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Synchronized stepwise control of 
firing and learning thresholds in a 
spiking randomly connected 
neural network toward hardware 
implementation
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Frontier Research Laboratory, Corporate Research and Development Center, Toshiba Corporation, 
Kawasaki, Japan

Spiking randomly connected neural network (RNN) hardware is promising as ultimately 
low power devices for temporal data processing at the edge. Although the potential 
of RNNs for temporal data processing has been demonstrated, randomness of the 
network architecture often causes performance degradation. To mitigate such 
degradation, self-organization mechanism using intrinsic plasticity (IP) and synaptic 
plasticity (SP) should be implemented in the spiking RNN. Therefore, we propose 
hardware-oriented models of these functions. To implement the function of IP, a 
variable firing threshold is introduced to each excitatory neuron in the RNN that 
changes stepwise in accordance with its activity. We also define other thresholds 
for SP that synchronize with the firing threshold, which determine the direction 
of stepwise synaptic update that is executed on receiving a pre-synaptic spike. To 
discuss the effectiveness of our model, we perform simulations of temporal data 
learning and anomaly detection using publicly available electrocardiograms (ECGs) 
with a spiking RNN. We observe that the spiking RNN with our IP and SP models 
realizes the true positive rate of 1 with the false positive rate being suppressed at 
0 successfully, which does not occur otherwise. Furthermore, we find that these 
thresholds as well as the synaptic weights can be reduced to binary if the RNN 
architecture is appropriately designed. This contributes to minimization of the 
circuit of the neuronal system having IP and SP.
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1 Introduction

Randomly connected neural networks (RNNs), which have been studied as a simplified 
theoretical model of the nervous system of biological brains (Somopolinsky et al., 1988; Lazar 
et al., 2009; Kadmon and Somopolinsky, 2015; Bourdoukan and Deneve, 2015; Tetzlaff et al., 
2015; Thalmeier et al., 2016; Landau and Somopolinsky, 2018; Frenkel and Indiveri, 2022), are 
attracting much attention as a promising artificial intelligence (AI) technique that can perform 
prediction and anomaly detection of time series data in real time without executing sophisticated 
AI algorithms (Jaeger, 2001; Maass et al., 2002; Sussillo and Abbott, 2009; Nicola and Clopath, 
2017; Das et al., 2018; Bauer et al., 2019). In particular, hardware implementation of RNNs is 
expected to reduce the power consumption of time series data processing, enabling intelligent 
operations of edge systems in our society. While the potential of RNNs has been well 
demonstrated in previous works (Jaeger, 2001; Maass et al., 2002; Sussillo and Abbott, 2009; 
Nicola and Clopath, 2017; Das et  al., 2018; Bauer et  al., 2019; Covi et  al., 2021), inherent 
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randomness sometimes causes uncontrollable data inference failures, 
leading to low reliability of the technique. Self-organization mechanism 
improves the reliability, which can be realized by including intrinsic 
plasticity (IP) and synaptic plasticity (SP) in the neuronal operation 
model (Lazar et al., 2009). IP is a homeostatic mechanism of biological 
neurons that controls neuron firing frequencies within a certain range. 
It has been shown to be indispensable for unsupervised learning in 
neuromorphic systems (Desai et al., 1999; Steil, 2007; Bartolozzi et al., 
2008; Lazar et al., 2009; Diehl and Cook, 2015; Qiao et al., 2017; Davies 
et al., 2018; Payvand et al., 2022). SP is a mechanism where a synapse 
changes its own weight in accordance with incoming signals and the 
post-synaptic neuron’s activity, known as the fundamental principle of 
learning in biological brains (Legenstein et al., 2005; Pfister et al., 2006; 
Ponulak and Kasinski, 2010; Kuzum et  al., 2012; Ning et  al., 2015; 
Prezioso et al., 2015; Ambrogio et al., 2016; Covi et al., 2016; Kreiser 
et al., 2017; Srinivasan et al., 2017; Ambrogio et al., 2018; Faria et al., 
2018; Li et al., 2018; Amirshahi and Hashemi, 2019; Cai et al., 2020; 
Yongqiang et al., 2020; Dalgaty et al., 2021; Frenkel et al., 2023).

Since computing resources may be limited at the edge, we focus 
on analog spiking neural network (SNN) hardware having ultimately 
high-power efficiency for edge AI devices (Ning et al., 2015; Davies 
et al., 2018; Payvand et al., 2022). The most general neuron model for 
SNNs is the leaky integrate-and-fire (LIF) model (Holt and Koch, 
1997). For a LIF neuron, IP function may be added by adjusting its 
time constant of the membrane potential memV  according to its own 
firing rate fireF . If we are to design LIF neurons with analog circuitry, 
tunable capacitor and resistor are required to control the time 
constant. The former is difficult because no practical device element 
having variable capacitance has been invented. For the latter, Payvand 
et al. (2022) proposed an IP circuit using memristors, namely, variable 
resistors. However, this circuit requires an auxiliary unit for memristor 
control, whose details are not yet discussed. Considering large device-
to-device variability of memristors, each unit must be tuned according 
to the respective memristor’s characteristics, which would result in a 
complicated circuit system with large overhead (Payvand et al., 2020; 
Demirag et al., 2021; Moro et al., 2022; Payvand et al., 2023).

Alternative method for controlling fireF  is to adjust the firing 
threshold thrV  itself (Diehl and Cook, 2015; Zhang and Li, 2019; Zhang 
et al., 2021). For a LIF neuron designed with analog circuitry, thrV  is 
given as a reference voltage applied to a comparator connected to the 
neuron’s membrane capacitor (Chicca et al., 2014; Ning et al., 2015; 
Chicca and Indiveri, 2020; Payvand et  al., 2022), hence IP can 
be implemented by adding a circuit that can change the reference 
voltage in accordance with fireF . It would be  straightforward to 
employ a variable voltage source, but we need a considerable effort to 
design such a compact voltage source as to be added to every neuron. 
Instead, we may prepare several fixed voltages and multiplex them to 
the comparator according to neuronal activity. This is the motivation 
of this study. What we are interested in are (i) whether or not stepwise 
control of the threshold voltage is effective for the IP function in a 
spiking RNN (SRNN) for temporal data learning and (ii) if it is, how 
far we can go in reducing the number of the voltage lines.

When we introduce variable thrV , we need to care about SP for 
hardware design. With regard to SP implementation, spike-timing 
dependent plasticity (STDP; Legenstein et al., 2005; Ning et al., 2015; 
Srinivasan et al., 2017) is the most popular synaptic update rule. STDP 
is a comprehensive synaptic update rule that obeys Hebb’s law, but it 
is not hardware-friendly; it requires every synapse to have a 
mechanism to measure elapsed time from arrival of a spike. 

Alternatively, we  employ spike-driven synaptic plasticity (SDSP; 
Brader et al., 2007; Mitra et al., 2009; Ning et al., 2015; Frenkel et al., 
2019; Gurunathan and Iyer, 2020; Payvand et al., 2022; Frenkel et al., 
2023) which is much more convenient for hardware implementation. 
It is a rule where an incoming spike change the synaptic weight 
depending on whether memV  of the post-synaptic neuron is higher 
than a threshold UP

LthrV  or lower than another threshold DOWN
LthrV .The 

magnitude relationship DOWN
LthrV ≤ UP

thrLthrV V<  is essential for correct 
learning hence DOWN

LthrV  and UP
LthrV  should be defined according to thrV .

In this work we study an SRNN with IP and SP where thrV , UP
LthrV , 

and Down
LthrV  are discretized and synchronized. In order to make our 

model hardware-oriented, synaptic weights W  are also discretized so 
that we can assume conventional digital memory circuits for storing 
weights. We perform simulations of learning and anomaly detection 
tasks for publicly available electrocardiograms (ECGs; Liu et al., 2013; 
Kiranyaz et al., 2016; Das et al., 2018; Amirshahi and Hashemi, 2019; 
Bauer et al., 2019; Wang et al., 2019) and show the effectiveness of our 
model. In particular, we  discuss how much we  can reduce the 
discretized levels of thrV  and W , which is an essential aspect for 
hardware implementation.

2 Methods

2.1 LIF neuron model

The neuron model we employ in this work is the LIF model (Holt 
and Koch, 1997), which is one of the best-known spiking neuron 
models due to its computational effectiveness and mathematical 
simplicity. The membrane potential i

memV  of neuron i is given as

 

i i
mem mem

in
dV VC I

dt R
= −

where C, R, and inI  denote the membrane capacitance, resistance, 
and the sum of the input current flowing into the neuron, respectively. 
If i

memV  exceeds the firing threshold i
thrV , neuron i fires and transfers a 

spike signal to the next neurons connected via a synapse. Then, 
neuron i resets i

memV  to resetV  and enters a refractory state for time reft
, during which i

memV  stays at resetV  regardless of inI . The LIF neuron is 
hardware-friendly because it can be implemented in analog circuits 
using industrially manufacturable complementary-metal-oxide-
semiconductor (CMOS) devices (Indiveri et al., 2011), as illustrated 
in Figure 1A.

2.2 Synapse and SDSP

A synapse receives spikes from neurons and external input nodes. 
When a spike comes, a synapse converts the spike into a synaptic 
current synI  proportional to W  defined as

 
( ),syn

syn syn spike
dI

I W t t
dt

τ α δ= − + −

where synτ  and spiket  are a time constant, and α  is an appropriately 
defined constant. This synapse model is also compatible with the 
CMOS design.
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As mentioned above, we employ SDSP as the synaptic update rule 
for SP. The synaptic weight ( ),W i j  between pre-synaptic neuron i and 
post-synaptic neuron j  increases or decreases if j

memV  is higher or 
lower than the learning threshold ( )UP

LthrV j  or ( )DOWN
LthrV j  when the 

pre-synaptic neuron i fires, as follows:

 

( ) ( ) ( )
( ) ( )

,
,

,
when a spike arrives,

 + >= 
− <

j UP
SDSP mem Lthr

new j DOWN
SDSP mem Lthr

W i j LR if V V j
W i j

W i j LR if V V j

where SDSPLR  is the learning step, which is set to a constant value, 
as illustrated in Figure 1B.

In practice, the range of W  is finite, max0 W W≤ ≤ , hence SDSPLR  
defines the resolution of W . Higher resolution is favorable for better 
performance in general, but this leads to a larger circuit area for 
storing W  values. Emerging memory elements such as memristors and 
phase change memory devices may be employed to avoid this issue 
(Lazar et al., 2009; Li and Li, 2013), but practical use of these emerging 
technologies is still a big challenge. In this work, we  assume 
conventional CMOS digital memory cells for storing W , raising our 
interest in how much we can reduce the resolution of W  for practical 
application task. In this view, we discuss the feasibility of binary W , 
which is ideal for hardware implementation, later in this work.

A circuit that determines whether ( ),W i j  should be potentiated, 
depressed, or unchanged can be  designed with two comparator 
circuits; the one compares j

memV  with ( )UP
LthrV j  and the other with 

( )DOWN
LthrV j  (see Supplementary materials). Note that it is sufficient for 

each neuron to have a determinator; it is not necessary for each 
synapse to have it.

2.3 Event-driven stepwise IP

The IP model we employ executes a stepwise change of the firing 
threshold voltage i

thrV  of neuron i in an event-driven manner as

 

( )

( )

1 / 2

1 / 2
when neuron fires,

σ

σ

 + > += 
− < −

new

i i
thr IPthr firei

thr i i
thr IPthr fire

V LR if C C
V

V LR if C C
i

where thrLR  denotes the changing step of i
thrV  in a single IP 

operation, i
fireC  a parameter that measures of the activity of neuron i, 

IPC  a constant corresponding to the target activity. σ  is a parameter 
that defines a healthy regime of i

fireC , 
( ) ( )1 / 2 1 / 2i

IP IPfireC C Cσ σ− < < + , where IP operation is not 
executed (see Supplementary materials for details; Payvand et  al., 
2022). i

fireC  is often referred to as a calcium potential (Brader et al., 
2007; Indiveri and Fusi, 2007; Ning et al., 2015), defined as

 
( )

  
,

i
fire i i

IP fire fire
Firings of Neuroni

dC
C t t

dt
τ δ= − + −∑

where IPτ  is a constant and i
firet  represents all the firing times of 

neuron i (note that all the firing times are summed up). The behavior 
of i

fireC  is illustrated in Figure 1C, showing that it can be used as an 
indicator of the neuron activity if the threshold IPC  is 
appropriately determined.

The firing threshold of a LIF neuron is given as a reference voltage 
applied to a comparator connected to the membrane capacitor. 
Stepwise change of i

thrV  is advantageous for hardware implementation 
because we do not need to design a compact voltage source circuit that 
can tune the output continuously. Instead, we need to prepare several 
fixed voltage lines and select one of them using a multiplexer, which 
is not a difficult task.

2.4 Synchronization of IP and SP thresholds

If the SDSP thresholds /UP DOWN
LthrV  are fixed to be constants, the 

IP rule introduced above interfere with SP because it changes the 

FIGURE 1

Model and behavior of each component of SRNN. (A) LIF neuron circuit diagram. (B) Schematic diagram of synaptic weight variation. (C) Behavior of 
Ci

fire and V i
thr  depending on CIP .
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magnitude relationship between /UP DOWN
LthrV  and thrV . For example, let 

us assume that thrV  is lowered by IP and comes below DOWN
LthrV . In this 

case, W  decreases every time a spike comes and finally reaches zero 
because memV  is always less than DOWN

LthrV  and never exceeds UP
LthrV . This 

would lead to incorrect learning of the input information.
To operate both IP and SP at the same time correctly, 

we synchronize the three thresholds of neuron i, that is, i
thrV , ( )UP

LthrV i , 

and ( )DOWN
LthrV i  so that the magnitude relationship DOWN

LthrV <  
UP

thrLthrV V<  should be kept during IP operations. Along with the firing 
threshold i

thrV , the learning thresholds ( )UP
LthrV i  and ( )DOWN

LthrV i  are 
updated by IP as follows,

 

( )
( ) ( )

( ) ( )

/

/ /

/

1 / 2

1 / 2
when neuron fires,

σ

σ

=

 + > +


 − < −

UP DOWN
Lthr

UP DOWN UP DOWN i
IPLthr Lthr fire

UP
UP DOWN iDOWN IPLthr Lthr fire

V i

V i LR if C C

V i LR if C C
i

where /UP DOWN
thrLR  are the change width of the learning thresholds.

2.5 Network model

Figure 2A shows the architecture of the SRNN system we study in 
this work. It consists of an input layer, a middle layer, and an output 
layer. The middle layer (M-SRNN) is an RNN with random 
connections and synaptic weights, consisting of two neuron types 
which are excitatory and inhibitory neurons. The M-SRNN in this 
work consists of 80% excitatory and 20% inhibitory neurons. Input-
layer neurons send Poisson spikes to the neurons of the M-SRNN at a 
frequency corresponding to the value of the input data. The input-
layer neurons connect with excitatory neurons of M-SRNN with a 
probability of inP , which is 0.1 in this work. Note that they have no 
connections to inhibitory neurons. The excitatory neurons connect 
with other excitatory neurons with probability EEP  and with inhibitory 
neurons with probability EIP . Inhibitory neurons connect with 

excitatory neurons with probability IEP  and do not connect with 
inhibitory neurons. Output-layer neurons are connected from all 
excitatory neurons of M-SRNN. Not all M-SRNNs will give the 
desired result because of the random nature, so parameters related to 
the structure of M-SRNN must be set carefully to obtain the desired 
results (Payvand et al., 2022). With self-organization mechanism by 
IP and SP, the M-SRNN reconstruction is automatically performed 
using spike signals from input layer neurons.

The M-SRNN can be  implemented as a crossbar architecture 
(Lazar et  al., 2009) shown in Figure  2B. There, each row line is 
connected to a neuron of the M-SRNN, and each column line is 
connected to either an input-neuron emitting spikes in response to 
external inputs or a recurrent input from an M-SRNN neuron. A cross 
point is a synapse, where spikes from the column line are converted 
to synaptic current flowing into the row line. Some of the synapses are 
set inactive to realize the random connection of the RNN.

3 Simulation and results

3.1 Simulation configuration and 
parameters

The effectiveness of our M-SRNN model with IP and SP explained 
above is evaluated using Brian simulator (Goodman and Brette, 2008) 
by ECG anomaly detection benchmark (PhysioNet, 1999; Goldberger 
et al., 2000; Moody and Mark, 2001) with parameters listed in Table 1. 
Input-layer neurons convert the ECG data to Poisson spikes and send 
them to excitatory neurons in the M-SRNN. The simulation consists of 
three phases. Phase 1 is the unsupervised learning phase of the M-SRNN 
by using the training data of the ECGs. Thresholds ( thrV , and /UP DOWN

LthrV
) of excitatory neurons and synaptic weights (W ) between excitatory 
neurons in the M-SRNN are learned by IP and SP, respectively. Phase 2 
is a readout learning phase. The synaptic weights between neurons 
inside of the M-SRNN are not changed. Synaptic weights between 
excitatory neurons in the M-SRNN and the neurons in the output layer 
are calculated by linear regression in a supervised fashion. Phase 3 is the 
test phase. Using test ECG data, anomaly detection performance of the 
M-SRNN determined in Phase 1 is evaluated.

In the simulation, the learning step SDSPLR  and the firing 
threshold change width thrLR  are selected from 

FIGURE 2

Hardware implementation for an SRNN. (A) SRNN consists of input, middle (M-SRNN), and output layers. The M-SRNN consists of excitatory (E, black) 
and inhibitory (I, blue) sub-population layers. (B) Hardware implementation for M-SRNN.
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{ }0.1,0.2,0.5,1.0,2.0=LRS  and { }0.025 , 0.05 , 0.1 , 0.3 ,=thrP V V V V  
respectively. The ranges of W  and thrV  are 0 2W≤ ≤  and 
0.125 0.4thrV V V≤ ≤ . With regard to the SP synchronization with IP, 
we set ( ) ( ) / 2UP DOWN i

Lthr Lthr thrV i V i V= =  throughout this work, hence 
UP
LthrLR = / 2DOWN

thrLthrLR LR= . All initial synaptic weights between 
excitatory neurons are set to 1.0, and the initial firing threshold is set 
to 0.2 V for all neurons. All other synaptic weights are set randomly. 
The validity of our method is though Counting Task Benchmark 
(Lazar et  al., 2009; Payvand et  al., 2022) as shown in 
Supplementary materials 4.1.

3.2 ECG anomaly detection

For ECG anomaly detection, we use the MIT-BIH arrhythmia 
database (PhysioNet, 1999; Goldberger et al., 2000; Moody and Mark, 
2001). Using the PhysioBank ATM provided by PhysioNet (1999), 
we download and use MIT-BIT Long-Term ECG data No.14046 for 
performance evaluation. Figure 3A shows a part of normal waveform 
of the ECG used as training data. As test data, we  use 10 hours 
waveform data of No.14046 that partially include multiple abnormal 
waveforms. Figure 3B shows a part of ECG waveform data used in the 
test. To perform anomaly detection, the SRNN is used as an inference 
machine. Values of the data points of the ECG waveform are inputted 
to the SRNN one by one in the time order. At the k -th input, it predicts 
the next ( )1k + -st. The firing frequency ( )outF k  of the output-layer 
neuron at the k -th input is compared to the firing frequency of the 
input neuron at the ( )1k + -st input ( )1inF k + . Here, we define the 
abnormality judgment level thrD  to detect anomalies; if the absolute 
difference ( ) ( ) ( )1 | 1 |+ = − +out inD k F k F k is greater than a 
predefined level thrD , the ( )1k + -st input data is regarded to 
be abnormal.

Figure  3C shows the anomaly detection results ( )D k  using 
M-SRNN reconstructed by our proposed method when the 
waveform data in Figure  3B is input. For highly accurate 
abnormality detection, thrD  must be  set between no

thrD  and ab
thrD , 

where no
thrD  is the highest peak of ( )D k  for normal data input point, 

and ab
thrD  is the lowest peak of ( )D k  for the abnormal points 

(Figure 3C). In other words, no
thrD  is the smallest thrD  that does not 

misdetect normal data points, and ab
thrD  is the smallest thrD  that does 

not overlook any anomalies. Note that ab
thrD  is unknown in practical 

use; it is defined for discussion purpose. The window 
∆ = −ab no

thr thr thrD D  represents judgment margin, which should 
be  large enough for correct detection without overlooking 
or misdetecting.

Since the raw ECG data inputE  is given by time-series data of 
electrostatic potential in mV, the input-layer neurons convert the 
potential inputE  to the firing frequency inF  as follows,

 
( ) ( )4 2

.
5
input

in poisson
E k

F k F
+ ×

= ×

where poissonF  is the conversion coefficient. Since an input-layer 
neuron fires with Poisson probability ( )inF k , a single input is required 
to be kept for a certain duration ( binT ) to generate a desired Poisson 
spike train.

3.3 Simulation results

3.3.1 Effectiveness of proposed method on 
anomaly detection

Anomaly detection results of the initial M-SRNN and the 
M-SRNN reconstructed with both SP and IP are shown in 
Figures 4A,B, respectively. For reconstruction of the M-SRNN, we use 
the waveform data from 0 to 10 ms of ECG waveform No. 14046 which 
does not include anomalies. The blue and orange line represent the 
probability of detecting an abnormal point as abnormal (true positive 
rate, TPR) and the probability of misdetecting a normal point (false 
positive rate, FPR) at each thrD , respectively. These probabilities are 
obtained statistically from the 10 h data of No. 14064. As shown in 
Figure 4A, the initial M-SRNN cannot detect anomalies correctly 
because ∆thr  is negative; the misdetection rate (orange) is always 
larger than the correct detection rate (blue) at any thrD . On the other 
hand, since ∆thr  is positive, the reconstructed M-SRNN can correctly 
detect anomalies (Figure 4B). Indeed, if thrD  is selected between ∆thr , 
the 100% accuracy of the anomaly detection can be achieved while the 
misdetection rate is suppressed to 0%. Figures 4C,D show Receiver 
Operating Characteristic (ROC) curves of the initial M-SRNN and the 
reconstructed M-SRNN, respectively. Since 0∆ <thr  in the case of 
the initial M-SRNN, the ideal condition for anomaly detection, 
TPR = 1.0 and FPR = 0.0, cannot be achieved (Figure 4C). On the other 
hand, such condition is realized in the case of the reconstructed 
M-SRNN because 0∆ >thr  (Figure 4D). Therefore, our proposed 
method for the M-SRNN reconstruction is effective for detecting 
abnormalities in periodic waveform data (in practical use of this 
method, thrD  may be defined as an arbitrary value slightly larger than 

no
thrD  because the actual value of ab

thrD  hence ∆thr  is unknown). Note 
that the M-SRNN should be reconstructed for individual ECG data 
(in this case No. 14064). If we  are to execute detection tasks for 
another data set, we need to reconstruct of the M-SRNN using a 
normal part of the target data set prior to the detection task.

3.3.2 Reduction of parameter resolutions toward 
hardware implementation

Figure 5 shows a heat map of ∆thr  at each SDSP LRLR S∈  and 
thr thrLR P∈  when the processing time binT  per one ECG data point for 

reconstruction is set to be 7 ms (A), 150 ms (B) and 600 ms (C). These 
figures show that ∆thr  becomes large as the operation time binT  

TABLE 1 Initial values in SRNN simulations.

Neurons Synapses

Excitatory Inhibitory W 1.0

# of Neurons 160 40 SRNN

  R (MΩ) 400 400 PEE 5%

  C (pF) 10 10 PII 0%

  τca (ms) 100 100 PEI 2%

  Vth (V) 0.2 0.2 PIE 10%

Cip (#of fires /sec) 15 -

  τip (ms) 100 100
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increases, which is a reasonable result because the longer binT  becomes, 
the more information is learned from the data point, leading to higher 
accuracy of the abnormal detection. In fact, as can be seen in Figure 6, 
which shows ( )D k  patterns for an abnormal waveform obtained with 
the M-SRNN reconfigured by 0.1SDSPLR =  and 0.3thrLR V=  for 
each binT , ( )D k  becomes smoother and max

noD  lower as binT  is 
set longer.

3.3.3 Real-time operation for practical 
applications

For practical application, it is desired that the abnormal data 
should be  detected at the moment it occurs and thus real-time 
operation is highly expected. In this sense, binT  is desired to be as short 
as possible. In the case of the ECG anomaly detection, data is collected 
at 128 steps/s. Therefore, the learning process and anomaly detection 
must be performed within 7binT ms= . However, as discussed above, 
such short binT  leads to small ∆thr  because the learning duration for 
each data point is insufficient.

Now we  assume that employing longer binT  is equivalent to 
increasing the number of IP and SP operations within short binT . To 
increase the number of IP and SP operations, we have to enhance the 
activities of neurons, hence two options. The first one is to enhance 
the parallelism of the inputs; we increase the number of neurons in 
the input layer inputN  so that a neuron in the M-SRNN being 

connected to the input layer receive more spike signals during short 
binT . The other is to enhance the seriality of the input neuron signals; 

we increase the rate of Poisson spikes PoissonF  from the input layer. 
The effects of these two methods are verified by simulation.

Figure 7 shows the heatmaps of ∆thr  for 7binT ms=  in the cases 
of 10inputN = , 100 and 200. We observe that ∆thr  increases with 

inputN  in general, indicating that our first idea is effective; real-time 
anomaly detection without false positive detection is possible by 
increasing inputN . Note that the binary thrV  and W  i.e., 2.0SDSPLR =  
and 0.3thrLR V=  result in sufficiently large ∆thr  even with 

7binT ms=  in the case of 100inputN = . Thus, a highly parallelized 
input layer has been shown to be  effective for performance 
improvement with short binT . However, when inputN  is increased too 
much, the effect would be negative. As can be seen in Figure 7C, where 

200inputN = , the M-SRNN does not work appropriately when 
2.0SDSPLR =  and 0.2thrLR V≥ . Since the M-SRNN neurons that 

receive input spikes are always very close to the saturation in the case 
of large inputN , precise control of the parameters such as thrV  and W  
is required.

To examine the latter idea, we perform the anomaly detection 
tasks with PoissonF  being varied. In the center of Figure 8, we plot 
obtained ∆thr  as a function of PoissonF . If increasing PoissonF  does not 
play an effective role on performance improvement, ∆thr  increases 
just linearly with PoissonF , as indicated by a red dotted line. As a matter 

FIGURE 3

A part of ECG benchmark waveform No. 14046 used in the simulation. (A) A part of Normal ECG waveform used in training for M-SRNN. (B) A part of 
ECG waveform with abnormal points (labeled with AB). (C) The test results ( )D k  of input (B).
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of the fact, however, we  obtain ∆thr  above the red line up to 
1200PoissonF Hz= , indicating that raising PoissonF  improves the 

anomaly detection performance of an M-SRNN.
We observe in Figures 8A–C that increasing PoissonF  elevates the 

base line of ( )D k  and magnify the peaks. This is reasonable because 
the more input spikes come, the more frequently the neurons in the 
M-SRNN fire, hence ( )D k  being scaled with PoissonF . At the same 
time, it smoothens variation of ( )D k , indicating improved learning 
performance due to the increased IP and SP operations. This results 
in ∆thr  being larger than the red dotted line. When PoissonF  is 
increased further to 1500 Hz , the peaks corresponding to the 
abnormal data in the original waveform saturate, as can be seen in 
Figure 8D. This is because of the refractory time of neurons. Since a 
neuron cannot fire faster than its refractory time, it has an upper limit 
in its firing frequency. The saturation observed in Figure  8D is 

interpreted as a case where the firing frequency at the anomaly data 
points reaches its limit. As a result, ∆thr  at 1500poissonF Hz=  is 
suppressed and comes below the red dotted line. This discussion can 
be clearly seen in Figure 9, which shows the evolutions of no

thrD  and 
ab
thrD  with poissonF  of the input neurons. We  observe that max

noD  
increases linearly, while ab

thrD  increases only up to 1200 .poissonF Hz=  
For 1200poissonF Hz≥ , ab

thrD  reaches its limit and only no
thrD  increases, 

hence smaller ∆thr . We note that the results shown in Figure 8 are 
obtained with 2.0SDSPLR =  and 0.3thrLR V=  i.e., binarized 

thrV  and W .
It is noteworthy that we have found that binary thrV  and W  may 

be employed if the input layer is optimized. This is highly advantageous 
for hardware implementation. For thrV  (and also for /UP Down

LthrV ), 
we may prepare the smallest 2-input multiplexers and only two voltage 
lines (see Supplementary materials). What is more conspicuous is that 

FIGURE 4

Analysis of anomaly detection capability in the case of using initial M-SRNN and reconstructed M-SRNN with 150T msbin = , 2.0LRSDSP = , 0.025LR Vthr =
, and 0.3σ = . (A,B) The probability of detecting an abnormal point as abnormal (TPR, blue) and the probability of misdetecting a normal point (FPR, 
orange) at each Dthr  using initial M-SRNN and reconstructed M-SRNN, respectively. (C,D) ROC for initial M-SRNN and reconstructed M-SRNN, 
respectively.

FIGURE 5

Heatmaps of ∆thr . ( ) ( )7 , 150 ,T ms msbin = A B  and (C) 600ms, respectively. (ECG benchmark No. 14046).
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W  can be reduced to binary. This means that for synapses we have no 
need of using an area-hungry multi-bit SRAM array or waiting for 
analog emerging memories, but we  may employ just small 1-bit 
latches (see Supplementary materials). Since the number of synapses 
scales with square of the number of neurons, this result has a large 
impact on the SRNN chip size.

Thus, optimization of the input gives a large impact on both 
performance and physical chip size of the SRNN. Whether 
we  optimize iputN  or PoissonF  may be  up to engineering 
convenience. It is possible to optimize both. As we have seen in 
Figures  7, 8, the former has a better smoothing effect in the 
normal data area than the latter. Considering hardware 
implementation, on the other hand, the latter is more favorable 
because the former requires physical extension of the input layer 
system. For the latter, we only have to tune the conversion rate of 
raw input data to spike trains, which may be  done externally. 
Therefore, the parameters in the input layer should be designed 
carefully taking those conditions discussed above 
into consideration.

4 Discussion

Lazer et al. proposed to introduce two plasticity mechanisms, SP 
and IP, to an RNN to reconstruct its network structure in the training 
phase (Lazar et al., 2009). While software implementation of SP and 
IP seems to be  quite simple, we  need some effort for 
hardware implementation.

With regard to the IP operation, Lazer et al. adjusted the firing 
threshold of each neuron according to its firing rate at every time step. 
In hardware implementation, constantly controlling the thresholds of 
all of the N neurons is not realistic. Therefore, we  proposed a 
mechanism that regulate the threshold of a neuron in an event-driven 
way; each neuron changes its firing threshold when it fires in 
accordance with its activity being higher or lower than the 
predetermined levels. This event-driven mechanism releases us from 
designing a circuit for precise control of the thresholds. As discussed 
by Lazar et al., we need to control the thresholds with an accuracy of 
1 / 1000 if it is done constantly, which requires quite large hardware 
resource that consumes power as well. Our event-driven method, on 

FIGURE 6

( )D k  when abnormal ECG waveform No. 14046 is detected in SRNN reconstructed with 0.1LRSDSP =  and 0.3LR Vthr = . ( ) ( )7 , 150 ,T ms msbin = A B  and 
(C) 600ms, respectively.

FIGURE 7

Heatmaps of ∆thr  in case of ( ) ( ) ( )10, 100,and 200Ninput = A B C  ( 7T msbin = ), respectively. (ECG benchmark No. 14046).
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the other hand, has been shown to allow us stepwise control of the 
thresholds with only a few gradations, which is highly advantageous 
for hardware implementation.

Another way to realize the IP mechanism is to regulate the 
current of a LIF neuron (Holt and Koch, 1997). The current value can 
be  adjusted by changing the resistance values in the previous 
researches (Dalgaty et  al., 2019; Zhang et  al., 2021). This can 
be achieved by using variable resistors such as memristors (Dalgaty 
et al., 2019; Payvand et al., 2022) or by selecting several fixed resistors 
prepared in advance. For the former method, precise control of the 
resistance would be  a central technical issue, but it is still a big 

challenge even today because the current memristor has large 
variation (Dalgaty et al., 2019). Payvand et al. discussed that variation 
and stochasticity of rewriting may lead to better performance, but 
further studies including practical hardware implementation and 
general verification are yet to be done. The latter requires a set of large 
resistors (~100 ΩM ) for each neuron, which is not favorable for 
hardware implementation because resistors occupy quite large chip 
area. We believe that stepwise change of the firing threshold is the 
most favorable implementation of IP.

For implementation of the SP mechanism, STDP (Legenstein 
et al., 2005; Ning et al., 2015; Srinivasan et al., 2017) is widely 
known as a biologically plausible synaptic update rule, but it is not 
hardware friendly as discussed in the introduction. Hence recent 
neuromorphic chips tend to employ SDSP (Brader et al., 2007; 
Mitra et  al., 2009; Ning et  al., 2015; Frenkel et  al., 2019; 
Gurunathan and Iyer, 2020; Payvand et al., 2022; Frenkel et al., 
2023). However, SDSP cannot be implemented concurrently with 
threshold-controlled IP in its original form, because the latter may 
push down the upper limit of the membrane potential (i.e., the 
firing threshold) below the synaptic potentiation threshold. Our 
proposal that the synaptic update thresholds synchronize with the 
firing threshold realized the concurrent implementation of the 
two, and their interplay with each other led to successful learning 
and anomaly detection of ECG benchmark data (PhysioNet, 1999; 
Goldberger et al., 2000; Moody and Mark, 2001) even with binary 
thresholds and weights if the parallelism and the seriality of the 
input are well optimized. This is highly advantageous for analog 
circuitry implementation from the viewpoints of circuit 
complexity and size.

FIGURE 8

∆thr  and ( )D k  in the case of 2.0LRSDSP =  and 0.3LR Vthr = . The center graph shows the ∆thr  against Fpoisson. The outer diagrams represent ( )D k  
corresponding to (A–D) points in the center diagram. ( ) ( ) ( )150, 750, 1200Fpoisson = A B C , and (D) 1500Hz , respectively. (ECG benchmark No. 14046).

FIGURE 9

Dab
thr  and Dno

thr  with 2.0LRSDSP =  and 0.3LR Vthr =  against Fpoisson. 

(ECG benchmark No. 14046).
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