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Introduction: Brain medical image segmentation is a critical task in medical

image processing, playing a significant role in the prediction and diagnosis

of diseases such as stroke, Alzheimer’s disease, and brain tumors. However,

substantial distribution discrepancies among datasets from di�erent sources

arise due to the large inter-site discrepancy among di�erent scanners, imaging

protocols, and populations. This leads to cross-domain problems in practical

applications. In recent years, numerous studies have been conducted to address

the cross-domain problem in brain image segmentation.

Methods: This review adheres to the standards of the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) for data processing and

analysis. We retrieved relevant papers from PubMed, Web of Science, and IEEE

databases from January 2018 to December 2023, extracting information about

the medical domain, imaging modalities, methods for addressing cross-domain

issues, experimental designs, and datasets from the selected papers. Moreover,

we compared the performance of methods in stroke lesion segmentation, white

matter segmentation and brain tumor segmentation.

Results: A total of 71 studies were included and analyzed in this review.

The methods for tackling the cross-domain problem include Transfer Learning,

Normalization, Unsupervised Learning, Transformer models, and Convolutional

Neural Networks (CNNs). On the ATLAS dataset, domain-adaptive methods

showed an overall improvement of ∼3 percent in stroke lesion segmentation

tasks compared to non-adaptive methods. However, given the diversity of

datasets and experimental methodologies in current studies based on the

methods for whitematter segmentation tasks in MICCAI 2017 and those for brain

tumor segmentation tasks in BraTS, it is challenging to intuitively compare the

strengths and weaknesses of these methods.

Conclusion: Although various techniques have been applied to address the

cross-domain problem in brain image segmentation, there is currently a lack

of unified dataset collections and experimental standards. For instance, many

studies are still based on n-fold cross-validation, while methods directly based

on cross-validation across sites or datasets are relatively scarce. Furthermore,
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due to the diverse types of medical images in the field of brain segmentation, it

is not straightforward to make simple and intuitive comparisons of performance.

These challenges need to be addressed in future research.

KEYWORDS

brain medical image, segmentation, cross-domain, stroke, white matter, brain tumor,

normalization

1 Introduction

Medical image segmentation, particularly for the brain, is

a crucial and challenging task in the field of medical imaging

analysis, with a wide range of applications from disease diagnosis

to treatment planning. The complexity of this task is further

compounded when considering the cross-domain nature of the

data, arising from variations in scanners, imaging protocols, and

patient populations among different sites (Dolz et al., 2018; Ravnik

et al., 2018). This review aims to provide an overview of the

progress made in the domain of cross-domain brain medical image

segmentation. As depicted in Figure 1, the brain images and the

corresponding segmented lesion areas are illustrated.

Domain-adaptive methods are designed to adapt a model that

has been trained on one domain (the source domain) to perform

well on a different, but related domain (the target domain). This

is useful in situations where we have a lot of labeled data in

the source domain but little to no labeled data in the target

domain. Domain adaptation techniques attempt to learn the

shift or differences between the source and target domains and

adjust the model accordingly. Techniques can include feature-

level adaptation, instance-level adaptation, and parameter-level

adaptation, among others.

Non-adaptive methods, on the other hand, do not make any

adjustments to account for differences between the source and

target domains. They are trained on one domain and then directly

applied to another. This approach can work well if the source

and target domains are very similar, but performance can degrade

if there are significant differences between the two domains.

Non-adaptive methods do not leverage any domain adaptation

techniques and hence, can suffer from a problem known as domain

Abbreviations: MS, multiple sclerosis; ICC, intra-class correlations; HD,

Hausdor� distance; TPR, true positive rate; FPR, false positive rate; NMI,

normalized mutual information; ARI, adjusted rand index; MHD, modified

Hausdor� distance; ASD, average surface distance; AP, average precision;

H95, Housdor� distance; AVD, absolute volume di�erence; MAE, mean

absolute error; PSNR, signal-noise ratio; ASSD, the average symmetric surface

distance; DSC, dice similarity coe�cient; PPV, positive predictive value; LTPR,

lesion-wise TPR; LFPR, lesion-wise false positive rate; Acc, accuracy rate;

IoU, intersection over union; FLAIR, fluid-attenuated inversion recovery; LST,

lesion segmentation tool algorithms; LVD, lesion volume di�erence; SSD,

sym metric surface distance; CV, coefcient of variation; TRV, test-retest

variability; ROI, regions of interest; OSM, OATS and Sydney MAS; CNSR,

ChineseNational Stroke Registry; TDA, transductive domain adaptation;MSD,

medical segmentation decathlon; RM, repeated measure; CND, Chinese

normative data.

shift or dataset shift, where the distribution of data in the target

domain differs from the distribution in the source domain.

The advent of deep learning methods, especially Convolutional

Neural Networks (CNNs) (LeCun et al., 1998) and their variants,

has significantly improved the performance of image segmentation

tasks (Dolz et al., 2018; Ravnik et al., 2018; Huang et al., 2020;

Liu Y. et al., 2020). However, these models often suffer from

limited generalization capability when applied to unseen data from

different domains (Knight et al., 2018; Bermudez and Blaber, 2020;

Zhou et al., 2022). To address this, various domain adaptation

techniques have been proposed, including transfer learning,

unsupervised learning, and self-supervised learning (Knight et al.,

2018; Atlason et al., 2019; Ntiri et al., 2021; Tomar et al., 2022).

Transfer learning has emerged as a popular approach to

leverage pre-trained models on new data, demonstrating success

in various studies (Knight et al., 2018; Bermudez and Blaber,

2020; Zhou et al., 2022; Liu D. et al., 2023; Torbati et al., 2023).

Unsupervised learning methods, which do not require labeled data

from the target domain, have also shown promising results in cross-

domain brain image segmentation (Atlason et al., 2019; Rao et al.,

2022). Recently, self-supervised learning, where models are pre-

trained on auxiliary tasks before being fine-tuned on the main task,

has been increasingly adopted (Ntiri et al., 2021; Liu et al., 2022a;

Tomar et al., 2022).

Besides, different strategies have been proposed to handle

specific challenges in cross-domain brain image segmentation. For

instance, normalization techniques have been used to reduce the

scanner-related variability (Ou et al., 2018; Goubran et al., 2020;

Dinsdale et al., 2021). Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014) have been employed to generate synthetic

images that share the same distribution as the target domain,

thus improving the model’s generalizability (Zhao et al., 2019;

Cerri et al., 2021; Tomar et al., 2022). Model ensembling and

federated learning approaches have also been explored to leverage

the strengths of multiple models or to perform decentralized

learning (Reiche et al., 2019).

Moreover, the application of advanced architectures, such as

3D-CNNs (Ji et al., 2013), Transformers (Vaswani et al., 2017),

and UNets, has further enhanced the performance of brain image

segmentation across different domains (Dolz et al., 2018; Goubran

et al., 2020; Huang et al., 2020; Liu Y. et al., 2020; Basak et al.,

2021; Li et al., 2021; Meyer et al., 2021; Sun et al., 2021; Zhao et al.,

2021). These models have been applied to various brain structures

and conditions, including white matter, brain tumors, multiple

sclerosis, and stroke (Erus et al., 2018; Knight et al., 2018; Ravnik

et al., 2018; Reiche et al., 2019; Basak et al., 2021; Jiang et al., 2021;

Kruger et al., 2021; Li et al., 2021; Sun et al., 2021; Kaffenberger
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FIGURE 1

An example of lesion segmentation in brain (Liew et al., 2017).

et al., 2022; Zhou et al., 2022; Liu D. et al., 2023; Yu et al., 2023b;

Zhang et al., 2023).

Despite the significant progress, cross-domain brain image

segmentation remains a challenging problem. Future research

directions may include the development of more robust and

generalizable models, the exploration of novel domain adaptation

techniques, and the incorporation of multimodal imaging data to

improve segmentation performance. The studies reviewed herein

provide valuable insights into these potential avenues for future

advancement (Liu Y. et al., 2020; Jiang et al., 2021; Liu et al., 2022a;

Rao et al., 2022; Torbati et al., 2023).

2 Materials and methods

2.1 Inclusion criteria and search terms

The search process for this study adheres to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) (Moher et al., 2009) guidelines. In order to gather

relevant research on cross-domain issues in brain medical image

segmentation, we have designated three main categories of

keywords: Medical Imaging, Segmentation, and Domain. Specific

keywords for each category are shown in Table 1. It’s worth noting

that we use the Boolean operator “OR” to connect keywords within

the same category, while “AND” is used to connect different

categories. This way, we can construct complex search queries.

Because the focus of the research is on cross-domain issues in

TABLE 1 Search terms used for the electronic databases.

Category Keywords

Medical image Medical, biomedical, semantic, neurological, brain, MRI, CT

Segmentation Segmentation, thresholding, region growing, edge detection,

level set method, clustering, graph cut, U-Net, Mask R-CNN

Domain Different scanners, different sites, cross-domain,

cross-platform, unseen datasets, multiCenter, multi-site,

multi-scanner, harmonization, normalization,

leave-one-site-out

brain medical image segmentation, these articles will be included

in our review.

2.2 Screening and selection process

We used three search engines for literature retrieval: PubMed,

IEEE, and Web of Science, with the search time frame being from

January 2018 to December 2023 for journal or conference articles.

In compliance with the PRISMA guidelines, the first stage of the

screening process is to merge duplicate articles from different

search engines. In the second stage, we screen based on the title

and abstract of the articles, discarding those not relevant to our

discussion topic, such as those that do not include keywords

like “brain medical imaging,” “segmentation,” or “domain” in the

title and abstract. In the third stage, we filter out eligible articles
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TABLE 2 Category of solution method.

Category Solution method Description

Neural network UNet, CNN, 3D-CNN, Transformer, GAN, model ensembling Different structures of neural networks optimized for learning

from data, especially high-dimensional data like images

Learning types Supervised, Self-supervised, unsupervised Strategies for training models, varying by how they use labeled or

unlabeled data

Learning strategies Transfer learning, incremental learning, federated learning Techniques to improve model training, often leveraging

pre-existing knowledge, adapting over time, or distributing the

learning process

Mathematical methods Bayesian, Fourier, Logistic Regression Use of specific mathematical techniques to provide theoretical

foundations, handle uncertainty, or offer interpretability

Data preprocessing techniques Data augmentation, normalization, FLAIR Steps to improve data quality, variety, or scale before inputting it

into a model

Tools iBEAT V2.0, FreeSurfer, LST Automatic segmentation toolkit, advanced algorithms,

user-friendly interfaces

through a full-text review. Reasons for exclusion may include:

inability to access the full text; non-English articles; survey studies

or literature reviews; non-original research; not focusing on cross-

domain issues; not describing experiments or validation studies;

not using multi-site or multi-scanner datasets.

2.3 Data extraction

From the screened articles, we extracted the following

information: author names, publication year, dataset name, dataset

size, parts included in the dataset, cross-domain type, solution

method, and evaluation metrics. For more detailed information

about solution method, please refer to Tables 2, 3.

Enhancements based upon the UNet model continue to

represent a prevalent research direction in medical image

segmentation. Subsequent models, such as 3D-CNN, exhibit

commendable performance in many 3D data scenarios, albeit

at the cost of requiring substantial computational resources.

In comparison, newer network structures like Transformer are

gradually gaining traction in the field of medical segmentation, and

it is anticipated that a plethora of innovations will be spawned from

this methodology.

Methods grounded in different learning types are somewhat

niche in comparison. On the whole, the outcomes of unsupervised

and semi-supervised learning methods are not as effective as their

supervised counterparts. This discrepancy is likely attributable to

the relatively smaller datasets available in the field of medical

imaging, unlike the voluminous data present in natural language

processing and computer vision.

Mathematically-based methods are currently often

amalgamated with deep learning models to enhance their

interpretability. This area of work is particularly meaningful and

holds significant potential.

There is a broad spectrum of data preprocessing techniques

available, including Generative Adversarial Networks (GANs),

which can be employed for data augmentation to enhance

data diversity.

The array of tools available for medical image segmentation

is continually expanding, and the barriers to their utilization are

concurrently lowering.

In addition to extracting key data from cross-domain research

in the field of brain image segmentation, we have also conducted

a focused comparative analysis of cross-domain algorithms

for three important branches of brain image segmentation:

stroke lesion segmentation, white matter segmentation and brain

tumor segmentation.

Due to the variety of datasets employed in the selected articles,

it is challenging to compare the merits and demerits of each

algorithm on a holistic basis. To compare the effectiveness of these

algorithms, it becomes necessary to delve into more specific areas

of segmentation. The ATLAS, MICCAI 2017 and BraTS datasets,

each employed five times, stand out as the most frequently used.

They correspond respectively to stroke lesion segmentation, white

matter segmentation and brain tumor segmentation.

3 Results

Figure 2 presents the PRISMA flow diagram for this task.

The number of articles from the three databases (PubMed,

IEEE, Web of Science) were 487, 332, and 890 respectively. An

additional seven articles were identified through the references of

confirmed papers. After merging duplicate studies, 1,286 articles

were obtained. Following the title and abstract screening, 364

articles remained. Finally, after full-text review, 71 articles were

included for publication. Table 4 documents the details of the finally

collected articles.

3.1 Year of publication

As illustrated in the Figure 3, the number of papers addressing

cross-domain segmentation in brain imaging has been increasing

annually from 2018 to the present, with a peak of 15 papers in 2021.

This trend indicates that there are still many challenges to overcome

in this field, affirming its status as an active area of research.
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TABLE 3 Key features of solution method.

Solution method Key features Advantages Disadvantages

UNet Biomedical image segmentation Excellent on small medical datasets May overfit on small datasets

CNN Visual data analysis Good performance on large, labeled

image datasets

Requires large amounts of data and computational

resources

3D-CNN 3D spatial relationships Superior on 3D medical imaging

datasets

Requires larger computational resources and data

Transformer Self-attention mechanisms Handles long-range dependencies,

parallelizable

Computationally intensive, needs tuning

GAN Data generation Augments existing data, improves

model robustness

Training can be unstable and difficult

Model Ensembling Combines multiple models Leverages strengths of each model,

improves performance

Increases computational complexity

Supervised Learns from labeled data High performance on large labeled

datasets

Requires labeled data, expensive to collect

Self-supervised Creates learning task from data itself,

such as Masked Image Modeling

Efficient use of data, learns better

feature representations, supports

pre-training and fine-tuning

Performance may be lower than supervised

methods

Unsupervised Learns from unlabeled data, such as

K-means

No need for labels, discovers unknown

patterns, suitable for anomaly detection

Learned features may not be task-specific

Transfer learning Uses pre-trained model Reduces need for data and

computational resources

Pre-trained model may require adjustments

Incremental learning Gradual learning over time Adapts to new data over time, less

memory-intensive

Sensitive to data order, may forget old data

Federated Learning Trains across multiple decentralized

devices

Preserves privacy, learns from

distributed data

Requires careful coordination, faces data

heterogeneity issues

Bayesian Provides measure of uncertainty Important in medical applications for

risk assessment

Computationally intensive, needs careful design of

prior

Fourier Transforms data into different domain Reveals periodic patterns, filters noise May lose spatial information

Logistic regression Used for binary classification tasks Simple, fast, interpretable results May struggle with complex tasks

Data augmentation Increases amount of training data Improves model performance and

robustness

Augmented data may not cover all possible

variations

Normalization Adjusts values to a common scale Improves performance, reduces

influence of outliers

May lose information about original scale

FLAIR High-contrast images Suppression of cerebrospinal fluid

signals

Sensitive to magnetic field inhomogeneities

iBEAT V2.0 Comprehensive processing and analysis

of brain MRI data

User-friendly interface, comprehensive

solution

Requires substantial computational resources,

steep learning curve

FreeSurfer Comprehensive processing and

analyzing of brain MRI data

High-quality cortical surface

reconstructions, quantification of brain

structures

Long execution time, steep learning curve

LST Automatic segmentation handling multi-modal MRI data Performance influenced by image quality and

lesion type

3.2 Datasets

As can be seen from Table 4 and Figure 4, in the 71 articles

reviewed, 41 utilized public datasets, encompassing 56 different

types. Among these, from Figure 5, the most frequently used

datasets were ATLAS, MICCAI 2017 and BraTS, only five

times. The remaining datasets were used less, with the majority

being used only once. Thus, within the field of brain image

segmentation, many articles addressing cross-domain issues still

rely on proprietary datasets, and those that do use public datasets

draw from a wide variety.

3.3 Disease or region

For a more specific analysis, we have included the

disease type or brain region that is segmented’ in our data

extraction. This addition will enable us to gain a deeper

understanding of which diseases are related to brain image

segmentation and which regions require segmentation.

This detailed approach will significantly contribute to

our comprehensive review of cross-domain segmentation

in brain medical imaging. Figure 6 shows the disease

categories and regions extracted from the reviewed papers.
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FIGURE 2

The PRISMA diagram detailing this systematic review.

Among them, whole-brain segmentation accounts for the

largest proportion.

3.4 Cross-domain type

Based on the data collected, we have identified several types of

cross-domain variations present in the field of brain medical image

segmentation in Figure 7. The most common type of variation is

“multi-site,” with 37 articles addressing this particular challenge.

This is followed by “multi-scanner,” which is the focus of 18 articles.

Both “multi-center” and “multi-modal” variations were discussed

in 10 and six articles each. These findings highlight the diverse

range of cross-domain challenges encountered in the segmentation

of brain medical images, underscoring the need for further research

and method development in this area.

3.5 Solution method

As show in Figure 8, in the landscape of cross-domain

segmentation in brain medical imaging, a diverse range of

techniques are employed. The most prevalent methods include

UNet, CNN, 3D-CNN, and Transfer Learning, indicating a strong

reliance on convolutional architectures and leveraging pre-existing

models. Other techniques such as Normalization, Self-Supervised

learning, and GANs are also being utilized, albeit less frequently.

A handful of studies explore alternative approaches including

Unsupervised learning, Data Augmentation, and Transformer-

based methods. This diversity of methodologies underscores the

complexity of the challenge and the ongoing innovation in the field.

Due to the diversity in datasets and experimental methods,

it is not feasible to compare the performance of all algorithms.

However, it is possible to compare the algorithms that have utilized

the ATLAS, MICCAI 2017 and BraTS datasets.

3.6 Stroke lesion segmentation

3.6.1 Dataset
To begin with, we introduce the dataset used, ATLAS. The

MR modality of the Anatomical Tracings of Lesions After Stroke

(ATLAS) dataset is T1. It has two versions: ATLAS v1.2 (Liew

et al., 2017), released in 2018, includes 304 cases from 11 research
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TABLE 4 A summary of the data extracted from the reviewed papers.

Paper Dataset
name

Disease or
region

MRI or CT Public or private Data number Cross-domain type Solution method Evaluation
metrics

Ravnik et al. (2018) White matter MRI Private 60 Multi-scanner CNN DSC, TPR

Dolz et al. (2018) ISBR, ABIDE Brain MRI Public 1,157 Multi-site 3D-CNN DSC, MHD

Knight et al. (2018) MICCAI 2017,

MICCAI 2016, ISBI

MS 2015

White matter MRI Public 96 Multi-scanner Logistic regression Similarity Index,

precision, recall

van Opbroek et al. (2018) HarP, RSS Hippocampus MRI Public 135 Multi-scanner Transfer learning DSC

Karani et al. (2018) HCP, ABIDE,

ADNI, IXI(D5)

Brain MRI Public Multi-scanner UNet DSC

Doyle et al. (2018) MS MRI Private 798 Multi-site Bayesian Sensitivity,

specificity

Goubran et al. (2020) Hippocampal MRI Private 509 Multi-center 3D-CNN DSC, Jaccard

Zhao et al. (2019) Infant brain MRI Private 233 Mulit-site GAN MAE, PSNR

Bui and Wang (2019) Infant brain MRI Private Mulit-site 3D-CNN DSC, 95HD

Reiche et al. (2019) White matter MRI Private Multi-center Normalization DSC, HD,

sensitivity

Jiang et al. (2021) Brain CT Private 10 Multi-modal Transfer learning NMI, ARI

Erus et al. (2018) BLSA Brain MRI Public 721 Mulit-site Label fusion ICC

McClure et al. (2019) NNDSP Brain MRI Public Mulit-site Bayesian DSC

Zhang et al. (2019) MICCAI 2017 White matter MRI Public 170 Multi-site UNet DSC

Fung et al. (2019) Hippocampal MRI Private 27 Multi-scanner Freesurfer ICC

Khademi et al. (2020) CAIN, ADNI Brain MRI Public Multi-center Normalization DSC

Dewey et al. (2019) MS MRI Private 55 Multi-scanner UNet DSC, PVD

Nair et al. (2020) MS MRI Private 1,064 Multi-site 3D-CNN TPR, FDR

Le et al. (2019) MS MRI Private 87 Multi-center FLAIR LVD, DSC,

sensitivity, SSD

Liu Y. et al. (2020) Brain MRI Private 36 Multi-center 3D-CNN DSC, ASSD

Dinsdale et al. (2020) OASIS, UK

Biobank

Brain MRI Public Multi-site UNet DSC

Billast et al. (2019) MS MRI Private 410 Multi-scanner CNN DSC, precision,

recall

Ou et al. (2018) Brain MRI Private 126 Mulit-site Normalization DSC

(Continued)
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TABLE 4 (Continued)

Paper Dataset
name

Disease or
region

MRI or CT Public or private Data number Cross-domain type Solution method Evaluation
metrics

Dinsdale et al. (2021) OASIS, UK

Biobank

Brain MRI Public Mulit-site CNN DSC

Cerri et al. (2021) MSSeg, Trio,

Achieva, ISBI

MS MRI Public 119 Multi-site Model ensembling DSC, precision,

recall

Bermudez and Blaber (2020) Brain MRI Private 111 Multi-site Data augmentation DSC

Borges et al. (2019) SABRE Brain MRI Private 22 Mulit-site UNet DSC

Monteiro et al. (2020) Brain CT Private 538 Multi-center CNN DSC

Huang et al. (2020) ATLAS Stroke MRI Public 304 Mulit-site UNet DSC, precision,

recall

Brown et al. (2020) Hippocampal MRI Private Multi-scanner Freesurfer ICC

Kim et al. (2020) Multicenter, RM,

CND

Brain MRI Public and private Multi-center UNet ICC

Liu S. et al. (2020) Brain MRI Private 15 Multi-scanner Freesurfer CV

Srinivasan et al. (2020) EADC-ADNI,

ADNI

Infant brain MRI Public Multi-site Freesurfer ROI volumes

Basak et al. (2021) ATLAS Stroke MRI Public 304 Mulit-site 3D-CNN DSC, precision,

recall

Sun et al. (2021) BCP Infant brain MRI Private 160 Multi-site Self-supervised DSC

Ntiri et al. (2021) Cerebrovascular MRI Private 238 Multi-site 3D-CNN DSC, Jaccard, HD,

processing time

Niu et al. (2022) Brain MRI Private 48 Multi-scanner GAN Test-retest

variability (TRV)

Zhao et al. (2021) MICCAI 2017 White matter MRI Public + private 170+ Mulit-site UNet Score (F1)

Meyer et al. (2021) CNNOASIS,

CNNOASIS-DA,

MS

MS MRI Public Multi-scanner Data augmentation DSC

Kushibar et al. (2021) IBSR, MICCAI

2012, MICCAI 2017

Brain MRI Public and private Multi-center Transfer learning DSC

Sundaresan et al. (2021) NDGEN, OXVASC White matter MRI Public 39 Multi-scanner Transfer learning DSC

Kruger et al. (2021) MS MRI Private 1809 Multi-scanner CNN Sensitivity

Li et al. (2021) NeoBrainS12,

dHCP

Neonatal brain MRI Public 47 Multi-modal GAN DSC
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TABLE 4 (Continued)

Paper Dataset
name

Disease or
region

MRI or CT Public or private Data number Cross-domain type Solution method Evaluation
metrics

Ribaldi et al. (2021) White matter MRI Private 53 Multi-site LST DSC

Goodkin et al. (2021) White matter MRI Private 66 Multi-center FLAIR DSC

Memmel et al. (2021) MSD, Scientific

Data

Hippocampal MRI Public 195 Multi-site GAN DSC

Kamraoui et al. (2022) ISBI, MICCAI 2016 MS MRI Public and private Multi-site 3D-CNN DSC

Zhou et al. (2022) ATLAS Stroke MRI Public 304 Mulit-site Self-supervised DSC, precision,

recall

Tomar et al. (2022) CANDI, OASIS Brain MRI Public 131 Multi-site Self-supervised DSC

Opfer et al. (2023) IBSR, FTHP Thalamus MRI Public+ private 127 Multi-scanner 3D-CNN DSC

Liu et al. (2022a) BraTS 2018 Brain tumor MRI Public 285 Multi-modal Unsupervised DSC, HD

Wang Y. et al. (2022) ECHO, M-CRIB Infant brain MRI Public 473 Multi-scanner Transfer learning DSC, ICC, ASD

Kaffenberger et al. (2022) Stroke CT+ MRI Private 50 Multi-modal Normalization DSC, HD

Trinh et al. (2022) iSeg-2017 Infant brain MRI Public 23 Multi-site UNet DSC, MHD, ASD

Rao et al. (2022) DLBS, SALD, IXI,

COBRE

Brain MRI Public Mulit-site Transformer DSC, Jaccard Index,

HD

Kalkhof et al. (2022) MSD Hippocampal MRI Public 260 Multi-site GAN DSC

Torbati et al. (2023) Brain MRI Private 18 Multi-scanner Supervised GM-WM,

segmentation

similarity

Zhang et al. (2023) Heckto, BraTS 2018 Brain MRI Public 411 Multi-modal Self-supervised DSC, sensitivity

Yu et al. (2023a) ATLAS Stroke MRI Public 304 Mulit-site Normalization DSC, Recall

Han et al. (2023) ADNI, EMCI Brain MRI Public 391 Multi-scanner Transformer Acc,IoU

Hindsholm et al. (2023) MS MRI Private 746 Multi-scanner UNet DSC, precision,

recall

Liu X. et al. (2023) Brain tumor MRI Private 285 Multi-site Incremental learning DSC, HD

Kazerooni et al. (2023) Brain tumor MRI Private 244 Multi-center 3D-CNN DSC

Yu et al. (2023b) ATLAS Stroke MRI Public 304 Mulit-site Fourier DSC, precision,

recall

Liu D. et al. (2023) MICCAI 2016 MS MRI Public + private 188 Multi-site Federated learning DSC, TPR, FPR

Zuo et al. (2023) OASIS3, BLSA White matter MRI Public and private Multi-site UNet DSC

(Continued)
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centers worldwide; and ATLAS v2.0 (Liew et al., 2022), released

in 2022, includes 12,71 cases. Although v2.0 contains more data,

its relatively recent release means that fewer articles have used it

for cross-domain image segmentation to date. Therefore, we have

chosenATLAS v1.2 as our comparison dataset. As shown in Table 5,

ATLAS v1.2 includes nine sites.

3.6.2 Algorithms
Cross-domain algorithms, as the name suggests, are designed

to generalize and perform well across multiple, diverse datasets.

A notable example from 2023, the Fan-Net (Yu et al., 2023b),

utilizes Fourier-based adaptive normalization for stroke lesion

segmentation. In 2021, the Unlearning algorithm (Dinsdale

et al., 2020) was proposed to unlearn dataset biases for MRI

harmonization and confound removal. Similarly, SAN-Net (Yu

et al., 2023a) in 2023 and RAM-DSIR (Zhou et al., 2022)

in 2022 showcased learning generalization to unseen sites and

generalizable medical image segmentation via random amplitude

mixup, respectively.

On the other hand, for performance comparison, we have also

selected some non-cross-domain algorithms that are optimized for

specific tasks or datasets. For instance, U-Net (Ronneberger et al.,

2015), proposed in 2015, is an early example of convolutional

networks for biomedical image segmentation. In 2018, DeepLab

v3+ (Chen et al., 2018) introduced atrous separable convolution

for semantic image segmentation. More recently, in 2020, nnU-Net

(Isensee et al., 2021) presented a self-configuring method for deep

learning-based biomedical image segmentation.

3.6.3 Evaluation result
In the realm of cross-domain segmentation in brain

medical imaging, specifically for stroke lesion segmentation,

the performance of various methods demonstrates a compelling

trend toward the adoption of cross-domain algorithms.

As can be seen from Table 6, Among the non-cross-domain

algorithms, CLCI-Net exhibits the highest Dice and F1-score,

demonstrating superior performance in segmentation accuracy.

However, nnU-Net, despite having a slightly lower Dice score,

presents the least Floating Point Operations Per Second (FLOPs),

indicating a more efficient use of computational resources.

Shifting focus to cross-domain algorithms, SAN-Net

outperforms the rest in all three performance metrics—Dice,

Recall, and F1-score, highlighting its robustness in handling

cross-domain segmentation tasks. Notably, RAM-DSIR, despite

having the least number of parameters, delivers competitive results,

suggesting an efficient model with less complexity.

In conclusion, while non-cross-domain algorithms such as

CLCI-Net and nnU-Net exhibit commendable performance,

cross-domain algorithms, particularly SAN-Net and RAM-DSIR,

demonstrate superior performance and efficiency in stroke lesion

segmentation. This underscores the potential and advantages

of cross-domain approaches in this field, prompting further

exploration and development in this direction.

In order to benchmark stroke lesion segmentation algorithms

under non-domain adaptation scenarios, we refer to the dataset

collated in this study (Malik et al., 2024). As shown in Table 7,
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FIGURE 3

Year of publication of the reviewed papers.

eight stroke lesion segmentation algorithms from the ATLAS

project were employed. Many of these algorithms achieved a

Dice Similarity Coefficient (DSC) of up to 0.7, with the highest-

performing algorithm, the seventh one, reaching 0.844. This

significantly surpasses the maximum DSC of 0.597 achieved

when conducting domain adaptation testing. Therefore, it is

currently challenging for domain adaptation algorithms to achieve

performance levels comparable to those of algorithms tested

without domain adaptation, due to the necessity of conducting

domain adaptation testing.

3.7 White matter segmentation

3.7.1 Dataset
As shown in Table 8, the dataset MICCAI 2017 is derived

from the WMH MICCAI 2017 challenge (Kuijf et al., 2019). This

dataset encompasses MRI scans from multiple sites, including the

University Medical Center Utrecht (UMC Utrecht), the National

University Health System Singapore (NUHS Singapore), the VU

University Medical Center Amsterdam (VU Amsterdam), and two

undisclosed locations.

The MRI scans in the dataset are obtained from a variety of

scanners, including 3T Philips Achieva, 3T Siemens TrioTim, 3T

GE Signa HDxt, 1.5T GE Signa HDxt, and 3T Philips Ingenuity.

The T1 voxel sizes and FLAIR scan sizes captured by these scanners

vary, ranging from 0.87*0.87*1.00mm3 to 1.21*1.21*1.30mm3.

In total, 60 samples are utilized for training, while the testing set

comprises 110 samples. The diversity and scale of this dataset allow

us to evaluate the performance of our methods in a comprehensive

and accurate manner. The training data can be downloaded at

https://wmh.isi.uu.nl.

3.7.2 Algorithms
In the context of white matter medical imaging, several

notable papers stand out. The Voxel-Wise Logistic Regression

(VLR) (Knight et al., 2018) algorithm, introduced in 2018,

FIGURE 4

Proportion of public or private.

leveraged voxel-wise logistic regression for FLAIR-based white

matter hyperintensity segmentation. An innovative approach was

presented in 2019 with the Skip Connection U-net (SC U-

net) (Zhang et al., 2019), which added skip connections to the

classic U-net architecture. In 2021, the MixDANN (Kushibar

et al., 2021) algorithm tackled the challenging scenario of domain

generalization (DG), i.e., training a model without any knowledge

about the test distribution. The same year, an Ensemble U-net

(Park et al., 2021) with multi-scale highlighted foreground (HF)

was introduced for white matter hyperintensity segmentation,

demonstrating its effectiveness in cross-domain segmentation

in the 2017 MICCAI white matter hyperintensity segmentation

challenge. A Transductive Transfer Learning Approach (TDA)

(Kruger et al., 2021) was proposed in 2021 for domain

adaptation, aiming to reduce the domain shift effect in brain

MRI segmentation.
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FIGURE 5

Information of datasets used by the reviewed papers.

FIGURE 6

The disease type or brain region that is segmented.

FIGURE 7

Proportion of cross-domain types.

3.7.3 Evaluation result
Table 9 presents the results of five different methods, all of

which focus on the cross-domain segmentation problem in white

matter imaging. In the table, – means there is no valid data.

However, it is important to note that, with the exception of

the second and third methods, the experimental datasets and

experimental procedures used in each method are distinct from

each other.

For instance, the VLR method employed three datasets,

which included seven sites, and performed a leave-one-out cross-

validation with respect to these sites. The SC U-net and MixDANN

methods, on the other hand, only employed three sites from the

MICCAI 2017 training data for cross-validation. The Ensemble

U-net method used all of the training data from MICCAI 2017

for training and the test data for testing. Lastly, the TDA method

utilized both the MICCAI 2017 and VH datasets, performing

cross-validation between these datasets. In addition, VH is a

private dataset.

Therefore, while there are numerous studies addressing the

cross-domain problem in the field of white matter segmentation,

direct comparisons between them are challenging. This is due

to the variations in the experimental data and procedures used,

even when the same dataset is utilized in different studies. The

differences in experimental procedures are manifested in whether

cross-validation is performed between sites or between datasets.
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FIGURE 8

Solution method used for cross-domain.

TABLE 5 The nine source sites of the T1-weighted MR images in

experiment.

Site Location Scanner # Patients

1 Medical University General

Hospital Tianjin, China

GE 750 Discovery 55

2 University of Tübingen

Tübingen, Germany

GE Signa Excite 34

3 Sunnaas Rehabilitation

Hospital Nesodden, Norway

Siemens Trio 27

4 NORMENT and KG Jebsen

Center for Psychosis Research

Oslo, Norway

Siemens Trio 12

5 Department of Psychology

Oslo, Norway

Phillips Achieva 27

6 Child Mind Institute New

York, USA

Siemens Trio 14

7 Nathan S. Kline Institute for

Psychiatric Research

Orangeburg, USA

Siemens Trio 11

8 University of Texas Medical

Branch Galveston, USA

GE 750 Discovery 35

9 University of Michigan Ann

Arbor, USA

Siemens Trio 14

Although it is challenging to make a direct comparison

between each algorithm, an overall observation can be made

in the field of white matter segmentation. Specifically, the Dice

Similarity Coefficient (DSC) is above 0.7 when cross-validation is

conducted between sites, while the DSC is only around 0.5 when

cross-validation is carried out between datasets. This observation

suggests that cross-validation between datasets is more challenging,

yet it is also closer to real-world scenarios.

3.8 Brain tumor segmentation

3.8.1 Dataset
In Table 10, the BraTS datasets comprises three dataset: BraTS

2015, BraTS 2018, and BraTS 2019, each with varying numbers of

cases. The datasets are categorized into two major classes: High-

Grade Gliomas (HGG) and Low-Grade Gliomas (LGG). Each case

consists of four modalities (T1, T2, FLAIR, T1ce) and requires

segmentation into three parts: Whole Tumor (WT), Enhancing

Tumor (ET), and Tumor Core (TC). The BraTS 2019 can be

downloaded at https://www.med.upenn.edu/cbica/brats-2019/.

3.8.2 Algorithms
In 2021, a learnable Self-Attentive Spatial Adaptive

Normalization (SASAN) (Tomar et al., 2021) method was

introduced, utilizing adversarial training to address the domain

gap in radiological images. In 2022, two algorithms were presented.

One algorithm is grounded in a knowledge distillation scheme

incorporating exponential mixup decay (EMD) (Liu et al., 2022b)

to progressively acquire target-specific representations, while the

other algorithm is the Unsupervised Domain Adaptation (UDA)

method based on Self-Semantic Contour Adaptation (SSCA) (Liu

et al., 2022a). In 2023, another UDA (Qin et al., 2023) method,

based on semi-supervised learning, was proposed. Additionally,

in the same year, the Multimodal Contrastive Domain Sharing

(Multi-ConDoS) (Zhang et al., 2023) generative adversarial

networks were introduced.

3.8.3 Evaluation result
As shown in Table 11, Whole, Core, and Enh represent the

Dice Similarity Coefficient (DSC) for whole tumor, core tumor,

and enhanced tumor, respectively. While all five articles conducted

cross-domain studies on brain tumor segmentation using the

BraTS datasets, each article employed different source and target

domains. As a result, direct comparisons of algorithm performance

across the experimental results are challenging.

4 Discussion

The field of brain medical image segmentation has seen

significant advancements with the widespread application of

deep learning technologies. However, the challenge of domain

adaptation continues to be a crucial issue. In our review, we have
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TABLE 6 Comparison of stroke lesion segmentation method.

Method type Method DSC Recall F1 #Par Mem FLOPs

U-net (Ronneberger et al., 2015) 0.471± 0.195 0.431± 0.193 0.486± 0.216 28.94 260.20 31.63

Non- ResUNet (Zhang et al., 2018) 0.478± 0.195 0.469± 0.193 0.532± 0.184 28.94 260.20 31.63

cross- Deeplabv3+ (Chen et al., 2018) 0.463± 0.207 0.459± 0.218 0.471± 0.184 59.33 171.63 14.50

domain nnU-Net (Isensee et al., 2021) 0.504± 0.200 0.491± 0.199 0.526± 0.202 18.67 155.01 10.18

X-Net (Qi et al., 2019a) 0.508± 0.192 0.495± 0.184 0.517± 0.189 15.05 915.67 20.33

CLCI-Net (Yang et al., 2019) 0.517± 0.192 0.513± 0.197 0.512± 0.183 36.81 1,235.35 8.0

U-Net3+ (Huang et al., 2020) 0.521± 0.207 0.485± 0.184 0.497± 0.193 26.97 961.57 129.87

Unlearning (Dinsdale et al., 2020) 0.541± 0.188 0.563± 0.172 0.536± 0.188 27.90 205.73 23.86

Cross- FAN-Net (Yu et al., 2023b) 0.559± 0.180 0.576± 0.162 0.545± 0.162 28.94 261.59 33.09

domain DFENet (Basak et al., 2021) 0.530± 0.202 0.545± 0.187 0.526± 0.194 16.72 1,083.52 27.49

RAM-DSIR (Zhou et al., 2022) 0.556± 0.190 0.567± 0.183 0.548± 0.196 10.59 273.24 10.65

SAN-Net (Yu et al., 2023a) 0.571± 0.195 0.597± 0.158 0.562± 0.192 29.64 130.79 33.63

Bold font represents the maximum value.

TABLE 7 Stroke lesion segmentation algorithms that do not use

cross-domain testing.

References DSC Pr Re

Zhang et al. (2021) 0.662 0.694 0.664

Zhou et al. (2019) 0.723 0.633 0.524

Qi et al. (2019b) 0.486 0.6 0.475

Wu et al. (2022) 0.611 0.633 0.676

Hui et al. (2021) 0.592 0.656 0.599

Sheng et al. (2022) 0.556 0.636 0.581

Li (2021) 0.844 0.534 –

Wang S. et al. (2022) 0.617 0.63 –

Bold font represents the maximum value.

identified a variety of methods proposed to address this issue,

including transfer learning, normalization, unsupervised learning,

Transformer models, and convolutional neural networks, among

others. Each of these methods has its strengths but also comes with

certain limitations.

Transfer learning is a common approach to addressing domain

adaptation issues, with the main idea being to apply knowledge

learned in one domain (source domain) to another domain (target

domain). However, the effectiveness of this method is influenced by

the distribution difference between the source and target domains.

If the distribution difference is too large, the effectiveness of transfer

learning may be compromised.

Normalization is another common method for addressing

domain adaptation issues, with the main idea being to reduce the

differences between different datasets by adjusting the brightness

and contrast of images. However, this method may result in the

loss of some important image information, thereby affecting the

accuracy of segmentation results.

Unsupervised learning and Transformer models have also been

used in some studies to address domain adaptation issues. The

advantage of unsupervised learning is that it does not require

labeled data, but its performance is usually not as good as

supervised learning. The advantage of Transformer models is

that they can handle long-distance dependencies, but they have

a high computational complexity and require a large amount of

computational resources.

Furthermore, we have observed that despite the application of

various techniques to address domain adaptation issues in brain

medical imaging, there currently exists a lack of unified dataset

collections and experimental standards.

For instance, as illustrated in Figure 4, 42.3% of the papers

only use private data, while 8.5% of the papers use both

public and private data. As shown in Figure 7, even when

public datasets are used, there is significant diversity amongst

them. As indicated in Tables 9, 11, even when a single identical

dataset is used, if the experimental data and methods differ,

it remains challenging to make comparisons among various

algorithms. Moreover, the vast majority of current algorithms

are not open-source, making it nearly impossible to reproduce

the algorithms in the papers and design similar experiments

for comparison.

Consequently, this makes it difficult to compare the

performance of different studies and accurately assess the

effectiveness of new methods. Therefore, future research

needs to further develop more effective domain adaptation

methods and establish unified dataset collections and

experimental standards.

5 Conclusions

In conclusion, domain adaptation in brain medical image

segmentation is a challenging research field that necessitates

further exploration and development. Although numerous
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TABLE 8 WMH segmentation MICCAI 2017 challenge dataset.

Site Location Scanner T1 voxel size (mm3) FLAIR scans size (mm3) Train Test

1 UMC Utrecht 3T Philips Achieva 1.00*1.00*1.00 0.96*0.95*3.00 20 30

2 NUHS Singapore 3T Siemens TrioTim 1.00*1.00*1.00 1.00*1.00*3.00 20 30

3 VU Amsterdam 3T GE Signa HDxt 0.94*0.94*1.00 0.98*0.98*1.20 20 30

4 Unknown 1.5T GE Signa HDxt 0.98*0.98*1.50 1.21*1.21*1.30 0 10

5 Unknown 3T Philips Ingenuity 0.87*0.87*1.00 1.04*1.04*0.56 0 10

TABLE 9 Comparison of white matter segmentation method.

Method Dataset name Site number Data number DSC Recall F1

VLR (Knight et al., 2018) MICCAI 2017, MICCAI 2016, ISBI MS 2015 7 = 3 + 3 + 1 96 = 3*20 + 3*5 + 21 0.70 0.78 –

SC UNet (Zhang et al., 2019) MICCAI 2017 3 60 = 3*20 0.78 – –

MixDANN (Kushibar et al., 2021) MICCAI 2017 3 60 = 3*20 0.74 0.69 0.66

ensemble UNet (Park et al., 2021) MICCAI 2017 5 170 = 3*50 + 2*10 0.81 0.82 0.79

TDA (Kruger et al., 2021) MICCAI 2017, VH 4 = 3 + 1 88 = 3*30 + 28 0.59 0.51 –

TABLE 10 BraTS dataset.

Dataset name Site number HGG number LGG number

BraTS 2015 (Menze et al., 2015) – 220 54

BraTS 2018 (Bakas et al., 2018) 19 210 75

BraTS 2019 19 259 76

TABLE 11 Comparison of brain tumor segmentation method.

Method Dataset name Source domain Target domain Source to target Whole CoreT EnhT

SSCA (Liu et al., 2022a) BraTS 2018 285 285 T2 to T1, T1ce, FLAIR 0.68 0.58 0.45

MultiConDoS (Zhang

et al., 2023)

Hecktor, BraTS 2018 201 210 CT to MRI 0.58 – –

UDA (Qin et al., 2023) BraTS 2019 335*2 335*2 T1 + T1ce to T2 + FLAIR 0.49 0.31 0.22

SASAN (Tomar et al.,

2021)

WHSD, BraTS 2015 20 65 T2 to T1 0.61 0.18 0.46

EMD (Liu et al., 2022b) BraTS 2018 210 75 HGG to LGG 0.83 0.46 0.32

methods have been proposed to tackle this issue, each

possesses its own strengths and limitations. Future research

needs to delve deeper into novel methods to enhance

the performance of domain adaptation in brain medical

image segmentation.

Moreover, it is imperative to establish unified dataset

collections and experimental standards for a more accurate

evaluation of the performance of different methods. Only through

this approach can we gain a better understanding of the

strengths and weaknesses of various methods and develop more

effective solutions.

Finally, we anticipate further advancements in deep

learning technologies to address the domain adaptation

problem in brain medical image segmentation. This

progress will improve the accuracy of medical image

analysis and, ultimately, enhance patient diagnosis

and treatment.
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