskers point to 1.5 interquartile ranges beyond
the hinges.

irregularity or complexity of a geometric structure, such as the
spatiotemporal dynamics of brain (Porcaro et al., 2024). In epilepsy, the
pathological mechanism involves abnormal synchronization of
neuronal activity, leading to seizures. Fractal EEG signal analysis might
be a new tool to investigate this abnormal complexity of brain activity
in epileptic patients (Jouny and Bergey, 2012; Khoa et al., 2012).

In healthy individuals, EEG signals exhibit a certain level of
complexity, characterized by a fractal dimension within a specific
range (Cottone et al., 2017; Marino et al,, 2019). However, in epileptic
patients, this complexity may be altered due to disruptions in the
normal functioning of neural networks (Jouny and Bergey, 2012; Khoa
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et al,, 2012). Several studies have found differences in fractal
dimension measures between healthy individuals and epileptic
patients, as well as between different types of epilepsy. For example,
some research suggests that the fractal dimension of EEG signals may
decrease during epileptic seizures, indicating a loss of complexity in
brain activity (Olejarczyk, 2003; Jouny and Bergey, 2012; Khoa et al.,
2012). On this basis, fractal analysis has an enormous potential for
understanding epilepsy, with implications for both diagnosis and
treatment. By providing insights into the underlying mechanisms of
epilepsy, this analysis could pave the way for developing more effective
diagnostic tools and therapies, making it a crucial area of study.

Overall, while the exact connection between the fractal dimension
and the pathological mechanism of epilepsy is still being explored,
research in this area holds promise for advancing our understanding
of this complex neurological disorder.

With this aim, here we used Higuchi’s Fractal Dimension (FD) to
investigate newly diagnosed patients with focal epilepsy from healthy
controls and their response to ASMs. As a benchmark, we compared
the FD to linear neurophysiological markers like the band-limited
power and the IAF that have been evaluated in previous studies of
response to ASMs (Clemens et al., 2007; Cho et al., 2012; Guo
etal., 2014).

We found that ASMs treatment reduced 6 power near normal
levels, while a and & power bands did not change pre- and post-
treatment (Figure 1). ASMs also normalized the IAF and FD near the
level of HC subjects (Figure 2).

Our reduction of 6 band power after treatment with ASMs is
generally consistent with several previous studies, and it does not
appear to be drug-dependent. Patients treated with Levetiracetam
showed an increase in o e p power and a decrease in § and 0 power
bands (Cho et al., 2012). Patients treated with Perampanel showed an
increase in o power in drug responder patients (Lanzone et al., 2021).
In TLE patients, Levetiracetam induced an increase in o power and a
decrease in 0 band power (Ricci et al., 2021). In another study, patients
treated with LTG or VPA as first line therapy showed reduced 6 and y
power (Clemens et al., 2007; Clemens, 2008; Guo et al., 2014).
However, other studies have shown spontaneous longitudinal
fluctuations in power which may confound some of the drug response
effect (Viana et al., 2021).

While in our study the a power did not significantly change pre-
post-treatment, the O power normalized consistently with previous
studies. In addition, we showed an increase in IAF that normalized
post-therapy. The IAF is a stable index of oscillatory activity in the
occipital lobe that grows in the course of development, and it is
decreased in some pathological conditions (e.g., schizophrenia,
Ramsay et al., 2021). A within-subject study showed that IAF was
significantly higher during a demanding working memory task than
during rest or passive visual stimulation (Haegens et al., 2014). Our
interpretation is that the increase in IAF reflects an improvement
toward normalization of cognitive processing in our patients after
starting ASMs.

Overall, our results are consistent with those of other studies that
have used classical FFT-based linear methods to distinguish between
healthy subjects and epileptic patients and between pre- and post-
ASMs (Clemens et al., 2014; Pellegrino et al., 2018; Lanzone
etal., 2021).

The most novel aspect of our results is that the FD increased
normalizing after ASMs. Moreover, the FD was more sensitive than 0
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power and IAF in separating epileptic patients before and after
treatment. The Fractal Dimension has been introduced as a marker in
both healthy (Cottone et al., 2017; Marino et al., 2019; Porcaro et al.,
2020a) and pathological conditions (Smits et al., 2016; Porcaro et al.,
2019, 2020b, 2021, 2022). In the case of EEG, FD is a non-linear
measure of signal complexity. Increased EEG synchrony results in its
reduction while EEG desynchronization leads to FD increases. FD
increases with task complexity (Cottone et al., 2018), and it is reduced
after brain stroke (Zappasodi et al., 2014). The sensitivity of FD comes
from its ability to estimate both oscillatory and non-oscillatory
components of the EEG signal capturing patterns of activity that are
not consistent over time. These non-rhythmic patterns have been
clearly demonstrated in the human motor cortex (Feingold et al., 2015;
Lundqyvist et al., 2016; Cole et al., 2017; Cole and Voytek, 2017). The
non-rhythmic nature of brain activity has been further supported by
neuromodulation studies in which non-sinusoidal patterns were more
effective in entraining brain rhythms (Somers and Kopell, 1993;
Frohlich and McCormick, 2010; Dowsett and Herrmann, 2016;
Cottone et al., 2018).

Our results suggest that ASMs normalized brain activity in our
focal epilepsy patients specifically by increasing signal complexity as
indexed by FD. The corollary increase in IAF that has been associated
with higher cognitive processing is also another neurophysiological
indicator of brain activity normalization. It would have been
important to show an improvement in neuropsychological scores
post-therapy. It is remarkable that these changes occurred in the
absence of apparent seizure activity. The large superiority of FD over
oscillatory biomarkers (195 times more likely than IAF; 231 times
higher than 0 band) in picking up patients post-therapy is an
indication that under physiological conditions brain activity is not
oscillatory. To our knowledge, this is the first report to show a decrease
of brain signal complexity in newly diagnosed epileptic subjects,
which normalized after therapy.

5 Limitations and conclusions

The study suffers from several limitations. The sample is small,
retrospective, and heterogeneous in terms of number of etiologies
and drugs employed. In this respect, we have performed the
ANOVA on a more heterogeneous subgroup concerning the drug
(in particular, we selected the 15 subjects treated with the LEV).
The ANOVA showed comparable results with respect to the results
obtained with the entire group treated with different drugs (i.e., 15
LEV, 5 LTG, and 5 LCM). The robustness of our findings despite
these limits may suggest that the effect is robust and even stronger
in a more homogenous sample. Another limitation is that
we cannot exclude that these effects underlie the normal
longitudinal recovery of signal complexity after the occurrence of
novel seizure activity. To rule out this possibility, it would
be important to have a group of non-responders and follow them
longitudinally. However, non-responders are only about 30% of all
epileptic patients, and a comparison across groups would be less
sensitive than a within-subject comparison as in our study. The
mean change in IAF pre- post-therapy was, on average ~ 0.5 Hz
which is on par with within-subject IAF variability (~0.9Hz in
Haegens et al.). In contrast, IAF between-subject variability is
much larger (2.9Hz in Haegens), which would require a much
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larger sample of both responders and non-responders given the
effect size observed here.

In conclusion, we propose a new quantitative and automatic
measure to track response to therapy in focal epilepsy. Future
prospective studies are needed to validate this finding.
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