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Paired competing neurons
improving STDP supervised local
learning in spiking neural
networks

Gaspard Goupy, Pierre Tirilly and Ioan Marius Bilasco*

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France

Direct training of Spiking Neural Networks (SNNs) on neuromorphic hardware

has the potential to significantly reduce the energy consumption of artificial

neural network training. SNNs trained with Spike Timing-Dependent Plasticity

(STDP) benefit from gradient-free and unsupervised local learning, which can

be easily implemented on ultra-low-power neuromorphic hardware. However,

classification tasks cannot be performed solely with unsupervised STDP. In

this paper, we propose Stabilized Supervised STDP (S2-STDP), a supervised

STDP learning rule to train the classification layer of an SNN equipped with

unsupervised STDP for feature extraction. S2-STDP integrates error-modulated

weight updates that align neuron spikes with desired timestamps derived from

the average firing timewithin the layer. Then, we introduce a training architecture

called Paired Competing Neurons (PCN) to further enhance the learning

capabilities of our classification layer trained with S2-STDP. PCN associates each

class with paired neurons and encourages neuron specialization toward target or

non-target samples through intra-class competition. We evaluate our methods

on image recognition datasets, including MNIST, Fashion-MNIST, and CIFAR-

10. Results show that our methods outperform state-of-the-art supervised

STDP learning rules, for comparable architectures and numbers of neurons.

Further analysis demonstrates that the use of PCN enhances the performance

of S2-STDP, regardless of the hyperparameter set and without introducing any

additional hyperparameters.

KEYWORDS

Spiking Neural Networks, image recognition, supervised STDP, Winner-Takes-All, intra-

class competitive learning

1 Introduction

Artificial Neural Networks (ANNs) have gathered exponential attention across diverse

domains in recent years (Abiodun et al., 2018). However, ANN training suffers from

high and inefficient energy consumption on modern computers based on the von

Neumann architecture (Zou et al., 2021). Spiking Neural Networks (SNNs) (Ponulak

and Kasinski, 2011) implemented on neuromorphic hardware (Schuman et al., 2017;

Shrestha et al., 2022) have emerged as a promising solution to overcome the von

Neumann bottleneck (Zou et al., 2021) and enable energy-efficient computing. In

particular, memristive-based neuromorphic hardware (Jeong et al., 2016; Xu et al., 2021)

is an excellent candidate for ultra-low-power applications, potentially reducing energy

consumption by at least one order of magnitude compared to state-of-the-art CMOS-based

neuromorphic hardware (Milo et al., 2020; Liu et al., 2021a), and by several orders of
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magnitude compared to GPUs (Yao et al., 2020; Li et al., 2022).

However, direct training of SNNs on neuromorphic hardware

comes with a major constraint: implementing network-level

communication is challenging and requires significant circuitry

overhead (Zenke and Neftci, 2021). Therefore, the involved

learning mechanisms should rely on local weight updates, i.e.,

updates based only on the two neurons that the synapse connects.

Training SNNs to achieve state-of-the-art performance is

typically accomplished with adaptations of Backpropagation

(BP) (Eshraghian et al., 2021; Dampfhoffer et al., 2023).

However, these methods are challenging to implement on

neuromorphic hardware as they rely on non-local learning. In

addition, they employ gradient approximation to circumvent

the non-differentiable nature of the spike generation function,

which is suboptimal. Other approaches attempted to make

gradient computation local, notably by utilizing feedback

connections (Neftci et al., 2017; Zenke and Ganguli, 2018), or by

employing a layer-wise cost function (Ma et al., 2021; Mirsadeghi

et al., 2021). Yet, they do not solve the gradient approximation

problem. Furthermore, all of the aforementioned BP-based

methods rely solely on supervised learning, which increases the

dependence on labeled data. We believe that machine learning

algorithms should minimize this dependence on supervision by

employing unsupervised feature learning (Bengio et al., 2013).

Hence, an optimal classification system should include both

unsupervised and supervised components, for data representation

and classification, respectively.

Spike Timing-Dependent Plasticity (STDP) (Caporale and

Dan, 2008) is a gradient-free, unsupervised and local alternative

to BP, inspired by the principal form of plasticity observed in

biological synapses (Hebb, 1949). STDP solves the previously

mentioned limitations of BP and is inherently implemented in

memristor circuits (Querlioz et al., 2011; Schuman et al., 2017),

which makes it suitable for on-chip training on memristive-based

neuromorphic hardware (Saïghi et al., 2015; Khacef et al., 2023).

Unsupervised feature learning with STDP has been extensively

studied in the literature, particularly for image recognition

tasks. Convolutional SNNs (CSNNs) trained with STDP have

demonstrated the ability to improve data representation by

extracting relevant features from images (Tavanaei and Maida,

2017; Ferré et al., 2018; Kheradpisheh et al., 2018; Falez et al., 2019b;

Srinivasan and Roy, 2019). However, to perform classification

based on the extracted features, these solutions employ external

classifiers, such as ANNs or support vector machines, which

are incompatible with neuromorphic hardware. To leverage the

potential of these CSNNs in neuromorphic hardware and enable

end-to-end SNN solutions, spiking classifiers trained with local

supervised learning rules must be designed. Ensuring compatibility

between classifiers and CSNNs, particularly regarding the type

of local rule employed, could significantly mitigate hardware

implementation overhead.

Although STDP is traditionally formulated for unsupervised

learning, it can be adapted for supervised learning by incorporating

a third factor, taking the form of an error signal that is used

to guide the STDP updates (Frémaux and Gerstner, 2015). As a

result, STDP enables end-to-end SNNs to perform classification

tasks by combining unsupervised STDP for feature extraction and

supervised STDP for classification (Shrestha et al., 2017; Thiele

et al., 2018; Lee et al., 2019;Mozafari et al., 2019). Several supervised

adaptations of STDP are reported in the literature (Ponulak and

Kasiński, 2010; Shrestha et al., 2017, 2019; Lee et al., 2019; Tavanaei

and Maida, 2019; Hao et al., 2020; Zhao et al., 2020; Zhang et al.,

2021; Saranirad et al., 2022). Yet, all of the aforementioned rules

are designed to train SNNs with multiple spikes per neuron,

which is undesirable because state-of-the-art CSNNs trained with

unsupervised STDP usually employ one spike per neuron. For

compatibility with these CSNNs, a spiking classifier trained with

supervised STDP should adhere to this single-spike approach. In

addition, it has been shown that using one spike per neuron

with temporal coding presents several advantages for visual tasks,

including fast information transfer, low computational cost, and

improved energy efficiency (Rullen and Thorpe, 2001; Park et al.,

2020; Guo et al., 2021). The literature exploring supervised

adaptations of STDP for training SNNs with only one spike per

neuron is limited. Reward-modulated STDP (R-STDP) (Mozafari

et al., 2019) is a learning rule based on Winner-Takes-All (WTA)

competition (Ferré et al., 2018) that modulates the polarity of

the STDP update to apply a reward or a punishment. R-STDP

has gained popularity notably for its simplicity, but it results

in inaccurate weight updates as only the polarity of STDP is

adjusted. Recently, Supervised STDP (SSTDP) (Liu et al., 2021b)

proposes a method to modulate, in the output layer, both the

polarity and intensity of STDP with temporal errors, resulting in

more accurate weight updates. When combined with the non-

local optimization process of BP, SSTDP enables state-of-the-art

performance in deep SNNs on various image recognition datasets.

However, it has not yet been investigated in settings based on local

learning, combining unsupervised STDP for feature extraction

and SSTDP for classification. In addition, we claim that SSTDP

faces two issues that may limit its performance. First, SSTDP

training results in a limited number of STDP updates per epoch,

which can lead to premature training convergence. Second, SSTDP

training causes the saturation of firing timestamps toward the

maximum firing time, which can limit the ability of the SNN to

separate classes.

In this paper, we focus on the supervised STDP training of a

spiking classification layer with one spike per neuron and temporal

decision-making. This classification layer is the output layer of an

SNN equipped with unsupervised STDP for feature extraction, as

illustrated in Figure 1. The main contributions of this paper include

the following:

1. In a preliminary study, we analyze the behavior of SSTDP when

used to train the classification layer of an SNN equipped with

unsupervised STDP. We demonstrate that the rule encounters

two issues that may limit its performance: the limited number of

STDP updates per epoch and the saturation of firing timestamps

toward the maximum firing time.

2. To address the issues of SSTDP, we propose Stabilized

Supervised STDP (S2-STDP), a supervised STDP learning rule

that teaches neurons to align their spikes with dynamically

computed desired timestamps derived from the average firing

time within the layer.

3. To further enhance the learning capabilities of our classification

layer trained with S2-STDP, we introduce a training architecture
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FIGURE 1

Architecture of the SNN employed in this paper for image recognition tasks. First, the image is preprocessed and each pixel is encoded into a single

floating-point timestamp using the latency coding scheme. Then, a Convolutional SNN (CSNN) trained with unsupervised STDP is used to extract

relevant features from the image. The resulting feature maps are compressed through a max-pooling layer to reduce their size and provide invariance

to translation on the input. Lastly, they are flattened and fed to a fully-connected SNN trained with a supervised adaptation of STDP for classification.

Each output neuron is associated with a class and the first one to fire predicts the label. Training is done in a layer-wise fashion. This classification

pipeline organized into three blocks provides a flexible framework for SNNs combining feature extraction and classification. In this paper, we focus

on the classification layer block (C), which may be integrated after other encoding or feature extraction blocks based on latency coding.

called Paired Competing Neurons (PCN). This method

associates each class with paired neurons and encourages neuron

specialization toward target or non-target samples through

intra-class competition.

4. We evaluate the performance of S2-STDP and PCN on three

image recognition datasets of growing complexity: MNIST,

Fashion-MNIST, and CIFAR-10.

The remainder of this paper is organized as follows. In

Section 2, we provide the necessary background information about

the SNN employed in this study. In Section 3, we demonstrate

experimentally the aforementioned issues of SSTDP, which we

address with our contributions. In Section 4, we describe our

spiking classification layer and our proposed training methods. In

Section 5, we cover our results on image recognition datasets and

provide an in-depth investigation of the key characteristics of our

methods. In Section 6, we conclude the paper. The source code is

publicly available at: https://gitlab.univ-lille.fr/fox/snn-pcn.

2 Background

2.1 Neural coding

Since spiking neurons communicate through spikes, encoding

the image, as illustrated in Figure 1A, is a necessary step before the

SNN can process it. In this work, we use a temporal coding scheme

called latency coding (Thorpe et al., 2001). This scheme represents

each pixel by a single spike timestamp, thus limiting the number

of generated spikes and making the coding more energy efficient,

which is suitable for implementation on ultra-low-power devices.

For a given pixel x ∈ [0, 1], we calculate its spike timestamp t (x) as

following Equation 1:

t (x) = Tmax · (1− x) , (1)

where Tmax is the maximum firing time (set to 1 in this work).

Consequently, the intensity of the pixel is encoded through latency:

higher pixel values correspond to lower latencies, and vice versa.

Spike timestamps are represented by floating-point values to align

with spike-based communication in event-driven neuromorphic

hardware.

2.2 Neuron model

To simulate the dynamics of spiking neurons, we use the

Single-Spike Integrate-and-Fire (SSIF) model (Kheradpisheh and

Masquelier, 2020; Goupy et al., 2023), describing IF neurons that

can fire at most once per sample. Following latency coding, SSIF

neurons encode the magnitude of their activation through spike

timing: neurons firing first are the most strongly activated. The

neurons integrate input spikes to their membrane potential V with

Equation 2:

∂Vj (t)

∂t
=

∑

i

wij · Si (t) , (2)

where t is the timestamp, Vj is the membrane potential of

neuron nj, wij is the weight of the synapse from ni to nj, and Si (t)

indicates the presence (Si (t) = 1) or absence (Si (t) = 0) of a

spike from input neuron ni at timestamp t. When the membrane

potential of neuron nj exceeds a defined threshold Vth (i.e. Vj (t) ≥

Vth), the neuron emits a spike at timestamp t and is deactivated

until the next sample is shown.
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2.3 Unsupervised STDP feature learning

Unsupervised training of CSNNs with STDP, as illustrated

in Figure 1B, is an effective approach for improving image

representation before classification without using any labeled data.

In this work, we use the CSNN model introduced by Falez et al.

(2019b). This model comprises trainable convolutional layers that

extract spatial features from an encoded image, and non-trainable

max-pooling layers that reduce the size of the feature maps and

provide translation invariance on the input. The output of the

CSNN consists of two-dimensional feature maps containing the

output spikes of the neurons in the final layer. Following the SSIF

neuron model, there is at most one spike per neuron (i.e., per

feature) and the intensity of the activation is encoded temporally.

STDP training consists in adjusting synaptic weights of the

convolutional layers based on the time difference between input

and output neuron spikes. The rule considers both causal and non-

causal relationships, increasing the synaptic weight when the input

neuron fires before the output neuron (causal), and decreasing

it otherwise (non-causal). For an output neuron nj, its weights

are updated with the multiplicative STDP (Querlioz et al., 2011)

following Equation 3:

1wij =







A+ × exp
(

−β
wij−wmin

wmax−wmin

)

if tj ≥ ti

A− × exp
(

−β
wmax−wij

wmax−wmin

)

o.w.
, (3)

where wij represents the weight of the synapse connecting input

neuron ni and output neuron nj,1wij is the weight change, A
+ and

A− are the positive and negative learning rates, β is the saturation

factor, wmin and wmax are the minimum and maximum achievable

weight values in the layer, and ti is the firing timestamp of

neuron ni. In addition to STDP,WTA competition and homeostatic

plasticity are employed in the convolutional layers (Falez et al.,

2019b). Via lateral inhibition, WTA competition promotes the

learning of various patterns: for each sample, only the weights

of the first neuron to fire are updated. Via threshold adaptation,

homeostatic plasticity regulates the WTA competition.

We recall that we focus, in this work, on the spiking

classification layer, given the extensive research already existing

on CSNNs trained with unsupervised STDP. For an in-depth

explanation and investigation of the employed CSNN model, we

refer readers to (Falez et al., 2019a,b, 2020). In addition, other

feature extractors may be employed instead of this model, provided

that the resulting output features adhere to the principles of the

SSIF model.

2.4 Supervised STDP for classification

Supervised training of SNNs with STDP, as illustrated in

Figure 1C, incorporates the class information of the input sample

to adjust the STDP updates. Given the architecture of the SNN

employed in this work, we focus on supervised STDP at the

classification (i.e., output) layer only. The literature on supervised

STDP training includes various approaches. Shrestha et al. (2017);

Lee et al. (2019); Hao et al. (2020) use teacher neurons that push

target neurons to fire and non-target neurons to remain silent.

Neurons that fire update their weights using unsupervised STDP,

hence without error modulation and only on samples of their class.

Shrestha et al. (2019); Zhao et al. (2020); Zhang et al. (2021) derive

errors based on spike counts to modulate the sign and intensity of

the STDP updates. However, in the context of temporal learning

with one spike per neuron, this is equivalent to using ternary errors

(+1,−1, 0), where only the sign of the update is adjusted. Tavanaei

and Maida (2019) define a target spike train and update, following

each target spike, the weights of all neurons with an STDP rule

modulated by a ternary error. When using one spike per neuron,

the target spike train consists of a single spike and produces a

single sign-modulated update per neuron. Most of these rules are

designed and effective for training SNNs with multiple spikes and

weight updates per neuron. In this work, we employ temporal

coding with one spike per neuron. Hence, the supervised STDP rule

employed for training the classification layer must be effective with

this single-spike constraint. The remainder of this section presents

the main existing rules designed for training a spiking classification

layer with one spike per neuron.

2.4.1 R-STDP
Reward-Modulated STDP (R-STDP) (Mozafari et al., 2019)

is a simple learning rule that modulates the sign of the STDP

update through rewards and punishments. R-STDP is combined

with WTA competition such that, for each sample, only the first

neuron to fire, denoted nj∗ , receives a weight update. The error ej∗

of nj∗ is given by Equation 4:

ej∗ =

{

+1 if cj∗ = y

−1 if cj∗ 6= y
, (4)

where cj∗ is the class of neuron nj∗ , and y is the class of the

sample. In practice, R-STDP requires mapping each class to

multiple neurons to achieve satisfactory performance. The rule is

also employed with adaptive learning rates and dropout to reduce

overfitting.

2.4.2 SSTDP
Supervised STDP (SSTDP) (Liu et al., 2021b) is a learning rule

with state-of-the-art performance, modulating both the sign and

intensity of the STDP update with temporal errors. SSTDP training

consists in teaching output neurons (one per class) to fire within

one of two desired time ranges. For each sample, these time ranges

are dynamically computed for the target neuron (i.e. the neuron

associated with the class of the sample) and the non-target neurons

(i.e. the neurons not associated with the class of the sample), based

on the average firing time Tmean in the layer. At the end of the

presentation of a sample, each output neuron updates its weights

with an error-modulated STDP. The error ej of neuron nj is defined

as the temporal difference between the neuron firing timestamp and

its time range boundary, as described by Equation 5:

ej =

{

max
{

0, tj −
(

Tmean − g1
)}

if cj = y

min
{

0, tj −
(

Tmean + g2
)}

if cj 6= y
, (5)

where tj is the firing timestamp of neuron nj, g1 and g2 are defined

time gaps that control the distance from Tmean, cj is the class of
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neuron nj, and y is the class of the sample. In other words, the

time range of the target neuron (c = y) is
[

0,Tmean − g1
]

and the

time range of the non-target neurons (c 6= y) is
[

Tmean + g2,Tmax

]

.

If a neuron fires within its desired range, the error is zero and

the neuron weights are not updated. Note that, due to the min

and max functions, SSTDP exclusively permits positive errors for

target neurons (promoting earlier firing) and negative errors for

non-target neurons (promoting later firing), potentially restricting

accurate control over the output firing timestamps.

3 Preliminary study

In Section 2.4.2, we briefly outlined the SSTDP training

method for an output layer with one spike per neuron. While this

rule achieves state-of-the-art performance, the formulation of the

desired time ranges (as presented in Equation 5) raises a concern:

SSTDP offers restricted control over the output firing timestamps.

To demonstrate this, we conducted preliminary experiments on the

MNIST (LeCun et al., 1998) and the Fashion-MNIST (Xiao et al.,

2017) datasets, using SSTDP to train the classification layer of an

SNN equipped with unsupervised STDP, as illustrated in Figure 1.

It led us to identify two primary issues that we aim to resolve in this

work:

1. the limited number of STDP updates per epoch;

2. the saturation1 of firing timestamps toward the maximum firing

time.

First, if a neuron fires within its desired time range during

training, its weights are not updated. Since neurons can easily reach

their desired time range, training with SSTDP results in a limited

number of updates per epoch. Figure 2 illustrates the update ratio

per epoch, computed as the average number of updates per neuron

divided by the number of samples. For both datasets, the total

update ratio is around 50% in the initial epoch, implying that, for

each sample, only half of the neurons receive a weight update. As

the number of epochs increases, this ratio quickly decreases to 9%

for MNIST and 16% for Fashion-MNIST. This limited number of

updates leads to rapid training convergence, as indicated by the

stabilization of training accuracies within a few epochs. However,

since many samples are not involved in the training process, we

believe that such rapid convergence is premature and may reduce

the capabilities of the SNN to generalize, resulting in suboptimal

model performance. In addition, this training process is inefficient

because many samples undergo computational processing by the

SNN without producing weight updates.

Second, because non-target updates are more frequent than

target updates (see Figure 2), neurons are continually pushed to

fire later. It creates a saturation effect where the firing timestamps

of neurons, as training continues, progressively approach the

maximum firing time. As observed in Figure 3, the average firing

time grows rapidly in the first epochs and then stabilizes close to

the maximum firing time (set to 1). During the last training epoch,

we compute an average firing time of 0.98 ± 0.009 for MNIST

1 The saturation signifies that the firing timestamps are concentrated

toward the upper firing limit, implying an average firing time close to the

maximum firing time and a low variance in the firing time.

and 0.99 ± 0.008 for Fashion-MNIST. Note that the standard

deviation corresponds to the variability in the average firing time

between samples: it indicates how much the average firing time

varies across samples during an epoch.We believe that the observed

saturation effect limits the expressivity of the SNN (i.e., its ability to

capture discriminant spatiotemporal information) and defeats the

principles of temporal coding as the majority of the input spikes are

integrated by the output neurons. In addition, the low variance in

the average firing time across samples of different classes may affect

the ability of the SNN to separate classes.

4 Methods

To address the issues of SSTDP, we propose S2-STDP

for training a spiking classification layer with one spike per

neuron and temporal decision-making. S2-STDP employs error-

modulated weight updates with dynamically computed desired

timestamps derived from the average firing time within the layer.

Then, we propose the PCN training architecture, which further

enhances the learning capabilities of our classification layer trained

with S2-STDP. PCN encourages neuron specialization through

intra-class competition and does not introduce any additional

hyperparameters.

4.1 Supervised classification layer

The classification layer is the output layer of our SNN,

illustrated in Figure 1C. It is a fully-connected architecture

composed of SSIF neurons, designed to process latency-coded

spike inputs (i.e. with at most one spike per input, and where

the intensity of the input is encoded temporally). For a N-class

problem, the classification layer comprisesN neurons (n1, . . . , nN),

each associated with a distinct class (c1, . . . , cN). The purpose of

the classification layer is to predict the class of a given sample.

Since SSIF neurons can fire at most once per sample, we make

this prediction based on the output neuron that fires first. This

method eliminates the need to propagate the entire input for

inference, which can reduce computation time and the number of

generated spikes. Formally, the prediction ŷ of the SNN is defined

by Equation 6:

ŷ = cj∗

j∗ = argmin
j∈[1,N]

(

tj
)

, (6)

where tj denotes the firing timestamp of neuron nj. If several

neurons fire at the same timestamp, the one with the highest

membrane potential is selected. In practice, the method used for

selecting a neuron in the event of a tie has a negligible impact on

the performance.

4.2 Stabilized supervised STDP

To optimize the synaptic weights of the classification layer, we

propose an error-modulated supervised STDP learning rule named

Stabilized Supervised STDP (S2-STDP). This rule teaches neurons
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FIGURE 2

Update ratio and train accuracy per epoch in the classification layer trained with SSTDP. Training with SSTDP results in a limited number of STDP

updates per epoch, which may lead to premature training convergence and suboptimal model performance.

FIGURE 3

Average firing time per epoch in the classification layer trained with SSTDP. Training with SSTDP causes the saturation of firing timestamps toward the

maximum firing time, which may limit the expressivity of the SNN and its ability to separate classes.

to alternate their firing between two desired timestamps, Ttarget

and Tnon−target, dynamically computed for each sample based on

Tmean, the average firing time in the layer. If the class of the neuron

corresponds to the class of the sample, the neuron receives a target

weight update, teaching it to fire closer to Ttarget, just before Tmean.

If the class of the neuron does not correspond to the class of the

sample, the neuron receives a non-target weight update, teaching

it to fire closer to Tnon−target, right after Tmean. During training,

at the end of the presentation of a sample, the weights of each

output neuron are updated with an error-modulated adaptation of

the multiplicative STDP following Equation 7:

1wij =







ej × A+ × exp
(

−β
wij−wmin

wmax−wmin

)

if tj ≥ ti

ej × A− × exp
(

−β
wmax−wij

wmax−wmin

)

o.w.
, (7)

where wij is the weight of the synapse connecting input neuron

ni and output neuron nj, 1wij is the weight change (such as

wij = wij + 1wij), ej is the error of neuron nj, A
+ and A−

are the positive and negative learning rates, β is the saturation

factor, wmin and wmax are the minimum and maximum achievable

weight values in the layer, and ti is the firing timestamp of neuron

ni. Multiplicative STDP reduces the effect of weight saturation by

adjusting the update according to the current weight value and

boundaries (Querlioz et al., 2011). Regardless, weights are manually

clipped in [wmin,wmax] after each update to ensure that they remain

within a controlled range. The error of an output neuron nj is a

temporal difference defined by Equation 8:

ej =
tj − Tj

Tmax
, (8)

where tj and Tj respectively represent the actual and desired firing

timestamps, and Tmax is the maximum firing time. If an output

neuron remains silent during the simulation, we force it to emit

a fake spike at Tmax, as in Kheradpisheh and Masquelier (2020).

This method ensures that all neurons receive a weight update per

sample. To compute the desired firing timestamps, we introduce a
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method adapted from SSTDP defined in Equation 9:

Tj =











Ttarget = Tmean −
N − 1

N
· g if cj = y

Tnon−target = Tmean +
1

N
· g if cj 6= y

, (9)

where Tmean is the average firing time in the layer, N is the number

of neurons, cj is the class of neuron nj, y is the class of the

input sample, and g is a time gap hyperparameter that determines

the desired distance from Tmean. Specifically, whereas SSTDP

defines desired time ranges
[

0,Ttarget

]

and
[

Tnon−target,Tmax

]

,

our adaptation defines desired timestamps Ttarget and Tnon−target.

Therefore, with our adaptation, neurons can undergo weight

updates in both directions, regardless of their associated class. For

instance, if a neuron that does match the input class fires before

its desired timestamp (Ttarget), its weights will receive a negative

update to promote later firing. Conversely, if a neuron that does not

match the input class fires after its desired timestamp (Tnon−target),

its weights will receive a positive update to promote earlier firing.

With SSTDP, the weights of these neurons would not be updated in

such cases.

S2-STDP is carefully designed to resolve the two issues of

SSTDP outlined in Section 3. The first aim of S2-STDP is to increase

the number of STDP updates per epoch to facilitate training

convergence at higher accuracy. This is addressed by defining

floating-point desired timestamps rather than time ranges, which

are considerablymore challenging for neurons to reach. The second

aim of S2-STDP is to reduce the saturation of firing timestamps

to improve the expressivity of the SNN and its ability to separate

classes. This is addressed by enabling positive non-target weight

updates that promote earlier firing, and hence, stabilize the output

spikes at earlier timestamps. Earlier output firing timestamps may

allow the SNN to better fit the specificity of input spikes from a

certain class, resulting in a higher variance in the average firing time

across samples of different classes. Note that, compared to SSTDP,

S2-STDP pushes neurons to fire closer to Tmean, which may reduce

the variance between neuron firing timestamps for a given sample.

However, we argue that this is not a concern since the desired

timestamps provide more accurate control over the output firing

timestamps.

In addition to STDP, we use a heterosynaptic plasticity

model (Ferré et al., 2018; Liang et al., 2018) to regulate changes

in synaptic weights. This model ensures that all neurons maintain

a constant and similar weight average throughout the training

process, allowing them equal chances of activation regardless of

the number of weight updates they have undergone. After each

update of an output neuron nj, its weights are normalized following

Equation 10:

wij = wij ·
fnorm

∑

k wkj
, (10)

where wij represents the weight of the synapse with input neuron

ni, and fnorm is the normalization factor, computed as the sum

of weights of neuron nj at initialization. In practice, this method

also provides robustness against the choice of positive and negative

learning rates (A+ and A−).

4.3 Paired competing neurons

S2-STDP involves training each neuron to alternate its firing

between two desired timestamps, depending on the class of the

input sample (see Equation 9). Hence, the neurons have strong

training requirements: they must adapt their weights to satisfy both

target and non-target desired timestamps. These requirements can

limit their learning capabilities (i.e. their capabilities to learn class-

specific patterns) because it is harder to find weight values that

allow them to reach both desired timestamps. However, ensuring

the convergence toward the desired timestamps is of crucial

importance to stabilize the output firing timestamps in the layer.

To benefit from the stabilized property of S2-STDP along with

enhanced learning capabilities, we propose the Paired Competing

Neurons (PCN) training architecture, described in Figure 4.

In this architecture, each class cj∈[1,N] is associated with a pair of

output neurons
(

nj, nj′
)

that are connected with lateral inhibition

to create intra-class competition. Within each pair and for each

sample, the first neuron to fire, called the winner, inhibits the

other one, called the loser, and undergoes the weight update. This

mechanism is similar to the WTA competition found in STDP-

based networks, yet it is class-specific in this context. The purpose

of PCN is to encourage, for each class, neuron specialization toward

one type of sample: target or non-target. In other words, for a pair of

neurons
(

nj, nj′
)

associated with class cj, when we present samples

of class y = cj, we want nj to fire at Ttarget and nj′ to fire after

nj. Conversely, when we present samples of class y 6= cj, we want

nj′ to fire at Tnon−target and nj to fire after nj′. The neuron order

in this example is arbitrary as we do not assign an objective to

each neuron, i.e., within a class-specific pair, we do not explicitly

label neurons as target or non-target. Instead, we let this behavior

emerge naturally through intra-class competition. Note that the

purpose of neurons specializing toward non-target samples extends

beyond inhibiting target firing for non-target samples (Tavanaei

and Maida, 2015). Here, these neurons also play a crucial role in

the S2-STDP training process, as their firing timestamps directly

impact the average firing time, and hence, the training convergence.

By encouraging specialization toward one type of sample, we

reduce training requirements on the neurons because their weights

primarily receive one type of update, which improves their learning

capabilities.

It should be noted that the use of PCN offers notable

other advantages. First, thanks to class-wise lateral inhibition,

the increased number of neurons does not introduce additional

training complexity because, for each sample, only the winners

receive weight updates (i.e. one neuron per class). Second, it does

not introduce any additional hyperparameters. Third, it can, in

principle, be used with any other learning rules involving two

desired timestamps.

5 Results

5.1 Experimental setup

5.1.1 Feature extraction network
Before classification, we extract features from images with a

CSNN trained using unsupervised STDP. In our experiments,
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FIGURE 4

Classification layer equipped with Paired Competing Neurons (PCN) and trained via Stabilized Supervised STDP (S2-STDP). Each class is represented

by paired neurons, interconnected with lateral inhibition to create intra-class competition. Within a pair, the first neuron to fire (the winner) inhibits

the other one (the loser) and undergoes the STDP update. The di�erence 1t between the desired and actual firing timestamps is used to compute

the neuron error, which modulates the intensity and the polarity of the STDP update. The purpose of PCN is to enhance the learning capabilities of

the neurons by promoting specialization toward target or non-target samples.

we use the CSNN model of Falez et al. (2019b), described in

Section 2.3. The employed architecture consists of a single trainable

convolutional layer followed by a non-trainable max-pooling

layer. Training is done in a layer-wise fashion: the convolutional

layer of the CSNN is entirely trained before the training of the

classification layer starts. Additional training details are provided in

Supplementary material (Section 1). To analyze the performance of

the classification layer across various input sizes, we consider three

configurations of the CSNN with increasing numbers of filters:

CSNN-16 (16 filters), CSNN-64 (64 filters), and CSNN-128 (128

filters). Within a given dataset, these configurations share the same

hyperparameters, except for the number of filters. Unless otherwise

specified, the experiments are conducted on CSNN-128.

5.1.2 Datasets
We select three image recognition datasets, each comprising

ten classes, exhibiting growing complexity: MNIST (LeCun

et al., 1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-

10 (Krizhevsky, 2009). Both MNIST and Fashion-MNIST consist

of 28 × 28 grayscale images. They contain 60,000 samples for

training and 10,000 samples for testing. We preprocess the images

with on-center/off-center coding to extract edge information (Falez

et al., 2019b). CIFAR-10 is composed of 32 × 32 RGB images,

50,000 for training and 10,000 for testing. We preprocess the

images with the hardware-friendly whitening method presented

in Falez et al. (2020) to highlight their edges and high-frequency

features. Note that CIFAR-10 is challenging for STDP-based

SNNs and only a limited number of studies have considered this

dataset thus far (Ferré et al., 2018; Srinivasan and Roy, 2019;

Falez et al., 2020; Shrestha et al., 2021). All the preprocessing

methods are used with their original hyperparameters, provided in

Supplementary material (Section 2).

5.1.3 Protocol
We divide our experimental protocol into two phases:

hyperparameter optimization and evaluation. In both phases, we

employ an early stopping mechanism (with a patience pstop) during

training to prevent overfitting.

During the hyperparameter optimization phase, a subset of the

training set is used for validation, which is created by randomly

selecting, for each class, a percentage pval of its samples. We then

apply the gridsearch algorithm to optimize the hyperparameters of

the SNN based on the validation accuracy. Hence, we ensure that

the hyperparameters are not optimized for the test set. In this work,

only the hyperparameters of the classification layer are optimized

with gridsearch. The hyperparameters of the CSNN are manually

set based on preliminary experiments. For each dataset and model

of the classification layer, gridsearch is performed on the CSNN-

128 configuration. Then, the same hyperparameters are used with

CSNN-64 and CSNN-16, except for the firing threshold that is
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divided by 2 and 4, respectively, as the number of input spikes

decreases with the input size. All the hyperparameters are provided

in Supplementary material (Section 2).

During the evaluation phase, we use the K-fold cross-validation

strategy. We partition the training set into K subsets and train

K models, each using a different subset for validation while the

remaining K − 1 subsets are used for training. Then, we evaluate

the trained models on the test set and we compute the average test

accuracy. Note that each model is trained with a different random

seed. This allows us to assess the performance of the SNN with

varying training and validation data, as well as different weight

initializations. In all the following experiments, we choose pstop =

10, K = 10 and pval =
1
K (i.e. 10% of the training set is used for

validation during the hyperparameter optimization phase).

5.2 Accuracy comparison

In this section, we present a comparative analysis of the

accuracy between two existing methods designed for training SNNs

with one spike per neuron, R-STDP and SSTDP (both of which

we have implemented and optimized using gridsearch), along with

our methods, S2-STDP and S2-STDP+PCN. Tables 1, 2, 3 show

the average test accuracy achieved by each method on the MNIST,

Fashion-MNIST, and CIFAR-10 datasets, respectively.

Across all datasets and CSNN configurations, S2-STDP

consistently outperforms SSTDP. On CSNN-128, we measure a

gain of 1.56 pp (percentage points) for MNIST, 0.72 pp for

Fashion-MNIST, and 0.65 pp for CIFAR-10. In addition, SSTDP

tends to underperform when confronted with smaller input sizes.

For instance, on CSNN-16, S2-STDP outperforms SSTDP by

10.91 pp on MNIST and 10.16 pp on CIFAR-10. The lower

performance of SSTDP on the CSNN-16 configuration of these

datasets is caused by training divergence, as evidenced by the

higher standard deviations, and is influenced by the employed

hyperparameters (transferred from CSNN-128). It suggests that

SSTDP lacks robustness against hyperparameters. While the

accuracy gain between SSTDP and S2-STDP is not always

substantial, our adaptation enables more effective training of the

classification layer, irrespective of the number of input features.

More importantly, S2-STDP leverages compatibility with the PCN

architecture, which further improves the accuracy of S2-STDP

across all datasets and CSNN configurations, without requiring

any additional hyperparameters. When integrating PCN with S2-

STDP on CSNN-128, we measure an additional gain of 0.78 pp

for MNIST, 1.24 pp for Fashion-MNIST, and 1.28 pp for CIFAR-

10. In comparison to the other existing STDP-based methods,

S2-STDP+PCN achieves the highest accuracy on the MNIST and

Fashion-MNIST datasets. Specifically, compared to SSTDP on

CSNN-128, it shows an accuracy improvement of 2.34 pp on

MNIST, 1.96 pp on Fashion-MNIST, and 1.93 pp on CIFAR-

10. We recall that our proposed training methods based on S2-

STDP employ a weight normalization mechanism not employed

by SSTDP. We evaluate the effect of weight normalization in

Supplementary material (Section 3.3).

On CIFAR-10, R-STDP significantly outperforms all the STDP-

based methods. However, R-STDP requires 200 output neurons

to achieve this performance whereas S2-STDP+PCN only uses 20

neurons. When R-STDP is used with 20 output neurons as S2-

STDP+PCN, it performs significantly worse than all other methods

across all datasets and CSNN configurations. This observation

highlights the importance of error-modulated weight updates in

enabling effective and efficient supervised training with STDP. In

our case, it leads to a substantial reduction in the number of

trainable parameters by a factor of 10. Also, on Fashion-MNIST, R-

STDP obtains relatively low performance and fails to extract more

relevant features when the number of feature maps increases. The

accuracy gain between CSNN-16 and CSNN-128 with R-STDP is

only about 0.96 pp, whereas it is about 3.23 pp with S2-STDP+PCN.

5.3 S2-STDP addresses the issues of SSTDP

In Section 3, we elaborated on the issues of SSTDP: the limited

number of STDP updates per epoch and the saturation of firing

timestamps toward the maximum firing time. Our proposed S2-

STDP is specifically designed to address these issues by defining

desired timestamps that stabilize the output spikes at earlier

timestamps. In this section, we analyze the effect of S2-STDP on

these issues.

In Figure 5, we compare the update ratio, average firing time,

and train accuracy per epoch in the classification layer trained

with the various SSTDP-based methods on the MNIST dataset. As

previously illustrated in a preliminary experiment (see Figures 2,

3), SSTDP suffers from a limited number of updates per epoch,

firing timestamps close to the maximum firing time, and low

variance in the average firing time between samples. Our proposed

methods based on S2-STDP successfully address these three issues.

In comparison to SSTDP at epoch 30, S2-STDP increases the update

ratio from 9% to nearly 100%, reduces the average firing time from

0.98 to 0.88, and augments its standard deviation from 0.009 to

0.05. Note that with S2-STDP+PCN, the update ratio is close to 50%

(instead of 100%), which is the maximum achievable value because

half of the neurons are inhibited. By addressing the issues of SSTDP,

our methods based on S2-STDP enable training convergence at

higher accuracies. In addition, due to the increased number of

updates per epoch, they achieve higher accuracies in fewer epochs.

For instance, S2-STDP reaches a training accuracy of 95.56% after

the first epoch, whereas SSTDP only reaches 91.16% and requires

two additional epochs to reach 95.60%. In Supplementary material

(Section 3.1), we show similar results for the Fashion-MNIST

dataset and we demonstrate that the resolution of these issues is

not attributed to the additional weight normalization mechanism

employed.

We mentioned in Section 4.2 that S2-STDP pushes neurons

to fire closer to the average firing time, and hence, to each

other, compared to SSTDP. In the following experiment, we show

that contrary to intuition, a tighter distribution of output firing

timestamps does not necessarily reduce the ability of the SNN to

separate classes. Figure 6 illustrates the distribution of firing time

differences between the first non-target neuron to fire and the target

neuron, on MNIST test samples. Since the SNN prediction is based

on the neuron that fires first, the sign of the time difference indicates

the ability of the SNN to classify the sample: a positive time
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TABLE 1 Accuracy of the existing and proposed learning rules on MNIST.

Rule Output neurons CSNN-16 CSNN-64 CSNN-128

R-STDP 200 96.05± 0.51 97.47± 0.16 97.88± 0.13

R-STDP 20 61.23± 27.74 93.34± 0.66 93.28± 0.87

SSTDP 10 84.49± 7.07 95.56± 0.13 96.25± 0.11

S2-STDP* 10 95.40± 0.21 97.19± 0.09 97.81± 0.05

S2-STDP+PCN* 20 97.02± 0.14 98.21± 0.07 98.59± 0.06

* Ours.

TABLE 2 Accuracy of the existing and proposed learning rules on Fashion-MNIST.

Rule Output neurons CSNN-16 CSNN-64 CSNN-128

R-STDP 200 82.30± 0.26 82.30± 0.92 83.26± 0.22

R-STDP 20 76.50± 0.52 76.73± 0.13 77.01± 0.22

SSTDP 10 81.40± 0.67 84.51± 0.18 85.16± 0.10

S2-STDP* 10 82.23± 0.40 84.92± 0.24 85.88± 0.22

S2-STDP+PCN* 20 83.89± 0.40 85.84± 0.19 87.12± 0.21

* Ours.

TABLE 3 Accuracy of the existing and proposed learning rules on CIFAR-10.

Rule Output Neurons CSNN-16 CSNN-64 CSNN-128

R-STDP 200 51.55± 1.23 61.85± 0.61 65.56± 0.38

R-STDP 20 38.51± 4.41 51.74± 0.93 54.02± 0.80

SSTDP 10 37.78± 2.41 57.53± 0.38 60.88± 0.23

S2-STDP* 10 47.94± 0.49 58.24± 0.27 61.53± 0.16

S2-STDP+PCN* 20 49.23± 0.56 59.58± 0.16 62.81± 0.15

* Ours.

FIGURE 5

Update ratio, average firing time, and train accuracy per epoch in the classification layer trained on MNIST. Our methods using S2-STDP significantly

increase the number of updates per epoch and reduce the saturation of firing timestamps toward the maximum firing time. As a result, they enable

training convergence at higher accuracies compared to SSTDP.

difference indicates a correctly classified sample (the target neuron

fires before the non-target neuron), and conversely. The tight

distribution of S2-STDP implies that the firing time differences tend

to be significantly smaller compared to SSTDP. This behavior arises

from our adapted training process, which pushes neurons to fire

closer to the average firing time. While it may seem intuitive to

maximize the firing time difference for improved class separability,

a closer examination of negative time differences reveals that
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FIGURE 6

Distribution of firing time di�erences between the first non-target neuron to fire and the target neuron, in the classification layer for MNIST test

samples of class 0 and 5. A negative time di�erence indicates that the target neuron fired after a non-target neuron, leading to misclassification of

the sample. S2-STDP achieves a tighter distribution of firing time di�erences but results in fewer misclassified samples compared to SSTDP.

SSTDP leads to more misclassified samples than S2-STDP (which

is confirmed by the overall lower accuracy of SSTDP). In the

context of temporal decision-making, we argue that supervised

STDP rules should not necessarily aim to maximize the firing time

difference between the target and non-target neurons. Instead, it

seems more important to ensure accurate control over the output

firing timestamps. In Supplementary material (Section 3.1), we

present similar results with the other classes of the MNIST dataset.

5.4 PCN enables neuron specialization

The PCN architecture exploits the two desired timestamps

defined by S2-STDP along with intra-class competition to promote

neuron specialization toward one type of sample: target or non-

target. In this section, we study the impact of integrating a PCN

architecture on the output firing timestamps of our classification

layer trained with S2-STDP.

Figure 7 illustrates the average firing time of output neurons

trained with and without PCN, on MNIST test samples

of class 0 and 5. Note that the time gaps used for S2-

STDP and S2-STDP+PCN differ but they correspond to the

optimal value obtained through gridsearch. We observe that

neurons trained with a PCN architecture better reach their

desired timestamps, particularly for the non-target neurons (see

Section 3.2 of Supplementary material for additional analysis). This

is because, through intra-class competition, PCN naturally enables

neuron specialization toward target or non-target samples. This

specialization is illustrated by neuron 2 of class 0 firing at Ttarget

when presented to samples of class 0 (target class) and being

inhibited by neuron 1 of class 0 for samples of class 5 (non-target

class). Conversely, neuron 2 of class 5 fires at Tnon−target when

presented to samples of class 0 (non-target class) and is inhibited

by neuron 1 of class 5 for samples of class 5 (target class). Hence,

the emerging target neuron may differ between classes (neuron

1 or 2). Intra-class competition reduces training requirements on

neurons specialized toward target samples because they do not have

to fire at an exact desired timestamp (Tnon−target) for non-target

samples. As observed, inhibited neurons for non-target samples

(i.e. neurons specialized toward target samples) have much larger

firing timestamps compared to the non-target desired timestamp.

Consequently, by creating neuron specialization toward target or

non-target samples, PCN facilitates the learning of more specific

patterns, which improves their learning capabilities.

5.5 Robustness against the time gap
hyperparameter

During training, the time gap hyperparameter g of S2-STDP

is used to define the distance between the desired timestamps

and the average firing time. Selecting an appropriate value for

this hyperparameter is crucial to ensure accurate class separation.

However, hyperparameter tuning can be a time-consuming task,

and achieving the optimal value may not always be feasible. In

this section, we investigate the influence of the time gap value on

accuracy.

Figure 8 compares SSTDP and our proposed methods

across various values of g on the three datasets. S2-STDP

demonstrates greater robustness compared to SSTDP regarding

the choice of g, as it significantly expands the range of values

that can achieve near-optimal accuracy. The accuracy curve

of S2-STDP exhibits a more pronounced bell-shaped pattern

with a larger plateau near the maximum. This implies that

tuning g can be easier with S2-STDP. When considering

a suitable range for g, S2-STDP always achieves higher or
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FIGURE 7

Neuron average firing time in the classification layer, for MNIST test samples of class 0 and 5. Each point represents a neuron, and the row denotes its

associated class. The points with higher transparency are the inhibited neurons (i.e., losers). The green and red lines are the average desired

timestamps of the target neuron and the non-target neurons, respectively. Through intra-class competition, the use of the PCN architecture enables

neuron specialization toward one type of sample, which helps them reach their desired firing timestamp and improve their learning capabilities.

Neuron 2 of class 0 and neuron 1 of class 5 specialized toward target samples.

FIGURE 8

Accuracy of the di�erent SSTDP-based learning rules against the time gap hyperparameter. Our proposed methods using S2-STDP enable better

robustness against the time gap value.

similar accuracy compared to SSTDP. We also illustrate

the accuracy of S2-STDP without weight normalization to

demonstrate that its improved robustness is not due to

this additional mechanism. The use of PCN as a training

architecture for S2-STDP almost always improves its performance.

Hence, the efficacy of PCN is not dependent on a specific
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FIGURE 9

Accuracy of S2-STDP, with and without the use of the PCN architecture, across di�erent hyperparameter sets on Fashion-MNIST. PCN always

improves S2-STDP performance, without introducing any additional hyperparameters.

value of g. Note that all the methods use their respective

gridsearch-optimized hyperparameters.

5.6 Robustness against the
hyperparameter set

Our PCN training architecture improves the accuracy of

S2-STDP across all evaluated datasets, as indicated in Section 5.2.

However, the hyperparameters of the classification layer are

individually optimized for S2-STDP and S2-STDP+PCN,

suggesting that PCN might only enhance performance with

specific hyperparameter sets. In this section, we present evidence

that PCN can effectively improve the accuracy of S2-STDP

irrespective of the hyperparameters used. Specifically, we aim to

demonstrate that integrating PCN into an existing SNN employing

S2-STDP for training is likely to always yield improved results.

Figure 9 illustrates the comparison of S2-STDP accuracy

with and without PCN across different hyperparameter sets on

the Fashion-MNIST dataset. Results on the other datasets are

reported in Supplementary material (Section 3.4). The varying

hyperparameters include the firing threshold (thr), time gap (g),

and learning rates (ap and am). Their values are selected within a

suitable range to achieve satisfactory performance with S2-STDP.

The results show that integrating PCN improves the accuracy of

S2-STDP consistently, with an average improvement of 0.94 pp

and a maximum improvement of 1.57 pp. For comparison, when

independently optimizing the hyperparameters for both methods,

the measured accuracy improvement is 1.24 pp. Hence, the

PCN architecture is an effective method for easily improving the

performance of a spiking classifier trained with S2-STDP, regardless

of the hyperparameter set and without introducing any additional

hyperparameters. As detailed in Supplementary material, the

results on the other datasets exhibit consistency with the analysis

conducted on Fashion-MNIST.

5.7 Comparison with the literature

In Table 4, we present an accuracy comparison between our

partially supervised SNN, trained with STDP and S2-STDP+PCN,

along with other existing algorithms employed for training SNNs.

For this comparison, we focused on supervised methods, primarily

STDP-based and BP-based with local updates. Note that the

reported accuracies come from the original papers.

On the MNIST and Fashion-MNIST datasets, our proposed

SNN outperforms the partially supervised approaches (Mozafari

et al., 2019; Hao et al., 2020) and demonstrates competitive

performance with most of the fully supervised approaches. It is

important to mention that, unlike these methods, only the output

layer of our SNN is trained with supervision. For instance, on

Fashion-MNIST, Zhao et al. (2020) employ a 6-layer SNN trained

with global feedback + STDP, achieving an accuracy of 89.05%. In

contrast, we employ a 2-layer partially supervised CSNN, resulting

in an accuracy loss of only 1.93 pp. Additionally, our results are

highly competitive with a 2-layer SNN trained using a BP-based

algorithm, with an accuracy loss of 0.88 pp.

On the CIFAR-10 dataset, the performance of our method

remains significantly low compared to state-of-the-art algorithms.

However, these algorithms, like the VGG-7 trained with

SSTDP (Liu et al., 2021b) (which reports a top-1 accuracy

and not an average), rely on non-local learning rules that cannot

be employed for direct training on neuromorphic hardware. On

the contrary, our proposed SNN is exclusively trained using local

learning rules and restricts the use of supervision to one layer. In

comparison to other local-based methods, our SNN demonstrates
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TABLE 4 Accuracy comparison of our proposed SNN with the literature.

Dataset References Number of layers
unsupervised / supervised

Learning rule Local Accuracy (%)

MNIST Lee et al., 2018 0 / 4 STDP pretraining + BP no 99.28

Liu et al., 2021b 0 / 2 SSTDP no 98.10

Tavanaei and Maida,

2019

0 / 3 BP-STDP no 97.20

Zhang et al., 2021 0 / 3 BRP yes 99.01

Shrestha et al., 2021 0 / 4 EMSTDP yes 98.90

Mozafari et al., 2019 2 / 1 STDP + R-STDP yes 97.20

Hao et al., 2020 1 / 1 Sym-STDP yes 96.73

This work 1 / 1 STDP + S2-STDP+PCN yes 98.59

Fashion-MNIST Kheradpisheh and

Masquelier, 2020

0 / 2 BP no 88.00

Mirsadeghi et al., 2023 0 / 4 STiDi-BP yes 92.80

Shrestha et al., 2021 0 / 4 EMSTDP yes 92.70

Zhao et al., 2020 0 / 6 Global feedback + STDP yes 89.05

Hao et al., 2020 1 / 1 Sym-STDP yes 85.31

This work 1 / 1 STDP + S2-STDP+PCN yes 87.12

CIFAR-10 Liu et al., 2021b 0 / 7 SSTDP no 91.31

Ferré et al., 2018 1 / 3 STDP + ANN-based BP no 71.20

Srinivasan and Roy, 2019 1 / 1 STDP + ANN-based BP no 66.23

Shrestha et al., 2021 0 / 4 EMSTDP yes 64.40

Zhang et al., 2021 0 / 3 BRP yes 57.08

This work 1 / 1 STDP + S2-STDP+PCN yes 62.81

Accuracies come from the original papers. Bold corresponds to the work with the highest accuracy.

competitive results. Overall, this dataset is particularly challenging

for shallow architectures with only one supervised layer. We

believe that the features extracted by our unsupervised layer are

not distinguishable enough to allow for an accurate analysis.

6 Conclusion

In this paper, we proposed Stabilized Supervised STDP (S2-

STDP), a supervised STDP learning rule for training a spiking

classification layer with one spike per neuron and temporal

decision-making. This layer can be employed to classify features

extracted by a convolutional SNN (CSNN) equipped with

unsupervised STDP. Our learning rule integrates error-modulated

weight updates that align neuron spikes with desired timestamps

derived from the average firing time within the layer. Then,

to further enhance the learning capabilities of the classification

layer trained with S2-STDP, we introduced a training architecture

called Paired Competing Neurons (PCN). PCN associates each

class with paired neurons connected via lateral inhibition and

encourages neuron specialization through intra-class competition.

We evaluated S2-STDP and PCN on three image recognition

datasets of growing complexity: MNIST, Fashion-MNIST, and

CIFAR-10. Experiments showed that our methods outperform

state-of-the-art supervised STDP rules when employed to train

our spiking classification layer. S2-STDP successfully addresses

the issues of SSTDP concerning the limited number of STDP

updates per epoch and the saturation of firing timestamps toward

the maximum firing time. The PCN architecture enhances the

performance of S2-STDP, regardless of the hyperparameter set and

without introducing any additional hyperparameters. Our methods

also exhibited improved hyperparameter robustness as compared

to SSTDP.

In the future, we plan to expand S2-STDP to multi-layer

architectures, while maintaining the local computation required

for on-chip learning. This includes exploring both feedback

connections (Zhao et al., 2020) and local losses (Mirsadeghi et al.,

2021).
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