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Purpose: Sensorineural hearing loss (SNHL) is the most common form of sensory 
deprivation and is often unrecognized by patients, inducing not only auditory 
but also nonauditory symptoms. Data-driven classifier modeling with the 
combination of neural static and dynamic imaging features could be effectively 
used to classify SNHL individuals and healthy controls (HCs).

Methods: We conducted hearing evaluation, neurological scale tests and 
resting-state MRI on 110 SNHL patients and 106 HCs. A total of 1,267 static 
and dynamic imaging characteristics were extracted from MRI data, and three 
methods of feature selection were computed, including the Spearman rank 
correlation test, least absolute shrinkage and selection operator (LASSO) and t 
test as well as LASSO. Linear, polynomial, radial basis functional kernel (RBF) and 
sigmoid support vector machine (SVM) models were chosen as the classifiers 
with fivefold cross-validation. The receiver operating characteristic curve, area 
under the curve (AUC), sensitivity, specificity and accuracy were calculated for 
each model.

Results: SNHL subjects had higher hearing thresholds in each frequency, as 
well as worse performance in cognitive and emotional evaluations, than HCs. 
After comparison, the selected brain regions using LASSO based on static and 
dynamic features were consistent with the between-group analysis, including 
auditory and nonauditory areas. The subsequent AUCs of the four SVM models 
(linear, polynomial, RBF and sigmoid) were as follows: 0.8075, 0.7340, 0.8462 
and 0.8562. The RBF and sigmoid SVM had relatively higher accuracy, sensitivity 
and specificity.

Conclusion: Our research raised attention to static and dynamic alterations 
underlying hearing deprivation. Machine learning-based models may provide 
several useful biomarkers for the classification and diagnosis of SNHL.
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Introduction

Sensorineural hearing loss (SNHL) is a global public health 
problem and is often unrecognized by patients (Tordrup et al., 2022). 
It is estimated that SNHL currently affects 1.5 billion people worldwide 
and will affect 9 billion people by the year 2050 (Disease et al., 2018). 
SNHL can detract from quality of life at the individual level and cause 
a severe economic burden at the societal level (Collaborators, 2021). 
Known consequences of SNHL include not only hearing and 
communication difficulties but also social isolation, anxiety, 
depression and cognitive impairments (Olusanya et  al., 2019), 
indicating the key role of neural substrates.

Neural imaging is a powerful tool and significantly enhances our 
knowledge about the human brain. Previous studies mostly used 
resting-state MRI to study SNHL, including fractional amplitude of 
low-frequency fluctuation (fALFF), regional homogeneity (ReHo) and 
degree centrality (DC). fALFF can suppress physiological noise (such 
as the vicinity of large blood vessels, cisterns and ventricles) and 
measure the contribution of low-frequency fluctuation within specific 
frequency bands (Zou et al., 2008). Slow 5 (0.01–0.027 Hz) and slow 4 
(0.027–0.073 Hz) have better sensitivity to gray matter (Xu et  al., 
2019b). ReHo is calculated on Kendall coefficient consistency and 
defined as the similarity or nonparametric concordance of adjacent 
voxel time series (Li et al., 2013). Additionally, DC describes functional 
integration among the whole brain using graph theoretic techniques 
(Guan et al., 2022). These characteristics are relatively static and treat 
the spatial and temporal information of the functional brain as 
separate parts.

Emerging evidence suggests that the human brain is a complex 
dynamic system that is interconnected across time and space (Deco et al., 
2011; Hou et al., 2018; Kong et al., 2023). Multilayer network analysis 
with the use of sliding windows provides the opportunity to detect the 
dynamic network configuration over time-resolved fMRI (Pedersen 
et al., 2018). The vital feature is the network switching rate or node 
flexibility, which is defined as the percentage of time when a node 
transitions to different functional networks (Bassett et  al., 2011). 
However, the sliding windows and the length of step require 
prespecification and are correlated with global synchronization and 
temporal stability (Hutchison et al., 2013). Another analysis with the 
hidden Markov model (HMM) can overcome the above limitation and 
discrete brain states in a data-driven manner, describing the transition 
probabilities between states (Stevner et al., 2019). Multilayer network 
analysis and HMM analysis have been computed in some 
neuropsychological diseases, such as depression, schizophrenia and 
dementia (Wang et al., 2020, 2021; Li et al., 2021). To our knowledge, no 
study has examined the dynamic characteristics of SNHL using these 
processing methods.

Many studies have used traditional methodologies to diagnose 
SNHL presence with the help of clinical doctors, while machine 
learning has been widely applied to automatically identify various 
datasets and risk factors for diseases. Existing studies conducted 
machine learning models with hearing thresholds and RNA 
expression to diagnose hereditary hearing loss (Luo et al., 2021), 
noise-induced hearing loss (Chen et al., 2021) and SNHL (Shew 
et al., 2019), but they ignored the involvement of neural functions. 
fMRI-based radiomics can be  utilized to explore neurological 
disease biomarkers and underlying mechanisms, such as cognitive 

impairments and depression (Shi et al., 2021; Shin et al., 2021; 
Chand et al., 2022).

In the present study, our hypothesis is machine learning models 
with a combination of static and dynamic brain feature can 
efficiently distinguish SNHL patients and controls. These machine 
learning models were applied to deidentified datasets and used to 
calculate the presence of SNHL. Moreover, to our knowledge, our 
research might be the early one to apply multi-order radiomics in 
identifing SNHL biomarkers, and this approach would contribute 
to a better understanding of machine learning tools to predict 
susceptibility to SNHL.

Materials and methods

Participants and ethics statement

A total of 110 bilateral SNHL patients and 106 age-and 
sex-matched healthy controls (HCs) were recruited from the 
Otolaryngology Department of Nanjing First Hospital and the 
local community via advertisements. This study was conducted 
with approval from the Research Ethics Committee of our hospital, 
and written informed consent was obtained from each participant 
prior to study participation. A pure tone audiometry (PTA) test 
was computed to evaluate the hearing threshold and the diagnosis 
of SNHL. A tympanometry test was conducted to confirm the 
function of the middle ear. The Mini-Mental State Examination 
(MMSE), Montreal Cognitive Assessment (MoCA), verbal fluency 
test (VFT), Trail Making Test-Part A/B (TMT-A/B), auditory 
verbal learning test (AVLT), clock drawing test (CDT), digit span 
test (DST), digit symbol substitution test (DSST), self-rating 
anxiety scale (SAS), and Hamilton Depression Scale (HAMD) were 
used to evaluate cognition and mental condition. We  excluded 
individuals if they (1) suffered from pulsatile tinnitus, hyperacusis, 
Meniere’s disease, conductive deafness, Parkinson’s disease, 
Alzheimer’s disease and major illnesses; (2) had a history of brain 
injury, drug addiction, smoking or alcohol addiction; or (3) had 
MRI contraindications.

Imaging acquisition and data 
preprocessing

A 3.0 Tesla MRI with an 8-channel head coil (Ingenia, Philips 
Medical Systems, Netherlands) was used for the imaging acquisition. 
All subjects were instructed to remain awake and avoid thinking 
about special things during the scanning. Foam padding was used 
to minimize head motion, and earplugs were used to attenuate 
scanning noise (about 32 dB). Structural images were acquired using 
a 3D-T1 sequence, and the parameters were as follows: repetition 
time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, slices = 170, 
thickness = 1 mm, gap = 0 mm, flip angle (FA) = 8°, field of view 
(FOV) = 256 mm × 256 mm, matrix = 256 × 256. Functional images 
were acquired using a gradient echo-planar imaging sequence as 
follows: time points = 240, TR = 2000 ms, TE = 30 ms, slice = 36, 
thickness = 4 mm, gap = 0 mm, FA = 90°, FOV = 240 mm × 240 mm, 
matrix = 60 × 60.
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Using tools in the Graph Theoretical Network Analysis Toolbox 
for Imaging Connectomics (GRETNA),1 functional MRI were 
preprocessed following the pipelines: (1) removing the first 10 time 
points for signal equilibrium, the remaining 230 images underwent 
subsequent analysis, (2) slice timing, (3) realign, (4) normalizing to 
EPI template (reslicing voxel size as 3 × 3 mm3), (5) spatial smoothing 
with a 6 mm full width at half maximum (FWHM), (6) regressing out 
covariates using Friston-24 parameters, and (7) detrending and 
filtering with a band from 0.01 to 0.1 Hz (Figure 1A). Subjects with 
head motion >2.0 mm or rotation angle >2.0° in any direction were 
removed from analysis, and nobody was excluded in our study.

Structural data analysis

The 3D-T1 sequence was used for structural analysis using DARTEL 
voxel-based morphometry (VBM) method according to previous study 
(Lin et al., 2013). The analysis steps were as follows: (1) segmenting T1 
images into gray matter (GM), white matter and cerebrospinal fluid, (2) 
constructing GM templates from the dataset; (3) performing non-linear 
warping of segmented images; (4) spatial normalization; (5) smoothing 
with a 6 mm FWHM. The VBM analysis demonstrated that SNHL was 
not related to significant structural alterations in present study.

Static and dynamic analysis

Static brain characteristics included f1ALFF (0.01–0.027 Hz), 
f2ALFF (0.027–0.073 Hz), ReHo, binary DC (BDC) and weighted DC 

1 http://www.nitrc.org/projects/gretna/

(WDC), which is consistent with previous studies (Xu et al., 2019b; 
Zeng et al., 2021). Then, we extracted representative signals of 90 
nodes based on the anatomical automatic labeling (AAL) atlas using 
REST software2 (Figure 1B).

To investigate the dynamic brain features, we applied a multilayer 
network and HMM to time courses that were extracted from 90 
nodes. We computed a sliding window method to calculate a dynamic 
function where the window size was set to 40 and the overlap was set 
to 0.975. The ordinal GenLouvain algorithm was used to track 
switching rates (SR)/node flexibilities (NF), and detailed information 
was similar to prior studies (Pedersen et al., 2018; Yang et al., 2020). 
This model is governed by γ and ω parameters, and we used a range 
of parameters, including γ = [0.9, 1, 1.1] and ω = [0.5, 0.75, 1], in the 
present study.

Additionally, we also applied HMM with a multivariate Gaussian 
observation model. According to an existing paper, the number of 
states assumed for the signal dynamics was specified as 6 (Moretto 
et  al., 2022). Three global temporal characterizations of HMM 
dynamics were estimated from time courses, including fractional 
occupancies (FO) and SR (Lin et al., 2022). FO is defined as the ratio 
of activated HMM states across the all-time course. SR is the frequency 
of transitions between different states (Figure 1C).

Feature extraction

All features were based on the AAL 90 atlas in our study. Static 
features include f1ALFF (1–90), f2ALFF (1–90), ReHo (1–90), BDC 
(1–90) and WDC (1–90) [90 × 5 = 450 features]. Dynamic brain 

2 http://www.restfmri.net/forum/REST_V1.8

FIGURE 1

The flowchart of the experiment. (A) Data acquisition and processing. (B) Static functional features. (C) Dynamic functional features. (D) Machine 
learning.
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features include NF 1 → 1 (1–90), NF 1 → 2 (1–90), NF 1 → 3 (1–90), 
NF 2 → 1 (1–90), NF 2 → 2 (1–90), NF 2 → 3 (1–90), NF 3 → 1 (1–90), 
NF 3 → 2 (1–90), NF 3 → 3 (1–90) using multilayer network analysis, 
as well as FO (1–6) and SR using the HMM method [90 × 9 + 6 + 1 = 817 
features] (Figure 1D).

Feature selection

The dimension of 1,267 extracted features is relatively high; 
therefore, so we needed to perform some dimensionality reduction on 
these features, as follows: (1) Spearman rank correlation test (the 
top  1% features were reserved), (2) least absolute shrinkage and 
selection operator (LASSO) with correlation coefficients at 
lambda = 100 and alpha = 1, and (3) t test and LASSO (features with a 
p-value <0.05 with independent sample t test were retained to perform 
LASSO subsequently). The above three strategies were computed with 
5-fold cross-validation.

Model construction and assessment

For model construction, four types of support vector machine 
(SVM) models were chosen as the classifiers, including linear, 
polynomial, radial basis functional kernel (RBF) and sigmoid SVM 
(Shin et  al., 2021). We  compared the ability of the models to 
distinguish between SNHL and HC using the following indicators: the 
receiver operating characteristic curve (ROC), area under the curve 
(AUC), sensitivity, specificity and accuracy. To estimate the 
generalizability and transportability of machine learning models, 
5,000 permutation tests were performed.

Results

Demographic characteristics and clinical 
data

Detailed information on demographic characteristics and clinical 
data is summarized in Table 1. A total of 110 SNHL patients and 106 
HCs were matched in terms of sex, age and education duration 
(p > 0.05). The hearing thresholds of each ear at 0.25, 0.5, 1, 2, 4, and 
8 kHz in the SNHL group were significantly higher than those in the 
HC group (p < 0.001). The SNHL group performed worse on the 
CFT-delay and TMT-A/B tests, which are associated with visual 
memory recall and cognitive flexibility, respectively. Moreover, the 
SAS and HAMD scores of patients with SNHL were higher than 
those of HCs.

Feature selection

In the dynamic analysis with the HMM model, we chose six 
states, and the HMM inference estimated the time course of each 
state. As shown in Figure 2, the FO of HMM state 1 with SNHL was 
significantly increased (p < 0.001), and the FO of HMM states 3 and 
6 with SNHL was significantly decreased (p < 0.001). No 
significance was observed in other states. In addition, the SR of 

SNHL patients (mean ± SD, 0.08 ± 0.05) was higher than that of 
HCs (mean ± SD, 0.06 ± 0.05) (p = 0.001), indicating a special 
pattern of temporal configuration in patients following bilateral 
hearing deprivation.

Among 1,267 imaging features, we computed three methods of 
feature selection. First, the discriminative regions using Spearman rank 
correlation in fivefold cross-validation are shown in Figure  3 and 

TABLE 1 Demographic information and clinical characteristics.

SNHL HCs p-value

Demographic information

Number of subjects 110 106 –

Gender (Male/Female) 63/47 70/36 0.186

Age (years) 57.47 ± 7.65 56.53 ± 7.16 0.350

Education (years) 11.78 ± 2.28 11.42 ± 2.08 0.229

Neuropsychological tests

MMSE 28.87 ± 0.97 29.06 ± 1.13 0.200

MoCA 27.06 ± 1.73 26.89 ± 1.68 0.447

VFT 14.37 ± 3.93 15.23 ± 3.78 0.101

CFT 29.97 ± 15.96 32.66 ± 6.82 0.107

CFT-delay 17.46 ± 4.35 24.82 ± 9.08 <0.001***

TMT-A 81.01 ± 44.50 70.16 ± 24.25 0.027*

TMT-B 183.85 ± 67.83 155.92 ± 63.95 0.002**

AVLT 35.13 ± 7.72 34.64 ± 7.77 0.645

AVLT-delay 6.92 ± 2.37 6.74 ± 2.36 0.572

CDT 3.55 ± 0.53 3.48 ± 0.56 0.324

DST 11.43 ± 1.92 11.55 ± 1.84 0.640

DSST 69.38 ± 9.02 69.06 ± 9.02 0.791

SAS 37.37 ± 7.83 33.38 ± 4.97 <0.001***

HAMD 5.62 ± 3.49 4.71 ± 3.04 0.042*

Hearing thresholds of each ear

Right-0.25 kHz 37.09 ± 25.53 18.07 ± 4.76 <0.001***

Right-0.5 kHz 36.95 ± 28.93 14.58 ± 5.94 <0.001***

Right-1 kHz 42.50 ± 31.06 17.08 ± 7.23 <0.001***

Right-2 kHz 44.48 ± 31.86 17.41 ± 7.75 <0.001***

Right-4 kHz 52.95 ± 28.22 17.78 ± 7.78 <0.001***

Right-8 kHz 58.55 ± 25.39 20.24 ± 11.37 <0.001***

Left-0.25 kHz 34.82 ± 24.84 15.00 ± 5.35 <0.001***

Left-0.5 kHz 36.91 ± 28.23 14.29 ± 4.50 <0.001***

Left-1 kHz 39.81 ± 28.96 15.66 ± 5.82 <0.001***

Left-2 kHz 42.89 ± 28.81 15.24 ± 6.98 <0.001***

Left-4 kHz 51.36 ± 26.06 14.95 ± 7.91 <0.001***

Left-8 kHz 55.86 ± 26.78 18.82 ± 9.17 <0.001***

Data are expressed as Mean ± SD.
p-values were calculated with the independent t-test or x2 test, as appropriate.
*p < 0.05, **p < 0.01, ***p < 0.001.
SNHL, sensorineural hearing loss; HCs, healthy controls; MMSE, Mini-Mental State Exam; 
MoCA, Montreal Cognitive Assessment; VFT, Verbal Fluency Test; TMT-A, Trail Making 
Test-Part A; TMT-B, Trail Making Test-Part B; AVLT, Auditory Verbal Learning Test; CDT, 
Clock Drawing Test; DST, Digit Span Test; DSST, Digit Symbol Substitution Test; SAS, Self-
rating Anxiety Scale; HAMD, Hamilton Depression Scale.
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Supplementary Table S1, including FO1, FO2, FO4, BDC of the 
hippocampus (HIP) and ReHo values in the inferior frontal gyrus, 
orbital part, middle frontal gyrus, orbital part, anterior cingulate gyrus, 
postcentral gyrus paracentral lobule, inferior parietal lobule, 
precuneus, superior parietal gyrus, angular gyrus and superior occipital 
gyrus. Second, selected features using LASSO are summarized in 
Supplementary Figure S1 and Supplementary Table S2, as static 
characteristics (including f1ALFF, f2ALFF, ReHo, BDC and WDC) and 
dynamic features (including FO and NF) were involved here. Third, 
we applied a t test as well as LASSO to select features, and only dynamic 
characteristics (NF) were recruited (Supplementary Figure S2 and 
Supplementary Table S3).

Performance of the classification for SNHL

The ROCs and their AUCs were calculated to compare the 
classification performance among the four machine learning models. 
Different SVM models (linear, polynomial, RBF and sigmoid) using 
selected features by Spearman rank correlation achieved a 
performance with AUCs of 0.8449, 0.8449, 0.8523, and 0.8539, 
respectively (Figure 4). Based on static and dynamic features from 
LASSO analysis, the AUCs of the four SVM models (linear, 
polynomial, RBF and sigmoid) were 0.8075, 0.7340, 0.8462, and 
0.8562, respectively (Supplementary Figure S3). Classification of the 
results using linear, polynomial, RBF and sigmoid SVM after t test and 
LASSO analysis were 0.7982, 0.7033, 0.8442, and 0.8412, respectively 
(Supplementary Figure S4). Detailed information about the 
performance of the four SVMs based on the three methods of feature 
selection is shown in Table 2, including AUC, accuracy, sensitivity and 
specificity. The RBF SVM and sigmoid SVM exhibited relatively high 
sensitivity and specificity of classification for SNHL.

Discussion

This study explored temporal patterns of brain function 
underlying SNHL and apply static and dynamic imaging radiomics 
features to identify SNHL biomarkers. We systematically analyzed 

static and dynamic imaging characteristics and applied Spearman 
rank correlation, LASSO, and t test plus LASSO analysis in feature 
selection, and then four machine learning models of SVM (linear, 
polynomial, RBF and sigmoid) were conducted to classify SNHL 
and HCs.

Machine learning models have been widely used in 
neuropsychiatric diseases and demonstrated that brain functional 
alterations had high importance of distinguish patients from controls 
(Gholipour et al., 2022; Qu et al., 2022). An existing study (Wasmann 
et al., 2022) based on peer-reviewed literature on machine learning 
validated the accuracy, reliability and efficiency of the automated PTA 
test, which is similar to manual audiometry. Machine learning models 
have been computed to predict hearing recovery following treatment 
of hearing loss (Bing et al., 2018; Koyama et al., 2021; Uhm et al., 
2021). However, these studies mainly focused on clinical and hearing 
variables and probably ignored the influence of nonauditory 
symptoms. Crowson et al. used a contemporary machine learning 
approach to predict risk factors for depression underlying hearing loss 
using the Patient Health Questionnaire-9 scale (Crowson et al., 2021).

Previous imaging studies used various analysis methods to 
compare neural activities between SNHL patients and HCs, which 
were constrained by a priori assumptions at the group level. Our 
study established data-driven classifier modeling based on imaging 
features input by SVMs and matching these vectors with outputs, 
enabling us to distinguish SNHL and HCs at the individual level. 
SVMs are supervised learning models and can efficiently perform 
classification and regression (Furey et al., 2000). Using a kernel 
function, SVM mainly has a two-type classifier that transforms 
datasets into a higher-dimensional space (linear or nonlinear) 
(Wang et al., 2022). The linear SVM is the most common type to 
handle single-parameter issues. The polynomial SVM is used to 
process imaging data, while the RBF SVM is used when there is no 
prior information about the data. Moreover, the sigmoid SVM is 
associated with neural networks (Lee et  al., 2021). Our results 
revealed that the RBF SVM and sigmoid SVM performed better 
than linear and polynomial SVM, which had relatively higher AUC 
and accuracy, indicating that these features were nonlinear.

Notably, three methods of feature selection were computed in our 
research. Taking the AUC, accuracy, sensitivity and specificity of SVM 
models based on selected features into consideration, we found that 
characteristics using Spearman rank correlation and LASSO selection 
had better performance. Similar to a previous study (Wang et al., 
2020), we also tried a two-sample t test to explore dynamic alterations 
for each state, and FO (1,3,6) of the SNHL group showed significance. 
However, in our data-driven analysis using Spearman rank correlation, 
FO2 and FO4 were also included in selected features, which was not 
consistent with the above statistical test, indicating that the type of 
feature selection might have systematic inaccuracies. Therefore, in 
LASSO analysis, features of transition patterns between multilayer 
states based on sliding window and length of step were involved, 
shedding light on the importance of brain dynamics in the 
resting state.

Several auditory brain areas were selected as features in our study 
(Supplementary Figure S1), including the thalamus, temporal pole: 
superior temporal gyrus, temporal pole: middle temporal gyrus, 
inferior temporal gyrus, middle temporal gyrus, and superior 
temporal gyrus, which is consistent with reported studies (Xu et al., 
2019a; Persic et al., 2020; Yang et al., 2021). Along with these auditory 

FIGURE 2

Alterations in fractional occupancies of each state between SNHL 
and HCs groups using HMM. HMM, hidden Markov model; SNHL, 
sensorineural hearing loss; HCs, healthy controls.
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regions, frontal, parietal and hippocampal features selected in our 
study overlapped with areas in patients with hearing loss and 
cognitive impairments (Banaszkiewicz et al., 2021; Ponticorvo et al., 
2021; Shen et  al., 2021; Ma et  al., 2022). Recent research has 
demonstrated occipital involvement in patients with auditory 
deprivation, suggestive of cross-modal reorganization (Campbell and 

Sharma, 2020). Anatomically, the angular gyrus and precuneus 
belong to the parietal lobule, and the calcarine fissure is part of the 
visual region. Micareli et al. computed positron emission tomography 
scanning in sudden SNHL patients, and decreased 
fluorodeoxyglucose uptake in the precentral, postcentral gyrus and 
cingulate gyrus as well as the cingulate and insula were observed 

FIGURE 3

Selected static and dynamic features using spearman in five-fold cross-validation. (A) Fold-1 in ReHo; (B) Fold-2 in ReHo; (C) Fold-3 in ReHo; (D) Fold-
3 in BDC; (E) Fold-4 in ReHo; (F) Fold-5 in ReHo. ORBinf, inferior frontal gyrus, orbital part; ORBmid, middle frontal gyrus, orbital part; ACG, anterior 
cingulate gyrus; PoCG, postcentral gyrus; PCL, paracentral lobule; IPL, inferior parietal lobule, PCUN, precuneus; SPG, superior parietal gyrus; ANG, 
angular gyrus; SOG, superior occipital gyrus; ANG, angular gyrus; HIP, hippocampus; ReHo, regional homogeneity; BDC,binary degree centrality.
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(Micarelli et  al., 2017), since these brain regions were linked to 
somatosensory and hearing function. Neuroanatomic volume 
differences (Yousef et al., 2021) and diffusion deficits (Moon et al., 
2020) in the caudate nucleus have been detected in hearing loss and 
tinnitus. Interestingly, the lenticular nucleus was selected as a feature 

in the present study, although it has not been reported in SNHL in 
previous findings. The lenticular nucleus is reported as a new center 
regarding human motion cognitive impairments (Shan et al., 2018), 
and further work needs to be  done to explore its potential role 
in SNHL.

FIGURE 4

ROC curves and AUCs of the four SVMs using features selected by spearman. (A) Model: SVM-0; (B) Model: SVM-1; (C) Model: SVM-2; (D) Model: SVM-3. 
ROC, receiver operating characteristic curve; AUC, area under the curve; SVM, support vector machine; LASSO, least absolute shrinkage and selection 
operator; RBF, radial basis functional kernel.

TABLE 2 Mean value of 5-fold cross-validation using four machine learning algorithms after different methods of feature selection.

Feature selection Classifier AUC Accuracy Sensitivity Specificity

Spearman SVM-0 0.8449 0.7683 0.7545 0.7830

Spearman SVM-1 0.8449 0.7223 0.8545 0.5849

Spearman SVM-2 0.8523 0.7820 0.7545 0.8113

Spearman SVM-3 0.8539 0.7774 0.7455 0.8113

Lasso SVM-0 0.8075 0.7267 0.6909 0.7642

Lasso SVM-1 0.734 0.5193 1 0

Lasso SVM-2 0.8462 0.7821 0.7091 0.8585

Lasso SVM-3 0.8562 0.7682 0.6636 0.8774

T + Lasso SVM-0 0.7982 0.7175 0.7182 0.7170

T + Lasso SVM-1 0.7033 0.5093 1 0

T + Lasso SVM-2 0.8442 0.7544 0.7000 0.8113

T + Lasso SVM-3 0.8412 0.7589 0.6727 0.8491

AUC, area under curve; SVM-0, linear; SVM-1, polynomial; SVM-2, radial basis function kernel; SVM-3, sigmoid.
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There are some limitations in our research. First, the sample size 
is relatively small, and it is an early proof of data-driven analysis which 
needs to be repeated with a larger dataset to achieve stable efficacy. 
Second, this study is limited to investigating static and dynamic neural 
activities. Although we did not find the difference of VBM between 
SNHL and HCs. Further analysis of diffusion characteristics should 
be  taken into account. Third, the present study was computed to 
classify SNHL and HCs, and future work could predict the risk of 
cognitive impairments underlying hearing loss with the combination 
of multiple clinical and imaging features. Moreover, the severity of 
hearing loss needs to be considered in further analysis. Finally, multi-
connectivity topology and couplings of various states can be included 
in future feature selection.

In conclusion, three methods of feature selection and four types 
of machine learning were applied in differentiating SNHL and HCs, 
and Spearman rank correlation selection with RBF SVM and sigmoid 
SVM showed better performance. Our research might provide several 
promising imaging biomarkers for clinical diagnosis and contribute 
to a better understanding of machine learning approaches to predict 
the susceptibility to hearing loss.
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