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Introduction: Functional magnetic resonance imaging (fMRI) data is highly

complex and high-dimensional, capturing signals from regions of interest

(ROIs) with intricate correlations. Analyzing such data is particularly challenging,

especially in resting-state fMRI, where patterns are less identifiable without task-

specific contexts. Nonetheless, interconnections among ROIs provide essential

insights into brain activity and exhibit unique characteristics across groups.

Methods: To address these challenges, we propose an interpretable fusion

analytic framework to identify and understand ROI connectivity di�erences

between two groups, revealing their distinctive features. The framework involves

three steps: first, constructing ROI-based Functional Connectivity Networks

(FCNs) to manage resting-state fMRI data; second, employing a Self-Attention

Deep Learning Model (Self-Attn) for binary classification to generate attention

distributions encoding group-level di�erences; and third, utilizing a Latent Space

Item-Response Model (LSIRM) to extract group-representative ROI features,

visualized on group summary FCNs.

Results: We applied our framework to analyze four types of cognitive

impairments, demonstrating their e�ectiveness in identifying significant ROIs

that contribute to the di�erences between the two disease groups. The

results reveal distinct connectivity patterns and unique ROI features, which

di�erentiate cognitive impairments. Specifically, our framework highlighted

group-specific di�erences in functional connectivity, validating its capability to

capture meaningful insights from high-dimensional fMRI data.

Discussion: Our novel interpretable fusion analytic framework addresses the

challenges of analyzing high-dimensional, resting-state fMRI data. By integrating

FCNs, a Self-Attention Deep Learning Model, and LSIRM, the framework provides

an innovative approach to discovering ROI connectivity disparities between

groups. The attention distribution and group-representative ROI features o�er

interpretable insights into brain activity patterns and their variations among

cognitive impairment groups. This methodology has significant potential to

enhance our understanding of cognitive impairments, paving the way for more

targeted therapeutic interventions.

KEYWORDS

fMRI, ADNI, functional connectivity network, deep learning, Latent Space Item-

Response Model
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1 Introduction

Functional magnetic resonance imaging (fMRI) data,

particularly resting-state fMRI (rs-fMRI), is inherently complex

and high-dimensional. This complexity results in correlated

matrices that capture signals from regions of interest (ROIs) in

the brain at each time point. Several attempts have been made

to analyze fMRI data to understand the roles of ROIs in specific

tasks or symptoms (Santana et al., 2022; Wang et al., 2016).

Comparing ROIs in fMRI data from different tasks has been one

approach to understanding their mechanisms and identifying

group differences (Li et al., 2018; Lee and Lee, 2020). However,

interpreting which features of ROI connections differentiate

between groups has proven challenging for previous studies (Smith

et al., 2010; Gates andMolenaar, 2012). There are twomain reasons

for this difficulty: First, the high-dimensional and correlated nature

of fMRI datasets makes it difficult to apply standard statistical

models, which typically assume that the data is independent and

identically distributed. The complex interactions and dependencies

among ROIs in fMRI data make this independence assumption

unrealistic, leading to biased or inaccurate interpretations (Smith

et al., 2010, 2011). Second, identifying distinctive ROI connectivity

that represents group differences is challenging because of the noise

introduced by individual effects. Each fMRI dataset corresponds

to an independent subject, and the inherent variability and noise

in individual effects can obscure the true underlying patterns that

distinguish different groups or conditions (Dubois and Adolphs,

2016).

To address these limitations, we propose a novel analytic

framework that integrates a deep learning-based classification

model with a statistical model, while providing visual interpretation

through the functional connectivity networks (FCNs) of ROIs to

offer intuitive insights. Since deep learning models are well-known

for handling high-dimensional correlated structured data (Du

et al., 2022), they are appropriate to apply fMRI data that exhibit

complex interactions and dependencies among ROIs. In this

study, we utilize a Self-Attention Deep Learning Model (Self-

Attn). Self-Attn employs the self-attention mechanism (Vaswani

et al., 2017), which is capable of handling correlated structured

data and effectively learning adjacency connections (Chen et al.,

2018; Zheng et al., 2019; Sun et al., 2020). This enables us to

capture intricate connectivity patterns between ROIs in fMRI data.

The self-attention mechanism provides an attention distribution

for the ROIs, indicating how Self-Attn learns the relationships in

the structured input data. Each row in the attention distribution

reflects the likelihood of how a specific ROI relates to other

ROIs. If the classification accuracy is sufficient, the output of the

attention distribution for each subject’s ROIs is a reliable source for

identifying the ROI connections that distinguish different groups.

However, it is still challenging to identify which ROI

connections differentiate groups by manually comparing these

distributions. To address this, we analyze the ROIs’ attention

distribution using the Latent Space Item-Response Model

(LSIRM)(Jeon Y. et al., 2021), a statistical network model.

We interpret the attention distribution as an item-response

matrix (Embretson and Reise, 2013), where ROIs represent items

and subjects represent respondents. To the best of our knowledge,

there has been no prior research that analyzes the ROIs’ attention

distribution in the context of statistical network models. Here, the

LSIRM estimates relationships between respondents and ROIs by

modeling the probabilities of positive responses (connections). This

estimation allows our framework to select group-representative

ROIs that are consistently shown as meaningful ROIs across

all individuals within each group. As a result, our framework

effectively tackles the previous challenge of noise caused by

individual variations. These distinctive ROI connections are then

visualized on the group summary FCN.

The overview of the proposed framework is illustrated in

Figure 1, and detailed aspects are presented in Figure 2. Our

framework comprises three key steps. In Step 1 (Figures 2A–D), we

construct FCNs for each subject’s ROIs by connecting them based

on their embedded positions using the mapper algorithm (Chazal

and Michel, 2017). To manage the time dimension of rs-fMRI data,

we first apply dimensionality reduction, and then use the mapper to

construct individual FCNs. While this approach reveals the overall

connectivity structure, it remains challenging to identify significant

ROI connections that distinguish one group from another. In

Step 2 (Figures 2E–H), we perform binary classification using Self-

Attn (Vaswani et al., 2017) on the subjects’ FCNs and generate an

attention distribution matrix for each subject. Next, we use the

coefficient of variation (CV) and mean values to build a group-level

attention distribution matrix. In Step 3 (Figures 2I–J), we apply

LSIRM to the group attention distributionmatrix to identify group-

representative ROIs. These ROIs are then mapped onto a group

summary FCN to extend their connections to other ROIs.

To validate the proposed framework, we applied it to classify

rs-fMRI data from different stages of neurodegenerative diseases,

which exhibit varying levels of cognitive impairment. We used

resting brain scans from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database, which is a multisite longitudinal study

widely used for biomarker exploration in Alzheimer’s disease

diagnosis (Jack Jr et al., 2008; Mueller et al., 2005). We aimed

to uncover the distinct features of ROIs between the two groups

and compare our results with previous findings from ADNI

publications.

2 Materials and methods

Our analysis approach involves three main steps: (1) creating

an FCN for each subject in each group, (2) estimating an attention

distribution matrix using Self-Attn, and (3) extracting group-

representative features of ROIs using LSIRM and visualizing them

on the group summary FCN. In this study, we applied our

analysis framework to identify the specific ROIs that differentiate

four comparisons: Alzheimer’s Disease (AD) vs. Mild Cognitive

Impairment (MCI), AD vs. Early MCI (EMCI), AD vs. Late MCI

(LMCI), and EMCI vs. LMCI. We utilized rs-fMRI data collected

from AD, EMCI, MCI, and LMCI groups in the ADNI dataset.

2.1 ADNI study

The ADNI dataset is composed of four consecutive cohorts

(ADNI1, ADNI2, ADNI-GO, and ADNI3). Participants were

recruited for initial periods in the ADNI1 cohorts (October 2004).

Follow-up of participants were recruited to the ADNI3 cohort

period. To facilitate the preprocessing of the brain rs-fMRI data,
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FIGURE 1

Overview of our fusion analytic framework.

we selected data with the same MR parameters. Among several

MR parameters, three MR parameters were applied as criteria (200

time points, TR = 3000 ms, 48 slices). After filtering based on these

three conditions, 281 participants remained in the ADNI2, ADNI-

GO, and ADNI3 cohorts. The ADNI1 cohort was excluded because

it did not contain data that met the aforementioned conditions.

As a result, we used axial rs-fMRI data from 57 AD subjects, 93

EMCI subjects, 53 LMCI subjects, and 78 MCI subjects (Table 1,

Figure 2A). By focusing on these specific disease comparisons,

we aim to uncover the key ROIs that exhibit distinct patterns

and contribute significantly to the classification and differentiation

of these cognitive impairment conditions. All data are publicly

available, at http://adni.loni.usc.edu/.

2.2 MRI acquisition

The participants included in this study participated in

scanning at diverse sites using 3T MRI scanners manufactured

by Philips Medical Systems and Siemens Healthineers. The

detailed MRI protocols of the ADNI dataset were reported

on the webpage (http://adni.loni.usc.edu/methods/mri-tool/mri-

acquisition/). In the ADNI2 and ADNI-GO cohorts, MRI scanning

was performed at 26 different sites with Philips 3T MRI scanners,

using synchronized scanning parameters. In the case of the ADNI3

cohort, Siemens 3T MRI scanners were used to collect fMRI data

with synchronized parameters.

2.3 MRI preprocessing

The rs-fMRI datasets, originally formatted in Digital Imaging

and Communications in Medicine (DICM), were converted to the

Neuroimaging Informatics Technology Initiative (NITI) format,

the standard in fMRI research. This conversion preserved all

original slices across four dimensions (x, y, z, and time). The

preprocessing steps began with slice timing correction to account

for the acquisition order of slices, as required by the MRI protocol.

Since all rs-fMRI data were acquired using interleaved scanning

(an alternating acquisition method), the slice order was applied

accordingly, alternating between even- and odd-numbered slices

(1 to 48). Following slice timing correction, realignment and head

motion correction were performed to address misalignment or

movement artifacts.

Next, the corrected rs-fMRI data were spatially normalized

to a 3 mm isotropic voxel size using an EPI template, ensuring

anatomical consistency across brain MR images. Smoothing was

applied using a Gaussian kernel (FWHM = 6 mm, full-width at

half-maximum) to optimize spatial resolution and reduce noise.

To account for scanner drift and physiological fluctuations, linear

trends were removed, and covariates such as white matter (WM)

and cerebrospinal fluid (CSF) signals were regressed out, isolating

relevant brain activation data. Temporal bandpass filtering (0.01–

0.1 Hz) was then applied to minimize low- and high-frequency

noise, preserving fluctuations related to intrinsic brain activity.

Finally, the Automatic Anatomical Labeling (AAL) atlas, which

segments the brain into 116 regions, was used to define brain

regions and extract ROI time-course data. All preprocessing steps

were conducted using the Data Processing and Analysis of Brain

Imaging toolbox (DPABI, Version 5.3, available at http://rfmri.

org/dpabi), and Statistical Parametric Mapping (SPM, Version

12, available at www.fil.ion.ucl.ac.uk/spm/software/spm12/), both

implemented in MATLAB R2020b (MathWorks, Natick, MA,

USA) (Yan et al., 2016).

2.4 Functional connectivity networks

Dimension reduction methods are well-established techniques

for embedding complex and structured data, including Principal

Component Analysis (PCA) (Dunteman, 1989), T-distributed

Stochastic Neighbor Embedding (t-SNE) (van der Maaten and

Hinton, 2008), and Uniform Manifold Approximation and

Projection (UMAP) (McInnes et al., 2018). Both t-SNE and

UMAP model the manifold using stochastic and topological

information. Respectively, t-SNE converts neighborhood distances
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FIGURE 2

A graphical illustration of the fusion analytic framework with three steps: Step 1 (A–D): constructing the FCN for each group by embedding rs-fMRI

BOLD signals into a 2D space using dimensionality reduction; Step 2 (E–H): generating a group representative matrix from the attention distribution

matrices; and Step 3 (I, J): identifying meaningful ROIs using LSIRM and marking them on a group summary FCN.

into conditional probabilities that represent similarity, while

UMAP employs a fuzzy simplicial complex with edge weights that

reflect the likelihood of connectivity.

2.4.1 Dimension reduction
PCA (Dunteman, 1989) is a technique that uses an orthogonal

transformation to reduce high-dimensional data to low-

dimensional data (main components) that are not linearly

related. The axis with the most significant variance is the first

principal component, and the second greatest variance is the

second principal component. This decomposition divides the

sample into components that best represent the differences. On

the other hand, t-SNE (van der Maaten and Hinton, 2008) is a

non-linear dimension reductionmethod that aids in understanding

the data with impact information. It is based on t-distribution,

which has a heavier tail than normal distribution that helps cover

up the far distribution element of high-dimensional data. The
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TABLE 1 Demographic and clinical information (mean ± standard

deviation) of the studied ADNI subjects.

Female% Age
(mean±SD)

MMSE
(mean±SD)

Global CDR
(mean±SD)

AD 38.6% 74.39±8.26 21.03±4.08 0.98±0.51

EMCI 47.3% 75.78±6.90 28.70±1.64 0.09±0.36

LMCI 35.8% 75.03±7.29 26.55±3.46 0.58±0.34

MCI 48.7% 74.81±8.71 27.20±2.25 0.47±0.23

t-SNE results depict the embedded points whose distances, trained

by calculating the points’ similarity in structure, reflect their

degree of similarity. UMAP (McInnes et al., 2018) is a nonlinear

dimension reduction method that models the manifold using a

topological structure. Because it is based on topological space, the

embedding points are close in proximity if the two data points have

similar topological features. It first reorganizes the data into a fuzzy

simplicial complex. This complex produces the connections based

on the hyper-parameter that controls the connectivity around

the data. Then, it projects the correlated structured data into

a low-dimensional space based on their connection, where the

connection indicates the proximity.

2.4.2 Mapper
Mapper is one of the techniques derived from topological

data analysis, which enables the representation of the topological

structure of high-dimensional data as a network. Topological

data analysis simplifies the complexity of the topological space

by transforming it into a network consisting of nodes and

connections that capture the topological characteristics, such as

points, lines, and triangles. The Mapper process involves two main

steps. First, the high-dimensional topological space is mapped

onto a real-valued measure space represented as a graph. This

mapping function can be any real-valued function that captures

the essential features of the data. For example, dimensionality

reduction techniques like PCA, t-SNE, and UMAP use real-

valued functions to project high-dimensional data into a lower-

dimensional space such as Euclidean space. In the next step,

the mapper partitions the graph into subsets of data, and each

subset is clustered to define connections. This process identifies the

structural relationships within the data. This process is called the

Mapper, where each sub-cluster is treated as a node, and nodes are

connected when they share similar data attributes.

The Mapper can be considered a form of partial clustering. It

applies a standard clustering algorithm to subsets of the original

data and examines the interactions between the resulting sub-

clusters. When two non-empty subsets U and V are considered,

their sub-clusters may have overlapping elements that construct a

simplicial complex. The sub-clusters are referred to as vertices (or

nodes), while the overlapping elements form edges in the complex.

This process yields a simplicial complex consisting of points, lines,

and triangles, which provides insights into the topological structure

of high-dimensional data.

Require: Data D = {(FCN(i) , group(i)}Ni=1, where group(i) is the group label

for each subject i, FCN(i) ∈ R
116×116, number of attention heads

H = 128

Ensure: Attention distribution matrix set {attnM(i)}Ni=1, where attnM(i) ∈

R
116×116

1: Split D into training and test datasets

2: Initialize Self-Attn with H heads

3: Train Self-Attn using the training data {(FCN(i) , group(i))}
Ntrain
i=1

4: After training:

5: for each subject i = 1 to N do

6: Feed FCN(i) into the trained Self-Attn

7: Extract attention weights attn
(i)
h

∈ R
116×116 for each attention

head h = 1, 2, . . . ,H

8: Compute the Attention Distribution Matrix attnM(i) =

1
H

∑H
h=1 attn

(i)
h
, where attnM(i) ∈ R

116×116

9: end for

10: Collect all Attention Distribution Matrices: {attnM(i)}Ni=1

11: return {attnM(i)}Ni=1

Algorithm 1. Self-Attn for training attention distribution matrix.

2.5 Attention distribution matrix

The attention distribution matrix is obtained from Self-

Attn, representing a probability distribution that captures the

relationships between input elements that play a key role in

performing a task. The training phase, as detailed in Algorithm 1,

is shown in Figure 2F, where the FCN is trained using Self-

Attn. In this phase, the model learns the relationships between

ROIs from the input FCN and identifies which network of ROIs

characterizes the unique features of a given group. The inference

phase corresponds to Figure 2G, where the trained model takes the

FCN of a subject as input and extracts values from a specific layer,

generating the attention distributionmatrix. This layer captures the

relationships between ROIs in parallel, in the form of a probability

distribution, thus capturing diverse interaction patterns among

the ROIs. Finally, these relationships are averaged to produce a

single matrix which is called the attention distribution matrix. This

matrix explains the relationships between ROIs that contribute to

classifying a subject into a specific group.

In particular, Self-Attn with multi-head self-attention can

distinguish between groups but also explains the relationships

among ROIs that contribute to group classification. Multi-head

self-attention is one of the core mechanisms of the Transformer

model. It is highly effective in learning how different elements

in input data are related to each other (Vaswani et al., 2017).

It is particularly useful for exploring interactions between brain

regions (Zhao et al., 2022, 2024). Self-attention evaluates each

element’s relationships, focusing on the more important elements

based on this information. This is particularly useful for capturing

the interactions between ROIs and identifying relationships that

distinguish groups (Velickovic et al., 2017; Lei et al., 2022; Zhang

et al., 2022).

Key components of the multi-head self-attention mechanism,

which plays an important role in executing self-attention, are

known as Query (Q), Key (K), and Value (V). These components

are used to learn the relationships between input elements. Q

functions as a ‘query,’ capturing how a specific ROI relates to
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Require: Data Xh|g,h = {{yij}
Nh
i=1}

R
j=1 and hyperparameters a and b for

priors σ 2
θ

Ensure: Posterior samples of latent positions u (ROIs), v

(subjects), β (ROI difficulties), and θ (subject abilities)

1: Initialize u, v, β, θ randomly

2: for each MCMC iteration do

3: for each subject i = 1 to Nh do

4: Sample θi from its full conditional posterior:

θ∗i ∼ Normal
(

0, σ 2
θ

)

where σ 2
θ are based on the likelihood and prior.

5: Compute the acceptance probability for θi:

αθi = min

(

1,
P(θ∗i |y, σ

2
θ ,β , u, v)

P(θi|y, σ
2
θ ,β , u, v)

)

6: Accept or reject θ∗i .

7: end for

8: Sample subject-specific variance σ 2
θ from its full

conditional posterior:

σ 2
θ ∼ Inv-Gamma

(

a+
N

2
, b+

1

2

N
∑

i=1

θ2i

)

9: for each ROI j = 1 to R do

10: Sample βj from its full conditional posterior:

β∗
j ∼ Normal(0, 1)

11: Compute the acceptance probability for βj:

αβj = min

(

1,
P(β∗

j |y, θ , u, v)

P(βj|y, θ , u, v)

)

12: Accept or reject β∗
j .

13: end for

14: for each subject i = 1 to Nh do

15: Sample latent position vi from its full conditional

posterior:

v∗i ∼ Normal(0, 1)

16: Accept or reject v∗i based on its acceptance

probability.

17: end for

18: for each ROI j = 1 to R do

19: Sample latent position uj from its full conditional

posterior:

u∗j ∼ Normal(0, 1)

20: Accept or reject u∗j based on its acceptance

probability.

21: end for

22: end for

23: Return posterior samples for u, v, β, θ, σ 2
θ

Algorithm 2. LSIRM training process using Markov chain Monte Carlo

(MCMC).

other ROIs. K holds the features of each ROI, encapsulating the

information each ROI possesses, and is used together with Q to

assess the relevance between ROIs. For instance, if the dot product

between Q and K is high, the corresponding ROIs have highly

significant interactions. V contains the actual information of each

ROI and is propagated using the attention weights derived from

Q and K. For example, if a particular ROI receives high attention

weights, it extracts crucial information from the V of other ROIs,

generating more meaningful outputs.

The input consists of Q, K, and, V, all having a dimensionality

of dk. The computation involves calculating the dot products

between Q and each K, dividing the result of each by the square

root of dk, and then applying a softmax function to obtain weights

corresponding to V. If we consider a total of R ROIs, we can

represent Q,K, and V as element of RR×dk . By applying softmax to

the attention scores obtained from the dot product of Q and K, we

derive the attention weights, denoted by attn(Q,K). These attention

weights represent the relationships between ROIs and indicate the

probability distribution of how much each ROI should focus on

other ROIs. The final output is obtained by multiplying V with

attn(Q,K).

attn(Q,K) = Softmax(
QK⊤

√

dk
)

Attention(Q,K,V) = attn(Q,K)V

(1)

Equation 1 is extended into multi-head self-attention as shown

in Equation 2 to capture various aspects of ROIs, particularly in

high-dimensional datasets. Here, with H heads, headh where h =

1, · · · ,H, each headh layer consists of weight matrices WQ
h
, WK

h
,

and WV
h
, which applied to the output layer. The multi-head self-

attention is formed by concatenating these H sets of headh. The

resulting output is passed through a multi-layer perceptron.

MultiHead(Q,K,V) = Concat(head1, ..., headH)W
O

where headh = Attention(QW
Q
h
,KWK

h ,VW
V
h )

(2)

In the end, we obtain the attention distribution matrix from

the trained model via the inference phase (Figure 2G). For each

input, the attention distribution matrix attnM(Q,K) is obtained by

averaging the attention layers across all H heads, denoted as attnh.

attnM(Q,K) =

∑H
i=1 attnh

H

where attnh = attn(QW
Q
i ,KW

K
i )

(3)

2.6 Group representative ROIs features
using Latent Space Item-Response Model

LSIRM (Jeon M. et al., 2021) is a model that represents item-

response datasets as bipartite networks, estimating interactions

between items (ROIs) and respondents (subjects). In our study,

we aim to estimate the latent positions of ROIs based on the
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interactions between subjects and ROIs. Here, the “Interaction”

is measured by the degree of value between subjects and ROIs,

indicating the association between subjects and ROIs. These

patterns are visualized by estimating the latent positions in space,

which can be in Euclidean space, allowing for a more intuitive

understanding of these associations. The original LSIRM model

is designed for a binary item-response data (0 or 1) (Embretson

and Reise, 2013). Therefore, we adopt a continuous version

of LSIRM to apply it to group representative matrix Xh|g,h.

Each cell value yij represents the coefficient of variation of

ROI j in the attention distribution of subject i from group h

compared to group g. This is continuous for i = 1, · · · ,Nh,

and j = 1, · · · ,R. Equation 4 shows the continuous version

of LSIRM:

P(yij | 2) ∼ Normal(θj + βi − ||uj − vi||, σ
2), (4)

where 2 represents {θ = {θj}, β = {βi}, U = {uj}
R
j=1,

V = {vi}
Nh
i=1} and ||uj − vi|| denotes the Euclidean distance

between subject i and ROI j. LSIRM consists of two parts, the

attribute part and the interaction part. In the attribute part, there

are two parameters: θj ∈ R and βi ∈ R. The parameter βi

represents the degree of responses for the subject i, while θj

represents the responses for ROI j. In the interaction part, we

have the latent configurations uj and vi for each ROI j and subject

i, respectively.

If subject i shows a high value in ROI j, the corresponding

association is relatively strong, which is represented through their

distance uj − vi. Therefore, their latent positions uj and vi become

closer because of a smaller distance compared to other associations.

Conversely, if subject i shows low values in ROI j, the association

is weaker, and the distance between their latent positions uj and

vi is comparably larger. Based on the latent positions of ROIs and

subjects, we can interpret the overall relationships that are inherent

in data. Algorithm 2 outlines the detailed training procedure for

LSIRM.

Additionally, we can understand the significance of the

latent positions of ROIs. When the latent positions of ROIs are

located near the center, it indicates that most subjects respond

similarly to these ROIs. This is because, when estimating the

latent positions of these ROIs, the positions of all subjects are

considered simultaneously, resulting in a minimization of the

distance between the latent positions. Consequently, the latent

positions of commonly reacted ROIs are near the center, allowing

most subjects to exhibit similar reactions. This property facilitates

the extraction of commonly reacted ROIs for each group h

compared to group g, enabling the construction of the group

representative matrix Xh|g,h.

2.7 Advantages of Self-Attn and LSIRM in
capturing fMRI intricacies

Self-attention (Vaswani et al., 2017) evaluates the relationships

between elements in the input sequence, and assigns weights to

emphasize important information from these relationships. This

mechanism enables the model to consider all interactions between

ROIs in a single computation. Furthermore, because it processes

all ROIs simultaneously, it is useful for capturing long-range

dependencies which helps capture global information. Multi-head

self-attention enables learning in parallel interactions between

ROIs, allowing the model to capture diverse relationships and

patterns in greater depth.

In contrast, eXtreme Gradient Boosting (XGBoost) (Chen and

Guestrin, 2016) is an ensemble method based on decision trees

that is focused on identifying classification rules between each data

element and the target, instead of considering the relationships

among elements. In other words, XGBoost classifies based on

specific ROI values. However, when data patterns are unclear, such

as in rs-fMRI, it is also important to understand the overall network

of ROI relationships. XGBoost can have difficulty capturing these

complex underlying interactions (Mørup et al., 2010; Martínez-

Riaño et al., 2023).

On the other hand, Multi-Layer Perceptron (MLP) (Qiu et al.,

2020) primarily analyzes global features instead of local patterns,

leading to the loss of information about the interactions between

specific ROI features. MLP processes all input data features

simultaneously, and as data passes through each layer, it gets

transformed using non-linear activation functions. However, this

process does not learn the interactions between the inputs, since all

inputs are equally processed throughout the network. While MLP

can easily capture global characteristics, they have limitations in

training complex interactions between ROIs (Lai and Zhang, 2023).

TABLE 2 Performance comparison of classification accuracy using

10-fold cross-validation between Self-Attn, two previous studies (Liu

et al., 2020; Wee et al., 2019), and three models [XGBoost (Chen and

Guestrin, 2016; Qiu et al., 2020), and CNN (Zunair et al., 2020)].

Method AD/MCI EMCI/AD LMCI/AD EMCI/
LMCI

Liu et al. 0.8890 - - -

Wee et al. - 0.7920 0.6520 0.6090

XGBoost Pearson 0.7949 0.8206 0.8511 0.7802

Fisher 0.7460 0.6254 0.6353 0.6776

MLP Pearson 0.8132 0.7600 0.7809 0.7457

Fisher 0.7835 0.7533 0.7900 0.7605

Linear 0.7461 0.7333 0.7146 0.7452

Stochastic 0.7659 0.7600 0.6427 0.7381

Topological 0.7819 0.7067 0.6518 0.6838

CNN Pearson 0.8654 0.7733 0.7355 0.7667

Fisher 0.8648 0.7390 0.7809 0.7267

Linear 0.7747 0.7586 0.7891 0.7600

Stochastic 0.8176 0.7657 0.7246 0.8200

Topological 0.8192 0.7600 0.7155 0.7600

Self-Attn Pearson 0.8659 0.8067 0.8809 0.8071

Fisher 0.8813 0.8133 0.8718 0.8152

Linear 0.9022 0.8467 0.8627 0.8624

Stochastic 0.9033 0.8867 0.8900 0.8971

Topological 0.9104 0.8733 0.9173 0.8695

The bold values indicate the models with the highest accuracy in each comparison, which

were selected as the optimal models for subsequent analysis.
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On the other hand, Convolutional Neural Networks

(CNN) (Zunair et al., 2020) extract features by sliding small

filters over the data. However, it is difficult for CNN to capture

global relationships within the data through a single convolution

operation. To address this, multiple layers are required, which

necessitates more data and increases the training time needed

to learn global relationships. While CNN is effective at learning

local interactions between adjacent ROIs, they have limitations in

capturing the global interactions between ROIs (Wang et al., 2018).

For these reasons, Self-Attn is particularly well-suited for

learning interactions between ROIs, as it can simultaneously

capture local information and global patterns. This capability

makes Self-Attn effective at capturing the complex signals within

rs-fMRI data. As shown in Table 2, this results in superior

performance compared to other models.

Our approach uses LSIRM to visualize the interactions among

ROIs, reflected in the group representative matrix derived from the

attention distribution matrix. LSIRM captures these interactions

by estimating the latent positions of ROIs, providing an intuitive

interpretation of their relationships. Importantly, the group

representative matrix is not an adjacency matrix, but a subject-by-

ROI matrix, where the goal is to identify group-level features rather

than individual-specific ones. Since LSIRM considers all subject-

ROI interactions, it identifies common ROI features that show

consistent reactions across all subjects. Therefore, by employing

LSIRM, our approach can achieve a better understanding of

group effects and provide a more intuitive way to interpret ROI

interactions.

3 Results

In this study, we applied our analysis framework to identify the

specific ROIs that differentiate between four disease comparisons:

AD vs. MCI, AD vs. EMCI, AD vs. LMCI, and EMCI vs. LMCI. We

utilized rs-fMRI data collected from AD, EMCI, MCI, and LMCI

from the ADNI dataset.

3.1 Step 1: functional connectivity
networks of each group

First, we constructed an FCN among brain regions based

on their rs-fMRI Blood-Oxygen-Level-Dependent (BOLD) signals.

We used AAL-116 templates to extract 116 rs-fMRI BOLD signals,

representing different brain regions. Supplementary Table S1 in

supporting information contains detailed information about the

AAL-116 templates. Due to the high-dimensional and correlation

structure of fMRI data, we implemented dimension reduction

such as PCA, t-SNE, and UMAP over time to embed the high-

dimensional correlated structure dataset into low two-dimensional

space (Figure 2B). We empirically searched for the optimal

combination of UMAP hyperparameters to enhance prediction

accuracy. Based on this, we chose the number of neighbors

to be 15 and set the minimum distance to 0.1, consistent

with hyperparameters used in previous studies for visualizing

high-dimensional data, such as genomics (Becht et al., 2019) and

single-cell data (Diaz-Papkovich et al., 2021).

To mitigate the subjectivity in determining relevance among

ROIs, we employed Mapper (Chazal and Michel, 2017), a partial

clustering method, to identify significant connections between

ROIs (represented as Figure 2C). ROIs assigned to the same

cluster were considered connected. Subsequently, we generated

FCNs for each set of embedded ROIs from different dimension

reduction methods (represented as Figure 2D). These FCNs

captured relationships and connectivity patterns within the high-

dimensional correlated fMRI data, representing the data as a

connectivity network.

Figure 3 and Supplementary Figures S1–S3 show each subject’s

rs-fMRI BOLD signals and two types of FCNs: correlation-

and dimension-reduction-based FCNs obtained from dimension

reduction methods corresponding to AD, MCI, EMCI, and

LMCI. Through correlation- and dimension-reduction-based

approaches, those different perspectives enabled a comprehensive

understanding of their structural characteristics. Note that these

FCNs are input for Self-Attn to classify between two diseases. One

can apply other dimensionality reduction methods to obtain the

embedded ROIs; however, one can select the optimal method based

on the prediction accuracy provided by the Self-Attn, where the

input is FCNs.

3.2 Step 2: attention distribution matrix
from self-attention deep learning model

We focus on identifying which ROIs are important features for

distinguishing groups in terms of ROIs’ interactions with others. In

the previous step, we applied dimension reduction techniques such

as PCA, t-SNE, andUMAP to the original time-series of the ROIs to

construct FCNs. Additionally, we compared these findings with two

correlation matrices calculated from the original time-series data of

the ROIs: (1) Pearson’s r and (2) Fisher’s z, both of which capture

the associations among ROIs. With this data, we employed Self-

Attn, using FCNs or correlation matrices as input, with the target

being a binary indicator of group membership.

In the Transformer architecture, dk is typically defined by

dividing the total input dimension (dmodel) by the number of

attention heads (h) (Vaswani et al., 2017). However, the roles of the

various attention heads vary, and not all heads contribute equally

to model performance. Therefore, focusing on the most important

heads can maintain model performance while reducing the risk

of overfitting (Voita et al., 2019; Michel et al., 2019). To optimize

classification accuracy while avoiding overfitting and underfitting,

we conducted a parameter search for h = {16, 32, 64, 128}. By

modifying h, we implicitly explored the corresponding dk as well,

specifically investigating dk = {2, 4, 8} where setting dk to a

small value is practically effective specifically in self-attention (Tay

et al., 2022). We validated the model through a 10-fold cross-

validation, and showed that the configuration with h = 128

and its corresponding dk = 2 achieved consistently robust

classification performance.We provide details for parameter search

in Supplementary Figure S4. We applied the model to 116 ROIs

using the following settings: the batch size of 8, a dropout rate of

0.9, Adam optimizer (Kingma and Ba, 2014), the learning rate of

0.01, and cross-entropy loss.
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FIGURE 3

Correlation- and dimension reduction-based FCNs for an AD subject. (A) shows ROIs and rs-fMRI BOLD signals for an AD subject. FCNs were

generated using correlation-based methods: Pearson’s r and Fisher’s z (shown in B, C). To better understand the interrelationships between brain

regions, dimension reduction techniques were applied to estimate latent positions of ROIs: PCA in D (linear space), t-SNE in E (stochastic space), and

UMAP in F (topological space).

Table 2 shows the performance of Self-Attn. We compared

the classification performance against recent studies (Liu et al.,

2020; Wee et al., 2019) and baseline models [XGBoost (Chen

and Guestrin, 2016), MLP (Qiu et al., 2020), and CNN (Zunair

et al., 2020)]. Our method outperforms all other approaches

across the disease group comparisons. Notably, the stochastic and

topological-based FCN, which captures hidden connectivity among

ROIs, achieved the highest accuracy.

Using Self-Attn, we obtained the attention distribution

(Figure 2F) by each ith subject from group g. These attention

distributions, denoted as A
(i)
(q,r)

∈ R
116×116, where i = 1, · · · ,Ng .

Here, Ng indicates the number of subjects from each disease group

g = {AD,MCI,EMCI, LMCI}, where NAD = 57, NMCI = 78,

NEMCI = 93, and NLMCI = 53. These attention distributions

A
(i)
(q,r)

reveal the features that the model focused on when classifying

subjects in each disease group against the other comparison groups.

We considered this attention distribution A
(i)
(q,r)

as the matrix

Y
(i)
g|g,h

, for g 6= h and g, h = 1, · · · ,G, where each row and column

corresponds to ROIs, and the values indicate the significance of

each ROI’s contribution to the classify the subject i in group g

against group h (Vig, 2019) (Figure 2G). Although the resting-

state data shows low signal levels, the classification accuracy of

90% demonstrates that the attentionmatrices effectively distinguish

between the two disease group comparisons.

Figures 4, 5 and Supplementary Figures S5, S6 represent

attention matrices for four randomly selected subjects from

the AD and MCI groups, respectively. These matrices are the

outcomes of Self-Attn employed for AD and MCI classification,

utilizing FCNs derived from topological dimension reduction

techniques as inputs. ROIs with Higher attention values

suggest their significance in classifying subjects. For instance,

in Figure 4A, Putamen_R shows a higher attention value,

which is a consistent result in Putamen’s volume in the AD

group (de Jong et al., 2008). Furthermore, Angular and Paracentral

areas have high values indicating that Self-Attn focuses on these

regions to assign this subject to the AD category over MCI.

Similarly, in Figure 4B, Supplementary Figure S5A, Caudate_R,

Caudate_L, ParaHippocampal_L, Cerebellum, Cingulum_Ant_L,

and Cingulum_Ant_R have high values which also show significant

ROIs marker in AD group (Kesslak et al., 1991; Bobinski et al.,

1999; He et al., 2007; Catheline et al., 2010).

On the other hand, Figure 5A has a high value in

Supp_Motor_Area_R and Cingulum_Post_R (Lin et al., 2014)

which ROIs linked to motor function and exercise (Schmahmann

et al., 2001; Aggarwal et al., 2006; Bai et al., 2011).
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FIGURE 4

Attention distribution matrix of two subjects within the AD group (A, B), generated by Self-Attn designed for AD and MCI classification, utilizing

topological-based FCNs as input.
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FIGURE 5

Attention distribution matrix of two subjects within the MCI group (A, B), generated by Self-Attn designed for AD and MCI classification, utilizing

topological-based FCNs as input.
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Similarly, in Figure 5B and Supplementary Figures S5A–

S6B, Cerebellum, Vermis (van de Mortel et al., 2021),

Thalamus_R (Li et al., 2013; Cai et al., 2015), Hippocampus_L,

and ParaHippocampal_R (Hämäläinen et al., 2007) emerge as

significant ROIs in the MCI group. These patterns in attention

distribution explain why Self-Attn places greater emphasis on

classifying this subject within the MCI category rather than AD.

Based on these self-attention distributions, the

classification accuracy outlined in Table 2 highlights the

effectiveness of our well-trained Self-Attn. Nonetheless,

individually interpreting each subject within each group

can be time-consuming, and there may be potential noise

originating from individual differences within each attention

distribution matrix.

To identify the representative features of ROIs connections that

differentiate between two groups (e.g., g and h), we constructed

a group representative matrix Xg|g,h ∈ R
Ng×116 from each

attention distribution matrix Y
(i)
g|g,h

for i = 1, · · · ,Ng , where

each row represents a subject and each column represents an ROI

(Figure 2H). The values in the gth group representative matrix

Xg|g,h represent the CV, where each column corresponds to the CV

of each ROI’s response to other ROIs within individual subjects’

attention distributions, aggregated across all subjects. A high value

for a certain ROI in Xg|g,h indicates that this ROI shows a unique

pattern in the corresponding individual attention distribution

matrix, contributing to classifying that individual into a specific

group. Additionally, we compiled a list of the ROIs that rank in

the top 25% based on both high averaged CV and high mean

values in the attention distribution matrices Y
(i)
g|g,h

from group

g. As shown in Figure 2H, the CV is calculated for each ROI

within each subject, yielding a set of CV values for ROIs across

all subjects. By averaging these values, we obtain the mean CV

for each ROI. The top 25% ROIs with high mean values indicate

frequent interactions with other ROIs, while those with high CV

values suggest non-uniform signal patterns across subjects. Table 3

displays the top 25% unique ROIs for each group, compared

between two disease groups-AD and MCI. Additional details on

the top 25% ROIs for other group comparisons are provided in

Supplementary Tables S2–S4.

Specific ROIs can be selected based on expert knowledge such

as known disease mechanisms. This approach can facilitate deeper

and more focused inferences when comparing ROIs between

studied diseases. However, our fusion analytical framework

provides a robust solution applicable to general resting-state

fMRI datasets without requiring expert knowledge. Therefore, we

selected ROIs based on statistical measures, such as the mean

and the coefficient of variation in the attention distribution

matrices. Without applying weights to the mean and coefficient of

variation, we select the first quartile, representing the top 25% in

both statistical measures. Using specific percentiles is a common

approach in statistical analysis to highlight significant patterns

and features within a dataset (Hastie, 2009; Silverman, 2018).

Based on this approach, several previous studies have selected

the top 25% features to identify distinctive patterns within data

(Subramanian et al., 2005; Love et al., 2014). Similarly, we selected

the top 25% of ROIs ranked by their mean and coefficient of

variation.

TABLE 3 Top 25% ROIs that show di�erences between disease group of

AD and MCI.

Top AD MCI

Top-1 Postcentral_L Cingulum_Mid_L

Top-2 Postcentral_R Postcentral_L

Top-3 Temporal_Inf_L Fusiform_R

Top-4 Supp_Motor_Area_R Precentral_R

Top-5 Fusiform_L Pallidum_L

Top-6 Cingulum_Mid_L Temporal_Inf_L

Top-7 Fusiform_R Fusiform_L

Top-8 Cerebellum_8_R Supp_Motor_Area_R

Top-9 Cerebellum_6_L Insula_L

Top-10 Putamen_L Cerebellum_6_R

Top-11 Cerebellum_8_L Cerebellum_4_5_R

Top-12 Precentral_R Postcentral_R

Top-13 Thalamus_L Cerebellum_4_5_L

Top-14 Temporal_Mid_R Cerebellum_6_L

Top-15 Cerebellum_4_5_R Putamen_R

Top-16 Insula_R Cerebellum_8_R

Top-17 Rolandic_Oper_R Cerebellum_Crus2_R

Top-18 Precentral_L SupraMarginal_R

Top-19 Temporal_Inf_R Rolandic_Oper_R

Top-20 Insula_L Hippocampus_R

Top-21 Putamen_R Cingulum_Mid_R

Top-22 Cerebellum_7b_R Pallidum_R

Top-23 Temporal_Mid_L Thalamus_L

Top-24 Hippocampus_R Putamen_L

Top-25 Cerebellum_4_5_L Vermis_4_5

Top-26 Cerebellum_10_R Paracentral_Lobule_L

Top-27 Cingulum_Mid_R Vermis_8

Top-28 Pallidum_L Precentral_L

Top-29 Cerebellum_7b_L Supp_Motor_Area_L

3.3 Step 3: group representative features
using the Latent Space Item-Response
Model

In Step 2, we obtain the group representative matrices Xh|g,h

for g 6= h. To capture the group representative ROIs features

that commonly reacted among subjects as shown in Figure 2I,

we applied LSIRM to each group representative matrix Xh|g,h ∈

R
Nh×R. We estimated the latent positions of ROIs V = {vi}, for

i = 1, · · · , 116 using Markov chain Monte Carlo (MCMC). The

MCMC ran 55,000 iterations, and the first 5,000 iterations were

discarded as burn-in processes. Then, from the remaining 50,000

iterations, we collected 10,000 samples with a thinning interval
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of 5. We used two-dimensional Euclidean space to estimate the

latent positions of ROIs. Additionally, we set 0.005 for β jumping

rule, 0.005 for θ jumping rule, and 0.005 for wj and 0.003 zi

jumping rules. Here, we fixed the prior β to follow N(0, 1). We

set aσ = bσ = 0.001. LSIRM takes each matrix Xh as input and

provides the Oh matrix as output after the Procrustes-matching

within the model. Since we calculated topics’ distance on the 2-

dimensional Euclidean space, Oh is of dimension 116 × 2. To

overcome the identifiable issues from the invariance property, we

applied oblimin rotation to the estimated topic position matrix

O∗
h%

using the R package GPArotation (https://cran.r-project.

org/web/packages/GPArotation/index.html).

Based on their estimated latent positions, we successfully

identified ROIs that exhibited common reactions to groups.

Figure 6 and Supplementary Figures S7–S9 exclusively display the

latent positions of the top 25% ROIs from each group. As depicted

in Figure 6, the latent positions of ROIs are visualized in Euclidean

space. By comparing the latent positions of ROIs from the two

groups, we identified the ROIs exhibiting distinct patterns. In this

representation, red-colored numbers signify the Top 25% ROIs

from the AD group, while blue-colored numbers correspond to the

top 25%ROIs from theMCI group. Notably, ROIs positioned closer

to the origin in the latent space suggest a heightened likelihood

of shared interactions among subjects within the same group. For

instance, the latent position of 98 ROI from the AD and MCI

groups is both located close to the origin and marked in green,

indicating their significant roles in both AD andMCI. On the other

hand, the latent positions of 101 and 103 ROIs are exclusively part

of the AD group’s top 25%.Moreover, other numbers highlighted in

orange, indicate that only one ROI group possesses latent positions

near the origin. These ROIs can be interpreted as significant

features that exhibit meaningful reactions exclusively compared to

the other group.

In our analysis framework, therefore, we specifically focus on

the ROIs that meet two criteria: being ranked in the top 25%

listed in Step 2 and having latent positions near the origin. These

criteria indicate that these ROIs exhibit distinct patterns among

subjects and can be considered representative features of each

group. This selection process helps us identify the main features

that are prominent and generalized well across the groups. We

visually highlight these selected ROIs on the summary FCN from

each group. As shown in Figure 2J, the summary FCN for each

group is obtained by averaging the connectivity of each node across

all subjects within the group. A threshold of 0.2, representing

the top 5% connectivity ratios among the subjects’ FCNs in

each group, is then applied to define the connections. We have

added histogram figures showing each group’s connectivity ratio in

Supplementary Figure S10.

Figure 7 and Supplementary Figures S11–S13 show the

differences in disease network between the two groups. The blue

color indicates meaningful regions that show distinctive patterns

from the attention distribution matrix compared to the other

disease groups. The Orange color, on the other hand, indicates

ROIs that were selected before analysis to be meaningful in both

disease groups but were shown to only be meaningful in one group

post-analysis. Finally, green indicates regions that were meaningful

in both disease groups.

3.4 Interpretation of summary FCN from
each group

Figure 7 and Supplementary Figure S11-S13 show the

differences in disease network between the two groups. ROIs

colored in blue indicate their selection as the top 25% group

from the attention distribution matrix in one group, yet they do

not appear as prominently significant in another group. Orange-

colored ROIs indicate that they are meaningful only in one group,

as revealed by the comparison between latent positions from each

group. Finally, Green colored ROIs indicate that they were found

to be meaningful in both disease groups. Utilizing the property

of latent positions estimated from LSIRM (Jeon Y. et al., 2021),

we managed to decode the structural connections among ROIs

and identify ROIs that exhibited consistent significance across all

subjects within each disease group. To see the overall connectivity,

we merged the outcomes of LSIRM with FCNs, assigning colors to

the significant ROIs and their interconnectedness with other ROIs

in FCNs. The higher saturation colors indicate meaningful ROI

features from LSIRM, and the same color with a lower brightness

level reveals a direct connection from the meaningful ROI feature.

We can regard these connections as a cluster.

3.4.1 AD/MCI
Figure 7 illustrates the differences in the disease network

between the AD group andMCI group, and Table 4 summarizes the

meaningful ROIs. According to Figure 7A, Cluster A is comprised

of Cerebellum_7_L (101) and Cerebellum_8_L (103). These two

regions did not show activity in MCI, and the majority of regions

that reacted in AD were connected to the Cerebellum regions. This

distinction becomes evident as the AD group exhibits a diminished

gray matter volume in the cerebellar anterior lobe in contrast to the

non-AD group, as observed in prior research (Reiman et al., 2012).

Cluster C (orange-colored cluster) with Hippocampus_R (38)

and cluster D (orange-colored cluster) with Cingulum_Mid_L

(33) and Cingulum_Mid_R (34) of Figure 7A show the cluster

of regions and their direct connectivity that were more reactive

in AD compared to MCI. Hippocampus_R (38) of cluster C

showed greater reactivity in AD when compared to MCI and

Hippocampus (37, 38), ParaHippo (39, 40), Putamen (73, 74),

Pallidum (75, 76), and Amygdala (41, 42) are densely populated

in this area. We discovered that the Hippocampus (37, 38) plays

an important role in expressing AD characteristics (Figure 7A

Cluster C). Many studies have shown that having Hippocampus

(37, 38) dysfunction affects memory (Spaniol et al., 2009; Small

et al., 2011; Delbeuck et al., 2003). Through our methodology,

we also identified associations between the Hippocampus (37, 38),

Putamen (73, 74), and ParaHippo (39, 40). These regions have been

previously associated with cognitive impairment in Alzheimer’s

disease (Kesslak et al., 1991; Bobinski et al., 1999; de Jong et al.,

2008).

Cluster F of Figure 7B shows ROIs, Postcentral_L (57) and

Postcentral_R (58), that were more reactive in MCI compared

to AD. This Postcentral (57, 58) is directly connected to

Cingulum_Mid (33, 34), Precentral (1, 2), and Paracentral_Lob_L
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FIGURE 6

Latent positions of ROIs in 2-dimensional Euclidean space. The triangles indicate the top 25% ROIs from the AD group and the squares indicate the

top 25% ROIs from the MCI group. Latent positions that are located closer to the origin suggest a higher likelihood of common interactions among

subjects within the group. There are three scenarios: (1) a more reactive pattern, where, when comparing two groups, only the latent position of one

group is located near the origin while the other group’s latent position is situated outside the origin(orange color); (2) both group, where latent

positions of both groups are near the origin (green color); and (3) only, indicating that a specific ROI is ranked in the top 25% within one group (blue

color).

(69). According to our findings, Cingulum_Mid (33, 34) is linked

to the Postcentral (57, 58), Precentral (1, 2), and Paracentral_Lob

(69, 70), all of which are known to process motor information (Yeo

et al., 2011).

Cluster B (green-colored cluster) of Figure 7A and Cluster

E (green-colored cluster) of Figure 7B correspond to Cerebellum

4_5_R (98) that reacted to both AD and MCI. Both results show

that Cerebellum 4_5_R (98) is not only connected with other

Cerebellum regions but is also directly connected to Fusiform_L

(55) and Fusiform_R (56), regions that are related to facial

recognition (Kanwisher et al., 1997). According to the global hub

node centrality analysis (Zhang et al., 2020), Fusiform (55, 56) and

Cerebellum regions play important roles in constituting the key

makeup of disease characteristics of MCI.

3.4.2 AD/EMCI
Supplementary Figure S11 illustrates the differences in disease

network between the AD group and the EMCI group, and

Table 5 summarizes the meaningful ROIs. Clusters A and B of
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FIGURE 7

(A) AD group summary FCN and (B) MCI group summary FCN.

Figure S11A, which are Hippocampus_L (37), Lingual_R (48),

Cerebellum_4_5_L (97), were found to be meaningful regions not

in EMCI but only in AD. The hippocampus (37, 38) in both

hemispheres is directly connected. These regions are also directly

connected to ParaHippo (39, 40), Putamen (73, 74), Pallidum (75,

76), and Amygdala (41, 42) and the results are similar to the results

described in Section 3.4.1. Fusiform_R (56)and Cerebellum_8_L

(103) are directly connected to Hippocampus_R (38), and this

is similar to cluster A and B of Supplementary Figure S11A.

Hippocampus_L (37) and Lingual_R (48) are not only directly

connected to Lingual_L (47), but also to Calcarine (43, 44),

Cuneus (45, 46), Fusiform_L (56) and Cerebellum_6_L (99).

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2024.1402657
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jeon et al. 10.3389/fnins.2024.1402657

TABLE 4 Meaningful ROIs in the comparison between the AD group and

the MCI group.

ROIs AD MCI

Cingulum_Mid_L N ∇

Cingulum_Mid_R N ∇

Hippocampus_R N ∇

Postcentral_L ∇ N

Postcentral_R ∇ N

Cerebellum_4_5_R N N

Cerebellum_7_L N −

Cerebellum_8_L N −

N indicates regions that are active in the group, while ∇ represents regions that are less active

than the other group.− indicates ROIs that are not selected as active in the group.

TABLE 5 Meaningful ROIs in the comparison between the AD group and

the EMCI group.

ROIs AD EMCI

Rolandic_Oper_R N ∇

Cingulum_Mid_L ∇ N

Cingulum_Mid_R ∇ N

Hippocampus_L N −

Hippocampus_R N ∇

Lingual_R N −

Fusiform_L N N

Fusiform_R N N

Pallidum_L ∇ N

Cerebelm_Crus2_L ∇ N

Cerebellum_4_5_L N −

Cerebellum_9_R − N

N indicates regions that are active in the group, while ∇ represents regions that are less active

than the other group.− indicates ROIs that are not selected as active in the group.

Cluster D and E of Supplementary Figure S11A were more active

in AD relative to EMCI and included the Hippocampus_R (38),

Rolandic_Oper_R (18) regions. We can see that Rolandic_Oper_R

(18) is directly connected to Putamen (73, 74), Pallidum (75,

76) and Heschl_L (79). Cluster F of Supplementary Figure S11B

was active in EMCI but not AD, and Cerebellum_9_R (106) was

analyzed. This region was adjacent to Cerebellum_Crus2_R (94),

Cerebellum_7b_R (102), and Cerebellum_9_L (105). Cluster H, I,

and J of Supplementary Figure S11B are regions that were more

active in EMCI relative to AD, and regions Cingulum_Mid_L (33),

Cingulum_Mid_R (34), Pallidum_L (75) and Cerebellum_Crus2_L

(93) were analyzed. Cingulum_Mid is directly connected to

Precentral (1, 2), Supp_Motor (19, 20), Postcentral (57, 58) and

Supramarginal (63, 64). These connections have recently been

examined in planning and cognitive control processing (Domic-

Siede et al., 2021; Cavanagh and Frank, 2014).

Cluster C of Supplementary Figure S11A and Cluster G

of Supplementary Figure S11B are regions that were active in

TABLE 6 Meaningful ROIs in the comparison between the AD group and

the LMCI group.

ROIs AD LMCI

Rolandic_Oper_R − N

Putamen_L ∇ N

Temporal_Mid_R N −

Cerebellum_4_5_R ∇ N

Cerebellum_6_L N ∇

Vermis_8 ∇ N

N indicates regions that are active in the group, while ∇ represents regions that are less active

than the other group.− indicates ROIs that are not selected as active in the group.

both AD and EMCI, and correspond to Fusiform_L (55) and

Fusiform_R (56). Fusiform (55, 56) is directly connected to

Hippocampus (37, 38) and ParaHippo (39, 40). Likewise, in

previous studies (Apostolova et al., 2006; Li et al., 2013; Zhu et al.,

2009), there are connections between Hippocampus (37, 38) and

ParaHippo (39, 40), Putamen (73, 74), Pallidum (75, 76), and

Amgydala (41, 42).

3.4.3 AD/LMCI
Supplementary Figure S12 illustrates the differences in

disease network between the AD group and the LMCI group,

and Table 6 summarizes the meaningful ROIs. Cluster A

of Supplementary Figure S12A was active in AD but not

LMCI, and Temporal_Mid_R(86) was analyzed. Cluster B of

Supplementary Figure S12A reacted more in AD relative to LMCI,

and Cerebellum_6_L (99) was analyzed. Not only is this region

connected with multiple Cerebellum (91, 92, 100) areas, but it is

also connected to Fusiform_L (55), Lingual (47, 48), and multiple

Vermis (112, 113, 114). Cluster C of Supplementary Figure S12B

was active only in LMCI and not AD, and Rolandic_Oper_R (18)

was analyzed. This region was connected with Heschl (79, 80),

Insula (29, 30) and Temporal_Sup (81, 82). Cluster D, E, and F

of Supplementary Figure S12B are regions more active in LMCI

relative to AD, and regions Putamen_L (73), Cerebellum_4_5_R

(98) and Vermis_8 (114) were analyzed. Putamen (73, 74) is

connected to Olfactory (21, 22), Hippocampus (37, 38), Amygdala

(41, 42), Pallidum (75, 76) and Thalamus_L (77).

3.4.4 EMCI/LMCI
Supplementary Figure S13 illustrates the differences in

disease network between the EMCI group and the LMCI

group, and Table 7 summarizes the meaningful ROIs. Clusters

A, B, and C of Supplementary Figure S13A were regions that

were only active in EMCI, and Frontal_Inf_Orb_R (16),

Frontal_Med_Orb_R (26), and Cerebellum_3_R (96) were

analyzed. Cerebellum_3_R (96) is directly connected to

Cerebellum_3_L (95) and Vermis_3 (110). ROIs connected

to Frontal_Inf_Orb (15, 16) and Frontal_Inf_Tri (13, 14), can

be grouped as Frontal regions. We can also see that they are

directly connected to Putamen_R (74). The Frontal_Med_Orb_R

(26) is directly connected to Frontal_Med_Orb_L (25), Rectus
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TABLE 7 Meaningful ROIs in the comparison between the EMCI group

and the LMCI group.

ROIs EMCI LMCI

Frontal_Inf_Orb_R N −

Frontal_Mid_Orb_R N −

Putamen_L N ∇

Pallidum_L N ∇

Temporal_Mid_R ∇ N

Cerebellum_3_R N −

Cerebellum_6_L ∇ N

Nindicates regions that are active in the group, while ∇ represents regions that are less active

than the other group.− indicates ROIs that are not selected as active in the group.

(27, 28), and Frontal_Sup_Orb_R (6). Cluster D represents a

region that was more active in EMCI relative to LMCI, including

Putamen_L (73), and Pallidum_L (75) regions. The ROIs

that were primarily connected to these regions can largely be

defined as Caudate (71, 72), Pallidum_R (76), Thalamus (77,

78), Hippocampus (37, 38), and Insula (29, 30). Other regions

include Rolandic_Oper_L (17), Amygdala_R (42), Fusiform_L

(55), and Cerebellum_8_L (103). Supplementary Figure S13B,

on the other hand, shows the FCN extracted for LMCI, which

shows no significant ROIs that were significantly active only

in LMCI. There is, however, cluster E, that shows ROIs more

active in LMCI relative to EMCI. This cluster is comprised of

ROIs connected to Temporal_Mid_R(86) and Cerebellum_6_L

(99). Temporal_Mid_L (85) and Temporal_lnf_R(90) are ROIs

connected with Temporal_Mid_R (86). ROIs connected with

Cerebellum_6_L (99) are largely Fusiform (55, 56), Lingual

(47, 48), and multiple Vermis (112, 113). Other regions

include Cerebellum_Crus1_L (91), Cerebellum_4_5_L (97),

and Cerebellum_6_R (100).

4 Discussion

Our study presents a fusion analytic framework that provides

interpretable distinctions in ROIs’ connections between cognitive

impairment groups. We construct FCNs to visualize intricate

patterns within high-dimensional fMRI data and apply Self-

Attn to capture hidden connectivity differences across groups.

Our framework identifies group distinctive ROIs by summarizing

individual-level attention distributions into group-level features.

Using LSIRM, we model interactions among ROIs and estimate

latent positions, providing intuitive insights into consistent group-

specific responses. Finally, we highlight these distinctive ROIs

within summary FCNs, offering deeper insights into the unique

characteristics of each condition. Our framework can be extended

to other neurodegenerative diseases by applying the same analytical

approach to explore ROI connections and patterns, enabling the

identification of distinctive neural characteristics across various

conditions.

Furthermore, our fusion analytic framework can also be

extended to multi-class classification. We can apply self-attention

model to multi-class classification data. After obtaining each

corresponding attention matrices, we estimate the latent positions

of ROIs using LSIRM. As mentioned in Step 3, we can extract

ROIs that display distinct patterns across different classes. In future

work, we aim to expand this framework tomulti-class classification,

where distinct ROIs are not only differentiated between two groups

but also across three or more disease groups.

Our fusion analytic framework has limitations in computing

time. Since our framework involves three steps, fitting the data at

each stage requires time, as each step depends on the previous one.

Since the attention distribution output from Self-Attn influences

the group representative matrix, which serves as the input for

LSIRM where Self-Attn accuracy needs to be guaranteed. These

sequential processes require users to input data and analyze results

at each step, which can be more time-consuming than a single-

stage model. Nonetheless, this multi-step approach is valuable as

it enables users to check and interpret results at each stage.

Our methodology has also uncovered significant biological

insights, which have been consistently validated across multiple

studies. The four key features identified are (1) Hippocampus, (2)

Cingulum, (3) Fusiform, and (4) Cerebellum.

When comparing AD with MCI, we found that the

Hippocampus (37, 38) plays a crucial role in expressing AD

characteristics (Figure 7A, Cluster C). The hippocampus is

among the earliest regions to exhibit structural alterations

in AD, with significant atrophy observed, particularly in

subregions (Chételat et al., 2008). Numerous studies have

demonstrated that dysfunction in the hippocampus (37, 38)

negatively affects memory (Delbeuck et al., 2003; Spaniol et al.,

2009; Small et al., 2011). Research has shown that disruption in

connectivity between the hippocampus and parahippocampal

cortex is correlated with memory dysfunction and cognitive

decline (Sun et al., 2017).

Using our approach, we also identified connections between the

Hippocampus (37, 38) and the Putamen (73, 74), as well as the

Parahippocampal regions (39, 40), which have been associated with

cognitive impairment in Alzheimer’s disease (Kesslak et al., 1991;

Bobinski et al., 1999; de Jong et al., 2008). The parahippocampal

cortex has shown altered connectivity with the hippocampus in

MCI and AD patients, which is linked to reduced cognitive

performance. This region is essential for maintaining declarative

memory, and disruptions here are associated with early cognitive

decline in AD (Liu et al., 2016). The putamen, along with the

thalamus, experiences significant atrophy in AD patients, with

this volume reduction correlating with cognitive decline. This

suggests that deep gray matter structures play a role in AD’s

neurodegenerative processes, extending beyond the traditional

focus on the hippocampus (de Jong et al., 2008).

When compared to EMCI, the biomarkers of AD become more

clearly evident (Supplementary Figure S11A). These biomarkers

are detected in the connections between the Hippocampus (37,

38) and the ParaHippocampal regions (39, 40), Putamen (73, 74),

Pallidum (75, 76), and Amygdala (41, 42) (Apostolova et al., 2006;

Zhu et al., 2009; Li et al., 2013). Studies indicate that specific

changes in these ROIs are significant as the condition progresses

from EMCI to AD. For instance, multimodal imaging techniques

have shown atrophy in the hippocampus and amygdala during the
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early stages of AD, which correlates strongly with cognitive decline

(Eustache et al., 2016). Additionally, functional alterations in

the connectivity between the hippocampus and parahippocampal

regions have been associated with disrupted memory processing

and the hallmark symptoms of AD (Wei et al., 2020). Moreover,

the putamen and pallidum show progressive volume loss in patients

transitioning from MCI to AD, which emphasizes their role in

neurodegeneration (Yi et al., 2016). Collectively, these findings

underline the interconnected nature of these regions in reflecting

the underlying pathology of Alzheimer’s disease as it progresses

from EMCI.

In terms of the Cingulum, our method provides additional

insights regarding the Cingulum_Mid (33, 34) to MCI, which has

traditionally been considered one of the most important ROIs

in AD (Yoshiura et al., 2002; Fellgiebel et al., 2005; Kantarci

et al., 2000; Scheff and Price, 2001; Catheline et al., 2010). The

Cingulum_Mid (33, 34) is responsible for processing motor and

attention-related activities (Lin et al., 2014). However, our findings

reveal that the Cingulum_Mid (33, 34) is more prominent in MCI

and EMCI than in AD (Figure 7A, Supplementary Figure S11B).

The Cingulum_Mid (33, 34) is connected to the Postcentral (57,

58), Precentral (1, 2), and Paracentral_Lob (69, 70) regions, all

of which are involved in motor processing. These four regions

have been investigated using fluorodeoxyglucose (FDG) positron

emission tomography (PET) as relevant indicators in MCI (Xu

et al., 2016). Furthermore, distinct patterns of atrophy and reduced

fractional anisotropy values in these ROIs have been noted in

neuroimaging studies, emphasizing their importance in predicting

the progression fromMCI to AD (Choo et al., 2010).

In the network comparison between EMCI and AD, our model

identified a connection between the Cingulum_Mid (33, 34) and

the Supramarginal gyrus (63, 64), which is associated with motor

attention-related activity (Supplementary Figure S11B). These

connections have recently been examined in relation to planning

and cognitive control processes (Cavanagh and Frank, 2014;

Domic-Siede et al., 2021). The Cingulum_Mid and Supramarginal

gyrus have been implicated in age-related motor performance

changes, highlighting their role in cognitive and motor integration

(Heuninckx et al., 2005). As a result, the Cingulum_Mid (33, 34),

which has previously been underexplored, should be considered

relevant to both cognitive and motor functions in MCI and

EMCI. These findings support its significance in understanding

the progression of cognitive decline, especially as the interaction

between these regions reflects the brain’s adaptive changes in

response to increasing cognitive demand.

On the other hand, in both AD and MCI, the Fusiform (55,

56) emerges as a key ROI in revealing the characteristics of each

disease. The Fusiform (55, 56) is well known for its role in facial

recognition processing (Kanwisher et al., 1997) and has recently

been studied for its genetic and epigenetic links to AD (Ma et al.,

2020). Our method identified the Fusiform (55, 56) as a significant

ROI in both AD and EMCI (Supplementary Figure S11), showing

that it is connected to cerebellar functions. This connection

is consistently observed across all network results (Figure 7,

Supplementary Figure S11–S13). Research also suggests that the

cerebellum and fusiform gyrus exhibit strong interconnections,

which play crucial roles in cognitive functions as MCI progresses

toward AD (Yao et al., 2010).

Our research highlights the increasing significance of the

cerebellum in the context of cognitive impairment. Traditionally,

the cerebellum was associated primarily with motor control

and coordination (Schmahmann et al., 2001; Aggarwal et al.,

2006). However, recent studies have shown its involvement in

cognitive processing and emotional modulation (Schmahmann,

1998; Schmahmann and Sherman, 1998; Whitwell et al., 2012)

and emotional modulation (Schmahmann et al., 2007). Recently,

the cerebellum has also been recognized as a useful biomarker in

clinical AD subjects (Russo et al., 2018). According to our results,

Cerebellum_4_5_R (98) plays a significant role as an ROI in both

AD and MCI (Figure 7). This aligns with prior studies showing

decreased activity in this region in both AD and MCI compared to

the control group (Wang et al., 2011). Additionally, structural MRI

studies have explored changes in the cerebellum, finding that the

posterior cerebellar lobes were significantly smaller in AD patients

and correlated with poorer cognitive performance, suggesting that

cerebellar atrophy may contribute to AD progression(Thomann

et al., 2008).
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