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Objective: In this work, we propose a novel method for constructing whole-
brain spatio-temporal multilayer functional connectivity networks (FCNs) and 
four innovative rich-club metrics.

Methods: Spatio-temporal multilayer FCNs achieve a high-order representation 
of the spatio-temporal dynamic characteristics of brain networks by combining 
the sliding time window method with graph theory and hypergraph theory. The 
four proposed rich-club scales are based on the dynamic changes in rich-club 
node identity, providing a parameterized description of the topological dynamic 
characteristics of brain networks from both temporal and spatial perspectives. 
The proposed method was validated in three independent differential analysis 
experiments: male–female gender difference analysis, analysis of abnormality 
in patients with autism spectrum disorders (ASD), and individual difference 
analysis.

Results: The proposed method yielded results consistent with previous 
relevant studies and revealed some innovative findings. For instance, the 
dynamic topological characteristics of specific white matter regions effectively 
reflected individual differences. The increased abnormality in internal functional 
connectivity within the basal ganglia may be  a contributing factor to the 
occurrence of repetitive or restrictive behaviors in ASD patients.

Conclusion: The proposed methodology provides an efficacious approach for 
constructing whole-brain spatio-temporal multilayer FCNs and conducting 
analysis of their dynamic topological structures. The dynamic topological 
characteristics of spatio-temporal multilayer FCNs may offer new insights into 
physiological variations and pathological abnormalities in neuroscience.
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1 Introduction

Functional connectivity network (FCN) based on functional 
magnetic resonance imaging (fMRI) is established by evaluating the 
time-domain correlation among blood oxygen level-dependent 
(BOLD) signals across diverse brain regions. Since the concept of 
functional connectivity (FC) was introduced (Biswal et al., 1995), 
constructing FCN to investigate the connectivity patterns of different 
brain regions [motor network (Biswal et  al., 1995); default mode 
network (Greicius et al., 2003); attention network (Fox et al., 2006)], 
as well as the physiological [gender (Zhou, 2016); age (Zhang et al., 
2018b); fluid intelligence (Finn et al., 2015)] and pathological [autism 
spectrum disorder (ASD; Liu M. et al., 2021); Alzheimer’s disease 
(AD; Gao et al., 2020); schizophrenia (Yang C. et al., 2023)] influences 
on brain networks, has become one of the primary research directions 
in the field of fMRI.

Presently, most investigations on resting-state fMRI (rs-fMRI) 
brain functional networks have focused on constructing single-layer 
FCN based on either gray matter (GM) or white matter (WM) brain 
regions (Cai et al., 2021), using multiple runs of rs-fMRI data, Zhang 
et al. demonstrated the reliability of gender prediction through GM 
FCN constructed from rs-fMRI FC (Zhang et al., 2018b). Zhang et al. 
employed fMRI data acquired under natural viewing conditions to 
measure GM FC, obtaining more reliable test–retest results compared 
to those derived from rs-fMRI data (Cai et  al., 2021). Peer et  al. 
conducted clustering analysis on WM voxel-wise rs-fMRI data, 
confirming the presence of distinctive symmetric WM FCN (Peer 
et al., 2017).

However, the human brain is composed of multiple highly 
complex networks (Ames, 2000; Bullmore and Sporns, 2012). 
Single-layer FCN typically only reflects local brain activity and 
single brain functional features, underpowering to capture the 
intricate functional patterns between different brain regions (Hu 
et  al., 2021). Traditional FCNs typically rely on low-order 
correlations and graph theory for construction, which may 
struggle to comprehensively describe the functional interactions 
between brain networks. Due to the constraints of single-layer 
FCN and lower-order correlations in capturing brain functional 
activity, researchers have endeavored to develop multilayer or 
high-order FCNs (Pedersen et  al., 2018; Sporns, 2018; Bazinet 
et al., 2021; Hu et al., 2021). Most recent researches aim to capture 
the high temporal or spatial complexity of the human brain system 
and to represent the modular characteristics of brain functions. 
Utilizing the sliding time window method with three different 
dynamic FC (dFC) statistics (standard deviation, ALFF, and 
excursion), Zhang and colleagues explored the associations 
between static FC, dFC, and their reliability using intraclass 
correlation coefficient (ICC) (Zhang et  al., 2018a). Wee and 
colleagues achieved enhanced individual recognition of Mild 
Cognitive Impairment (MCI) by integrating spatial information 
from whole-brain (including GM and WM) Diffusion Tensor 
Imaging (DTI) and rs-fMRI data (Wee et al., 2012). Yang et al. 
developed a novel approach for constructing high-order FCNs by 
integrating low-order FCNs with those constructed based on 
hypergraph (Yang J. et al., 2023). Wang et al. directed their focus 
toward the dynamic characteristics of WM BOLD signals and the 
reliability of dFC, substantiating the significance of WM signals 
in the construction of temporal dynamic FCNs (Wang et  al., 

2022). However, these studies have not simultaneously utilized the 
rich spatio-temporal dynamic features in fMRI data or have relied 
solely on low-order correlations for multilayer 
network construction.

Extensive research has been investigated on the FC features of 
whole-brain multilayer FCNs, but there has been a deficiency in 
exploring their topological characteristics. Previous studies have 
indicated that the brain network exhibits small-worldness, which 
effectively captures the dynamic and efficient information 
processing and transmission among brain network nodes (Achard 
and Bullmore, 2007; Kaiser, 2011; Yu et al., 2011; Sporns, 2013). 
The rich-club organization, as a crucial manifestation of small-
worldness, offers a more cogent description of dynamic and diverse 
brain networks (Park and Friston, 2013). A large number of studies 
have proved that the FCNs of the human brain have the rich-club 
property, and the rich-club organization holds significant relevance 
to various cognitive and affective functions (McColgan et al., 2015; 
Mai et al., 2017; Zhao et al., 2021; Riedel et al., 2022). Additionally, 
alterations in the rich-club structure have emerged as biomarkers 
for studying neurological disorders, such as AD (Ma et al., 2022) 
and Parkinson’s disease (Liu T. et  al., 2021). By analyzing the 
topological structure of the human brain FCN, Harriger et  al. 
proved the existence of brain functional network hubs with high 
connectivity and centrality (Harriger et  al., 2012). Zhou and 
colleagues discovered a reduction in total and global efficiency in 
the brain networks of ASD children through small-world 
characteristic analysis based on cortical thickness but not FC MRI 
or volumetry (Zhou et al., 2014). Van Den Heuvel and colleagues 
integrated rs-fMRI and DTI data to construct brain network 
structures, revealing and confirming the existence of rich-club 
organization in the resting-state brain network (van den Heuvel 
et al., 2009). Their another research underscores the significance of 
the rich-club organization in facilitating information transmission 
across brain regions (van den Heuvel et al., 2012). These studies, 
however, primarily focus on static single-layer FCNs. In recent 
years, the dynamic characteristics of the rich-club have gained 
increasing attention. Liang et al. analyzed the brain’s functional 
network using graph theory and provided evidence that the rich-
club organization plays a role in the network’s dynamic changes 
(Liang et al., 2016). These studies have introduced new perspectives 
for investigating the rich-club organization in spatio-temporal 
multilayer FCNs.

In this paper, we  propose a novel approach for constructing 
spatio-temporal whole-brain (including GM and WM) multilayer 
FCNs and define four metrics for analyzing the dynamic rich-club 
organization of proposed FCNs. Concisely, we first employed graph 
and hypergraph methods, along with sliding time window approach, 
to construct spatio-temporal multilayer FCNs. Subsequently, 
we employed neural network methods to preliminarily validate the 
efficacy of extracting spatial features from the proposed FCNs. 
Furthermore, we introduced four novel rich-club metrics, including 
temporal centrality, temporal stability, local functionality, and joint 
functionality, to capture the dynamic spatio-temporal characteristics 
of the topological structure of the brain network. Finally, the 
effectiveness of the proposed method was validated through three 
independent difference analysis tasks: male–female gender differences 
analysis, analysis of abnormality in patients with ASD, and individual 
differences analysis.
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2 Materials and methods

2.1 Dataset and preprocessing

The human connectome project (HCP) dataset was employed in 
this study for male–female gender differences analysis and (Van Essen 
et al., 2012). These 1,200 Subjects Release (S1200) includes behavioral 
and 3 T MRI data from 1,206 healthy young adult participants 
collected in 2012–2015, with the following parameters: repetition time 
(TR) of 720 ms, echo time (TE) of 33.1 ms, flip angle (FA) of 52°, 
resolution of 2.0 mm, and a matrix size of 104 × 90. Each participant 
underwent two resting-state sessions, with a one-day interval between 
data collection sessions. The preprocessed data obtained from the 
HCP minimal preprocessing pipeline were employed in this work, 
including gradient distortion correction, head motion correction, 
image distortion correction, spatial normalization to the standard 
Montreal Neurological Institute (MNI) template, and intensity 
normalization. Furthermore, we regressed out the covariates of head 
motion and cerebrospinal fluid (CSF) signal and subsequently applied 
a bandpass filter (0.01–0.08 Hz) to attenuate noise. We  randomly 
selected 80 male and 80 female participants based on gender. The 
selected data is divided into REST1 and REST2 (two scans on different 
days), where the data from REST1 is used for gender difference 
analysis, while data from both REST1 and REST2 are used for 
individual difference analysis. All samples with abnormal head motion 
parameters and quality control (QC) scores were excluded.

The ABIDE-I public dataset was utilized for analysis of 
abnormality in patients with ASD (Di Martino et  al., 2014). The 
ABIDE-I dataset, contributed by 17 international institutions, 
comprises 1,112 participants, consisting of 539 individuals diagnosed 
with ASD and 573 typically developing controls (TDC). The average 
age of all participants was 14.7 years. These data underwent a 
preprocessing pipeline similar to that of the HCP dataset, including 
the removal of unstable time points, temporal layer correction, head 
motion correction, spatial registration, spatial smoothing, bandpass 
filtering (0.01–0.08 Hz), and regressing out covariates of head motion 
and CSF signal. The participant selection principle for ASD patients 
and TDC data involved random selection of time series lengths greater 
than 150 ms, with samples meeting the quality check for phenotype 
data. Finally, a total of 87 ASD patients and 86 TDC were selected. 
Table 1 presents detailed demographic information about all subjects. 
DPABI software V5.4 (Yan et  al., 2016)1 was used to all 
preprocessing pipeline.

1 http://restfmri.net/forum/DPABI

The regions of interest (ROIs) division of the GM used the 
functional parcellation atlas provided by the Neuropsychiatric 
Disorders Functional Imaging Laboratory of Stanford University, 
which is composed of 90 sub-regions divided into 14 macroscale 
resting state networks (MRSNs): anterior salience network (ASN), 
posterior salience network (PSN), auditory network (AN), basal 
ganglia network (BGN), dorsal default mode network (DDMN), 
ventral default mode network (VDMN), primary visual network 
(PVN), higher visual network (HVN), language network (LN), left 
executive control network (LECN), right executive control network 
(RECN), precuneus network (PN), sensorimotor network (SMN), 
visuospatial network (VSN) (Shirer et al., 2012). Figure 1 illustrates 
the spatial distribution of the 14 MRSNs in the brain. For detailed 
parcellation information of the aforementioned brain GM regions, 
please refer to Supplementary Figure S1 and Supplementary Table S1. 
The ROI division of the WM used the JHU DTI-based WM atlases 
provided by Johns Hopkins University (Mori et  al., 2008), which 
divided the brain WM into 48 probabilistic WM tracts. In this study, 
we considered the collective set of 48 WM fiber bundles as a single 
MRSN. Finally, at the MRSN scale, we  established 15 MRSNs, 
comprising 14 GM MRSNs and 1 WM MRSN. At the ROI scale, 
we defined 138 ROIs, which consisted of 90 GM regions and 48 WM 
regions. Additionally, the XTRACT HCP probabilistic tract atlases 
were employed in the robustness validation experiments of the 
proposed method across different brain templates (Warrington et al., 
2020). The specific information about the two WM templates can 
be found in Supplementary Figure S2.

2.2 Spatio-temporal multilayer FCNs

Figure  2A shows the specific details and flow of the spatial 
construction of multilayer FCNs. Considering the occurrence of 
coordinated functional activation across multiple brain regions in 
brain neural activity, we propose a novel method for constructing 
multilayer FCNs. This approach combines simple graphs with 
hypergraphs, introducing both lower-order and higher-order 
associations into brain FCNs simultaneously.

A hypergraph G � � �� �,  consists of a set of nodes 
� � � ��v v v vN N1 2 1, , , ,  with a set of hyperedges 
� � � ��e e e eM M1 2 1, , , , . In this work, hypergraph nodes represent 
brain ROIs, and hyperedges represent high-order functional 
interactions among these ROIs. A hypergraph can be H N M� � , 
which define as follows:

 
H

v e
otherwiseij
i j�
��

�
�

1

0  
(1)

TABLE 1 Demographic and clinical characteristics of HCP and ABIDE-I datasets.

Clinical phenotype HCP ABIDE-I

Male
(n =  80)

Female
(n =  80)

ASD
(n =  87)

TDC
(n =  86)

Age (Mean ± SD) 27.26 ± 2.74 30.06 ± 3.38 17.31 ± 5.07 15.36 ± 3.56

Male/Female 80/0 0/80 80/7 66/20

Two-tailed t-tests was employed to examine the significant age differences between different groups in the dataset: HCP: p < 0.001; ABIDE-I: p = 0.004.
SD, standard deviation.
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In light of previous researches (Jie et al., 2016; Fan et al., 2020), 
we  employed a representation-based approach to construct the 
incidence matrix H , specifically, lasso sparse linear regression was 
applied to estimate the incidence matrix:

 
min
�

� � �
i

X Bi i i i
1

2 2

2

1
� �

 
(2)

Where Xi represents the rs-fMRI time series corresponding to the 
central response vector, and B X X X Xi i i N� � �� �1 1 1, , , , ,   is a 
matrix composed of time series corresponding to all other nodes 
except node vi. αi  is the regression coefficient vector, where elements 
with larger values indicate a stronger association between the 
corresponding node and the central node vi. In this work, nodes with 
a value greater than zero in αi  are considered to belong to hyperedge 
ei . λ is the regularization coefficient, which is used to control the 
sparsity of the regression results.

The simple graph is represented using a threshold binary 
adjacency matrix A, where the threshold is determined by the mean 
plus one standard deviation of FC strengths. This adaptive approach 
filters out weak FC.

By combining pre-defined multi-scale ROIs with the proposed 
method, we constructed a three-layer FCN at the spatial scale, aiming 
to characterize the spatial structure of the whole brain (including GM 
and WM) from the perspectives of both low-order and high-order 
associations. The first layer FCN is represented by the incidence 
matrix H  of the hypergraph. Specifically, we successively took each 
MRSN as a central node, applied the Lasso sparse regression algorithm 
to estimate 14 hyperedges, and constructed the incidence matrix 
H � �14 14  of the hypergraph based on Equation (1). The first layer 
FCN describes the high-order associations between MRSN regions, 

while the second layer FCN focuses on representing the low-order 
associations within sub-regions of each MRSN, represented by the 
adjacency matrix A1 90 90� � . The third layer FCN represents the 
low-order associations between these GM subregions and the brain 
WM bundles, represented by the adjacency matrix A2 48 90� � .

For the construction of temporal multilayers, the sliding time 
window method is utilized to partition the whole BOLD time series 
signal into overlapping segments. Following this, spatial multilayer 
FCNs are established for each time series segment, resulting in 
multilayer FCNs representing distinct temporal periods. Figure 2B 
illustrates the procedure for constructing the temporal layers of the 
spatio-temporal multilayer FCNs. The length and sliding stride of the 
time window determined the number of temporal layers T  in the 
multilayer FCNs, with the specific calculation detailed as follows:

 
T L W

S
�

�
�1

 
(3)

Where L is the length of the original BOLD time series, W  is the 
length of the time window, and S is the sliding stride of adjacent time 
windows. Based on previous researches and the actual parameters of 
the datasets (Pedersen et al., 2018; Fan et al., 2020), we employed 
distinct time window parameters for two different datasets: For the 
HCP dataset, W =200TR, S=100TR, L=1200TR; and for the ABIDE-I 
dataset, W =20TR, S=10TR, L=150TR.

2.3 Rich-club organization

In this work, we determined the core nodes forming the rich-club 
organization by calculating the normalized node degree of 90 GM 
subregions and 48 WM regions in the multilayer FCNs. It is important 

FIGURE 1

The spatial distribution of all 14 MRSNs in the brain.
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to note that, for the node degree of the 90 GM subregions in the first 
layer FCN, we  define the node degree of a GM subregion to 
be consistent with the node degree of its corresponding MRSN. The 
node degrees for both the adjacency matrix and incidence matrix can 
be calculated according to the Equation (4):

 

D i A

D i H

ijj j i
N

hyper ijej

� � �
� � �

�
�
�

��

� �

�

�
�
1,

�  

(4)

Subsequently, we selected the top 15 nodes based on normalized 
node degree to form the core nodes constituting the rich-club 

organization, while considering the remaining nodes as peripheral 
nodes. The motivation behind selecting the top 15 nodes is derived 
from the pre-defined set of 15 MRSNs. The node degree normalization 
methods can be obtained as follows:

 
D i

D i
D i

norm

l

l� � � � � �
� � �max  

(5)

Where D il � �  is the node degree of node vi  in layer l  of the 
multilayer FCNs, D il

max � � represents the theoretical maximum node 
degree of node vi in layer l . It is important to note that the second layer 
FCN represents FC between subregions of each GM MRSN, and the 

FIGURE 2

Flowchart for the construction of whole-brain spatio-temporal multilayer FCNs. (A) The spatial multilayer FCNs comprehensively describes the 
interactions between GM functional brain networks, the interactions within GM functional brain networks, and the WM-GM functional associations 
from a whole-brain perspective. (B) The temporal multilayer FCNs, based on the sliding time window method, describes the temporal dynamic 
characteristics of the spatial multilayer FCNs by partitioning the time series into different segments.
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number of subregions differs among distinct MRSNs. Consequently, 
there will be variations in D il

max � � for the 90 GM nodes. For example, 
for a GM node belonging to the AN (containing 3 GM nodes), the 
Dmax for the first layer is 13, for the second layer is 2, and for the third 
layer is 48. Additionally, since the 48 WM nodes are only applied in 
the third layer FCN, � � �D il

max =90 in this work.

2.4 Rich-club metrics

The dynamic variations of rich-club organization represent a 
significant characteristic of functional interactions and information 
transfer among brain regions. Parameterized representation of the 
dynamic change of core brain regions allows for quantitative 
assessment of their importance and functional interaction tendency 
in brain activities. To describe the dynamic changes of the rich-club 
organization of spatio-temporal multilayer FCNs from both temporal 
and spatial perspectives, we innovatively introduced four distinctive 
rich-club metrics, namely temporal centrality, temporal stability, local 
functionality, and joint functionality. The specific definitions of these 
four metrics are as follows:

2.4.1 Temporal centrality
The temporal dynamic characteristics of the rich-club 

organization result in the possibility of temporal fluctuations in the 
identity of each brain node, meaning that the identity of node may 
continuously shifts between core node and peripheral node over the 
entire time period. As a result, certain nodes may assume the core 
node status for only a limited duration during the entire time 
period. To evaluate the significance of node across the entire time 
period, we have defined the temporal centrality as a metric, and it 
is defined as follows:

 
TC

T
R ti it

T� � ���1
1  

(6)

Where T  represents the number of time layers of the entire 
sequential multilayer network. R ti � � represents the core 
node membership of node vi  at time layer t . If, at temporal layer t , 
node vi  belongs to the core nodes, then R ti � �=1; otherwise,  
R ti � �=0.

2.4.2 Temporal stability
Temporal centrality provides a measure of a node’s importance in 

whole-brain FCNs across a global time scale. However, different nodes 
may exhibit distinct temporal distributions as core nodes. Some nodes 
might maintain their core attributes over an extended period, while 
others may undergo frequent shifts in their status. Thus, we introduce 
the concept of temporal stability, a metric designed to gauge the 
frequency of transitions between core and peripheral node identities 
over time. This aims to characterize the stability of the rich-club 
organization over temporal scales. The mathematical definition of 
temporal stability is as follows:

 
TS

T
R t R ti i it

T� �
�

� � �� ��� ����1
1

1
1

1
� ,

 
(7)

Where δ  represents the node identity consistency function, where 
� R t R ti i� � �� ��� ��, 1 =1 when the identity of node vi  is consistent 
between time layer t  and t +1; otherwise, � R t R ti i� � �� ��� ��, 1 =0.

2.4.3 Local functionality
Based on the definition of rich-club organization, the core nodes 

are evidently interconnected with numerous peripheral nodes in the 
network. These peripheral nodes can leverage shared core nodes to 
enhance information transmission and functional interaction between 
nodes. Under these conditions, there is likely to be  functional 
similarity or correlation between these brain nodes, and the subregion 
nodes within each of the 15 MRSNs partitioned based on the a priori 
anatomical template exhibit functional consistency. To measure the 
functional interaction and communication capacity among brain 
nodes within different MRSNs, we have defined a metric called local 
functionality. This metric aims to reflect the functional consistency 
among nodes within the same MRSN. The mathematical definition of 
local functionality is as follows:

 

P
T n
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(8)

Where nR=15 is the number of core nodes, βijt  denotes the 
number of core nodes to which both peripheral nodes vi  and v j are 
concurrently connected at time layer t , nS  represents the number of 
nodes in the functional network S (i.e., MRSN), LFi means the 
frequency with which node vi  shares core nodes with other nodes 
belonging to the same functional network S.

2.4.4 Joint functionality
Local functionality exclusively quantifies a node’s communication 

capability with other nodes within its corresponding MRSN. However, 
certain nodes might exhibit strong interactions with nodes in other 
MRSN regions. These nodes typically serve as bridge for functional 
interactions or information transmission between distinct functional 
networks. Therefore, we  propose joint functionality as a rich-club 
metric. This metric aims to assess the communication capacity among 
nodes in different functional networks and reflect the level of functional 
interaction between distinct functional networks. The mathematical 
definition of joint functionality can be obtained as follows:

 
JF

N n
Pi

S
ijj S�

� ��1

 
(9)

Where JFi is the frequency that node vi, belonging to functional 
network S, shares core nodes with nodes from other 
functional networks.

2.5 Statistical analysis

Four rich-club metrics were employed in three difference analysis 
tasks: gender differences analysis, analysis of abnormalities in patients 
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with ASD, and individual differences analysis. Individual differences 
refer to significant distinctions between individual subjects within a 
group, allowing for the identification of specific individuals based on 
individual differences. Gender differences denote characteristic 
distinctions between two groups, male and female. Abnormalities in 
patients with ASD signify feature differences between ASD group and 
TDC group.

Independent sample t-tests were employed for the analysis of 
male–female gender differences and analysis of abnormality in 
patients with ASD. For the gender difference feature analysis of fMRI 
data, a total of 160 subjects were included, with 80 males and 80 
females. For the analysis of abnormality in patients with ASD there 
were 173 participants, including 87 ASD patients and 86 TDC. The 
degrees of freedom for independent sample t-tests in both experiments 
were 158 and 171, respectively. All multi-tests were corrected by false 
discovery rate (FDR).

ICC were employed to assess the test–retest reliability of rich-club 
metrics for each ROI in the rs-fMRI data collected from two-scans on 
different days (160 REST1 data and 160 REST2 data). If a specific ROI 
exhibits high test–retest reliability of rich-club metrics for the same 
subject, this would be evidencing the presence of individual differences 
between participants across the two scanning sessions. The 
mathematical definition of ICC is as follows:
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Where σ r
2 is the variance of the parameter among individuals, σw

2  
is the variance between the two-scan data for an individual, n denotes 
the number of data values per group. Considering previous research 
and the weaker nature of WM signals (Koo and Li, 2016), we employed 
different ICC criteria for GM and WM regions: for a GM region, if 
ICC is greater than 0.6, it is considered to reflect individual differences; 
for WM regions, an ICC greater than 0.5 is considered to reflect 
individual differences. For all brain regions, if the ICC is greater than 
0.8, it is considered that the region significantly reflects 
individual differences.

3 Results

This work primarily utilizes whole-brain multilayer FCNs and 
four rich-club metrics to analyze significant differences among 
different groups. Specifically, we initially employed neural networks 
to preliminarily validate the effectiveness of the proposed whole-brain 
multilayer FCNs in extracting structural features. Subsequently, 
we conducted male–female gender differences analysis, analysis of 
abnormality in patients with ASD and individual differences analysis 
for the four rich-club metrics at both whole-brain scale and MRSN 
scale. Simultaneously, in the analysis of individual differences, 
we further investigated the topological characteristics of the WM at 
the ROIs scale.

The whole-brain scale rich-club metrics were obtained by 
averaging the corresponding metric values across all ROIs. In contrast, 
the MRSN scale rich-club metrics were obtained by averaging the 
rich-club metric values of ROIs within the corresponding sub-regions. 
It is important to note that since temporal centrality directly evaluate 

the relative importance of each ROI within the whole-brain, the values 
of temporal centrality for all ROIs are always equal to 1 for each 
subject. Therefore, in all experiments, we did not conduct an analysis 
of temporal centrality at the whole-brain scale.

3.1 The effectiveness of multilayer FCNs in 
spatial feature extraction

In previous studies, the sliding time window method has been 
widely employed to investigate the temporal dynamics of brain 
networks. To assess the efficacy of the proposed FCNs structure 
in spatial feature extraction, we employed the ConvLSTM model 
for preliminary validation. ConvLSTM, a classic neural network 
model combining conventional neural network (CNN) and 
recurrent neural network (RNN) (Shi et al., 2015), is proficient in 
handling sequential image data, aligning well with our proposed 
model. Specifically, we  designed a ConvLSTM model with a 
multimodal CNN for the spatio-temporal multilayer FCNs. Given 
the disparate shapes of multilayer FCNs, distinct CNN 
architectures were devised for each layer to learn low-dimensional 
embeddings of structural features from FCNs with different 
shapes. Subsequently, mirroring the third layer of multilayer 
FCNs, we employed a similar approach to construct a traditional 
single-layer FCN (comprising 90 GM ROIs and 48 WM ROIs) as 
a control. Finally, with respect to the dataset comprised of two 
distinct methods for constructing FCN, we inputted them into the 
ConvLSTM model and conducted three classification 
experiments.: individual identification, gender classification, and 
ASD patient classification. It is noteworthy that the ConvLSTM 
model applied to the traditional single-layer FCN utilizes a single-
modal CNN, consistent with the CNN model employed in the 
third layer of the multi-modal CNN.

Figure 3 illustrates the performance of the two FCN architectures 
across various classification tasks. The results indicate that multilayer 
FCNs consistently exhibit higher classification accuracy in all tasks.

3.2 Prominent rich-club metrics in the 
whole brain

Temporal centrality and temporal stability define core brain nodes 
across the entire time dimension from two perspectives: the frequency 
of being core nodes and the duration of maintaining core status. On 
the other hand, local functionality and integrated functionality define 
core nodes as bridges for functional interactions, characterizing the 
inclination of whole-brain nodes to engage in functional interactions. 
Brain nodes with higher rich-club metrics values exhibit 
representativeness in their corresponding feature space. In this work, 
we calculated the average values of these four rich-club metrics for all 
typically developing subjects (excluding ASD patients) and ranked 
them separately.

Tables 2 and 3 display highlighted ROIs information for time-
related and function-related rich-club metrics, respectively. The study 
results indicate that 7 ROIs simultaneously exhibit high temporal 
centrality and stability, while 5 ROIs simultaneously demonstrate high 
local functionality and joint functionality. Among these regions, 3 
ROIs consistently show high values across all rich-club metrics. These 
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TABLE 2 Top 10 ROIs ranked by time-related rich-club metric.

Rich-club metric Index Value Label

Temporal centrality

91 0.6341 Middle cerebellar peduncle

94 0.6153 Body of corpus callosum

124 0.5358 Sagittal stratum L

75* 0.5136 Left Precuneus

3* 0.5068
Anterior Cingulate Cortex, Medial Prefrontal 

Cortex, Supplementary Motor Area

1* 0.4284 Left Middle Frontal Gyrus

81 0.3773 Left Inferior Parietal Sulcus

62 0.3659 Left Crus I, Crus II, Lobule VI

45 0.3386
Right Supramarginal Gyrus, Inferior Parietal 

Gyrus

4 0.3221 Right Middle Frontal Gyrus

Temporal stability

1* 0.3 Left Middle Frontal Gyrus

3* 0.2903
Anterior Cingulate Cortex, Medial Prefrontal 

Cortex, Supplementary Motor Area

4 0.2858 Right Middle Frontal Gyrus

75* 0.2773 Left Precuneus

85 0.2631 Right Inferior Parietal Lobule

62 0.2608 Left Crus I, Crus II, Lobule VI

81 0.2539 Left Inferior Parietal Sulcus

16 0.2534
Medial Prefrontal Cortex, Anterior Cingulate 

Cortex, Orbitofrontal Cortex

93 0.2426 Genu of corpus callosum

95 0.2409 Splenium of corpus callosum

Bold font indicates consistently high values in time-related rich-club metrics, and *denotes consistently high values across all rich-club metrics.

findings suggest a higher consistency in temporal centrality and 
stability, a point that is further validated in subsequent experiments. 
Additionally, we explored the correlation between time-related and 
function-related rich-club metrics. Among the 7 ROIs with high 

time-related rich-club metrics, 6 demonstrate high local functionality, 
with 4 exhibiting high joint functionality. This suggests a higher 
consistency between local functionality and time-related rich-
club metrics.

FIGURE 3

The accuracy of classification tests was assessed using the ConvLSTM model on both the traditional single-layer FCN and spatio-temporal multilayer 
FCNs. The results indicate that spatio-temporal multilayer FCNs achieved higher accuracy in all classification tasks.
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3.3 Male–female gender differences

The independent samples t-test method was employed for 
investigating gender differences. Specifically, we evaluated whether 
there were significant differences (p  < 0.05) in rich-club metrics 
between male and female groups, aiming to determine whether the 
corresponding features could reflect group differences. Figure  4 
displays the results of gender differential analysis at the whole-brain 
scale for temporal stability, local functionality, and joint functionality.

At the MRSN scale, gender differences in various functional brain 
regions are illustrated in Figure 5, while Figure 6 depicts the changes in 
male group-level average results of the proposed rich-club metrics 
compared to the female group. Specifically, significant differences were 
observed between the male and female groups in temporal centrality for 
ASN (M/F: 0.2476/0.2228) and AN (M/F: 0.2372/0.1739), with both 
showing higher values in males compared to females. Significant 
differences in temporal stability were found for AN (M/F: 0.2211/0.1881) 
and DDMN (M/F: 0.1035/0.1164), with males exhibiting significantly 
higher temporal stability in AN, while females showed significantly 
higher temporal stability in DDMN. Additionally, significant differences 
were observed in local functionality for ASN (M/F: 0.3826/0.3427), AN 

(M/F: 0.1765/0.1580), PN (M/F: 0.3271/0.3066), and VSN (M/F: 
0.3684/0.3313), all of which were significantly higher in males compared 
to females. Similarly, significant differences were found in joint 
functionality for ASN (M/F: 0.2822/0.2575), AN (M/F: 0.2418/0.2166), 
LN (M/F: 0.2481/0.2303), and VSN (M/F: 0.2633/0.2424), all of which 
were significantly higher in males compared to females. Please refer to 
Supplementary Table S2 for the group-level average results of male and 
female groups for all MRSNs.

3.4 Abnormality in patients with ASD

For the analysis of abnormality in patients with ASD, a method 
similar to the gender differences analysis was employed. Specifically, 
we assessed whether there were significant differences (p < 0.05) in the 
rich-club metrics between the ASD patient group and the TDC group 
to determine whether the corresponding features could reflect the 
abnormalities in ASD patients.

At the whole-brain scale, temporal stability, local functionality, 
and joint functionality were not significantly different between the two 
groups of ASD patients and TDC.

TABLE 3 Top 10 ROIs ranked by function-related rich-club metric.

Rich-club metric Index Value Label

Local functionality

3* 0.3217
Anterior Cingulate Cortex, Medial Prefrontal 

Cortex, Supplementary Motor Area

1* 0.3062 Left Middle Frontal Gyrus

4 0.2865 Right Middle Frontal Gyrus

58 0.2849
Right Middle Frontal Gyrus, Right Superior 

Frontal Gyrus

2 0.2621 Left Insula

81 0.2581 Left Inferior Parietal Sulcus

60 0.2563
Right Inferior Parietal Gyrus, Supramarginal 

Gyrus, Angular Gyrus

85 0.2535 Left Crus I, Crus II, Lobule VI

75* 0.2525 Left Precuneus

5 0.3221 Right Insula

Joint functionality

3* 0.2252
Anterior Cingulate Cortex, Medial Prefrontal 

Cortex, Supplementary Motor Area

75* 0.2175 Left Precuneus

58 0.2136
Right Middle Frontal Gyrus, Right Superior 

Frontal Gyrus

1* 0.2093 Left Middle Frontal Gyrus

53 0.2089 Right Precuneus

34 0.1963
Left Middle Frontal Gyrus, Superior Frontal 

Gyrus

64 0.1957 Left Precentral Gyrus, Postcentral Gyrus

81 0.1945 Left Inferior Parietal Sulcus

16 0.1937
Medial Prefrontal Cortex, Anterior Cingulate 

Cortex, Orbitofrontal Cortex

94 0.1936 Body of corpus callosum

Bold font indicates consistently high values in function-related rich-club metrics, and *denotes consistently high values across all rich-club metrics.
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FIGURE 4

Gender differences in rich-club metrics at the whole-brain scale. The independent samples t-test results reveal significant differences between male 
and female groups in terms of local functionality and joint functionality at the whole-brain level.

At the MRSN scale, we  found that there were significant 
differences in temporal centrality for BGN and VDMN between the 
two groups. The t-test results for temporal centrality and local 
functionality between the ASD patients and the TDC group are shown 
in Figure 7. The abnormal changes in temporal centrality and local 
functionality in GM-related MRSNs in ASD patients compared to the 
TDC group are illustrated in Figure 8. Specifically, temporal centrality 
in BGN (A/T: 0.1535/0.1330) was significantly higher in the ASD 
patients compared to the control group, while temporal centrality in 

VDMN (A/T: 0.1356/0.1518) was significantly higher in the TDC 
group compared to the ASD patients. Moreover, significant differences 
in  local functionality were observed between VDMN (A/T: 
0.1607/0.1848) and VSN (A/T: 0.1299/0.1532) in the two groups, with 
the TDC group exhibiting significantly higher local functionality than 
the ASD patients. However, there were no significant differences in 
temporal stability and joint functionality at the MRSN scale between 
the two groups. Please refer to Supplementary Table S3 for the group-
level average results of ASD and TDC groups for all MRSNs.

FIGURE 5

Gender differences in the four rich-club metrics at the MRSN scale. The results of independent samples t-tests indicate significant differences between 
male and female groups in all rich-club metrics at the MRSN scale. Specifically, significant differences manifest in (A) the temporal centrality of ASN 
and AN; (B) the temporal stability of AN and DDMN; (C) the local functionality of ASN, AN, PN, and VSN; and (D) the joint functionality of ASN, AN, LN, 
and VSN.
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3.5 Individual differences

At the whole-brain level, the ICC values for all rich-club metrics 
were lower than the corresponding benchmarks, with temporal 
centrality and stability ICCs significantly higher than local 
functionality and joint functionality.

At the MRSN level, the ICC of temporal centrality and stability 
for AN, BGN, LN, LECN, PVN, SMN, and WM were higher than 
the corresponding benchmarks, with AN, BGN and PVN identified 
as significantly individual difference regions (Figure 9A). For rich-
club metrics related to functional interaction, only PVN exhibited 
ICC values higher than the benchmarks in  local functionality 
(Figure  9B). While the WM regions did not exhibit results 
surpassing the benchmarks for local functionality and joint 
functionality at the MRSN scale, the right hippocampus (LF/JF: 
0.6269/0.5749) and left hippocampus (LF/JF: 0.6650/0.5894) within 
the Cingulum demonstrated ICC exceeding the specified 
benchmarks in these two rich-club metrics. Table  4 provides a 
detailed presentation of all MRSN information that exceeds the 
respective benchmarks. Additionally, individual difference analysis 
was applied in the validation experiment of methods robustness. 
The results indicate a high consistency between the individual 
differences analysis based on XTRACT WM atlases and those based 
on JHU DTI-based WM atlases. For ICC results using the XTRACT 
WM atlas and discussions on robustness validation, please refer to 
Supplementary Figure S3.

4 Discussion

In previous studies, the analysis of brain FCNs and rich-club 
organization has predominantly focused on the examination of static 
single-layer networks. However, traditional static single-layer FCN fail 

to capture the spatio-temporal dynamic changes in the rich-club 
organization of the brain network. To overcome these limitations, 
we propose a novel approach to construct whole-brain spatio-temporal 
multilayer FCNs. Additionally, we introduce four rich-club metrics to 
characterize the spatio-temporal variations in the rich-club structure of 
this multilayer FCNs: temporal centrality, temporal stability, local 
functionality, and joint functionality. Temporal centrality and stability 
are defined to identify core brain nodes over the entire temporal 
duration, respectively considering time frequency and duration as 
essential criteria for core node designation. Local functionality and joint 
functionality regard core nodes as central hubs for functional interactions 
within brain network regions, quantifying the propensity of internal and 
external functional interactions in the brain functional network.

In this work, to validate the effectiveness and interpretability 
of the proposed multilayer FCNs and rich-club metrics, 
we preliminary employed the ConvLSTM model to demonstrate 
the efficacy of the proposed multilayer FCNs in extracting brain 
network structural features. Subsequently, we applied the proposed 
methods to three independent analytical tasks: individual 
differences analysis, male–female gender differences analysis, and 
analysis of abnormality in patients with ASD. The results indicate 
that the proposed spatio-temporal multilayer FCNs and four rich-
club metrics demonstrate statistical significance and interpretability 
in the neuroscience.

In the analysis of male–female gender differences, the four rich-
club metrics of exhibit diverse differences across different MRSNs, 
revealing some valuable findings. Gender differences in AN, as 
previously established in research (Don et al., 1993), were confirmed 
in our study. Specifically, all four rich-club metrics of AN displayed 
significant differences, with the male group exhibiting higher average 
values than the female group. Higher values of temporal centrality and 
temporal stability indicate a more stable rich-club structure, which 
could potentially explain why females tend to be more sensitive than 

FIGURE 6

The distribution of differences in group-level average rich-club metrics between the male and female groups. Colored boxes: Indicate MRSNs with 
significant differences; P: p-value of independent samples t-test; value: Difference between Male and Female. (A) Temporal centrality; (B) Temporal 
stability; (C) Local functionality; (D) Joint functionality.
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males in emotion recognition from voices (Mao et al., 2017). The 
temporal centrality, local functionality, and joint functionality of the 
ASN also exhibited significant differences, with the male group 
displaying significantly higher values compared to the female group. 
This suggests a stronger intra-network and inter-network FC within 
the ASN in the male group. In line with this, previous research has 
demonstrated that males exhibit stronger FC within the salience 
network (Filippi et al., 2013). Additionally, Zilles and colleagues found 
that males exhibit stronger activation of visual spatial working 
memory during tasks (Zilles et al., 2016). In our study, both the local 
functionality and joint functionality of the VSN exhibited significantly 
higher values in males compared to females. The stronger functional 
interaction capability of the VSN in males may reflect their advantage 
in visual spatial working memory ability.

The temporal centrality and local functionality of the multi-layer 
FCN revealed distinctive features in certain MRSNs among ASD 
patients. Specifically, significant differences between ASD patients and 
the TDC group were observed in the temporal centrality and local 
functionality of the VDMN, with lower mean values observed in ASD 

patients. As defined previously, lower values of temporal centrality and 
local functionality indicate lower FC density and decreased frequency 
of internal functional interactions within the network. Previous study 
has reported a significant reduction in FC within the DMN in ASD 
patient (Floris et al., 2016), and our findings support this conclusion. 
The DMN is a critical network involved in cognitive and memory 
functions, and our findings may contribute to understanding the 
impaired social and communication abilities in ASD patients. It is 
noteworthy that the temporal centrality of the BGN exhibited 
significant differences, with ASD patients showing higher average 
values compared to TDC. Clinical symptoms of ASD include 
behavioral features such as repetitive and restrictive behaviors 
(Fakhoury, 2015), with the BGN considered to play a crucial 
regulatory role in action selection (Chakravarthy et  al., 2010; 
Calderoni et al., 2014). A previous study suggested that activation of 
the basal ganglia in ASD patients leads to increased synchrony 
between cortical areas, indicating a weakened ability of the basal 
ganglia to filter brain signals (Prat et al., 2016). The increased anomaly 
in temporal centrality within the BGN suggests that its internal nodes 

FIGURE 7

Rich-club metrics exhibit significant differences at the MRSN scale between the ASD and TDC groups. Specifically, significant differences manifest in 
(A) the temporal centrality of the BGN and VDMN; and (B) the local functionality of the VDMN and VSN.
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maintain denser FC over time, indicating that the BGN processes 
functional interaction information indiscriminately. This inability to 
prioritize and filter important functional interaction information may 
contribute to impaired behavioral selection abilities in ASD patients.

The temporal centrality and stability of the multilayer network 
effectively capture individual differences, introducing new insights into 
the study of individual differences in functional networks from WM 
perspective. Based on the ICC results, the high consistency of temporal 
centrality and stability suggests robust test–retest reliability of the 
topological temporal characteristics of specific functional networks 
across different individuals. Previous studies reported individual 
differences in the activation levels of the left and right superior temporal 
gyrus, belonging to the AN, during tasks related to hearing and reading 
comprehension (Yeatman et al., 2010). The results indicate that such 
individual differences may not only be present during task-related brain 
activation but also the resting state. The results also present that the 
temporal centrality and stability of the BGN and the PVN significantly 
reflect individual differences. The functional activation of BGN has been 
linked to individual motor proficiency (Tomassini et al., 2011), and 
PVN plays a crucial role in forming individual differences in cognition 

and behavior (Kanai and Rees, 2011). Our findings corroborate these 
studies from the perspective of rich-club organization. It is noteworthy 
that the topological temporal characteristics of WM may reflect 
individual differences, possibly due to WM providing essential 
anatomical connectivity for normal cognitive functioning, leading to 
systematic associations between individual differences in WM and 
different functional networks.

Interestingly, the WM subregion hippocampus reflects individual 
differences in both function-related rich-club metrics. Probably the 
most well recognized function of the hippocampus is its role in memory 
and learning, and damage to both hippocampi can result in retrograde 
amnesia, an inability to form and retain memories of past events. The 
individual differences of hippocampus may provide new insights into 
the biological mechanisms of neurocognitive disorders such as AD and 
retrograde amnesia, as well as contribute to individual clinical diagnoses.

In summary, this work has introduced a method for constructing 
whole-brain multilayer FCNs and defined four rich-club metrics. 
These approaches enable the exploration of whole-brain FCNs 
topological characteristics from both temporal and spatial 
perspectives, demonstrating exceptional performance in various tasks 

FIGURE 8

The distribution of differences in group-level average of the temporal centrality and local functionality between the ASD and TDC groups. Colored 
boxes: Indicate MRSNs with significant differences; P: p-value of independent samples t-test; Value: Difference between ASD and TDC. (A) Temporal 
centrality; (B) Local functionality.
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related to significant difference recognition. In the analysis of gender 
differences and anomalies in ASD patients, some MRSNs exhibit 
significant inter-group differences in temporal centrality and local 
functionality. These findings align with previous neuroscience research 
on cognition and behavior. Additionally, in the analysis of individual 
differences, the results suggest that the topological characteristics of 

the WM region may exhibit individual variability, and the proposed 
FCNs model and rich-club metrics demonstrate robustness across 
different WM templates. In summary, the proposed method may 
provide an effective approach for studying WM-related brain networks.

Finally, it is imperative to acknowledge certain limitations within 
this study. The method utilized for defining core nodes involved 

FIGURE 9

The ICC of rich-club metrics at MRSN scale. (A) The ICC of temporal centrality and stability at MRSN scale. (B) The ICC of local functionality and joint 
functionality at the MRSN scale.

TABLE 4 ICC analysis results of MRSNs.

Index Rich-club metric Label

Temporal centrality Temporal stability Local functionality

2 0.8360 0.8334 – Auditory

3 0.8117 0.8114 – Basal Ganglia

6 0.6326 0.6269 – Language

7 0.6597 0.6561 – LECN

10 0.9345 0.9375 0.6340 Prim Visual

12 0.6563 0.6519 – Sensorimotor

15 0.5278 0.5273 – WM

LECN, left executive control network; WM, white matter.
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selecting the top 15 nodes based on normalized degree within each 
network layer. However, this approach does not consider the inter-layer 
coupling existing between diverse FCN layers. To fully exploit the rich 
information embedded in multilayer FCNs, a more optimal method for 
defining core nodes will be pursued in our future work. The pathological 
feature of WM abnormalities in ASD patients has been extensively 
validated (McGrath et al., 2013; Zhou et al., 2014), yet our study did not 
exhibit significant differences in this regard. One possible reason is that 
the architecture of the multi-layer FCN focuses more on functional 
interactions between WM and GM, neglecting internal functional 
connections within the WM. This oversight may result in a lack of 
information regarding white matter functional interactions. We aim to 
address this limitation in future research endeavors. Additionally, the 
robustness of the proposed method to functional parcellations of the 
GM template is difficult to verify. This is due to the requirement for 
predefined correspondences between “functional networks-subregions” 
in the gray matter template to describe the functional interactions 
between and within networks in the first and second layers of the 
multilayer network. However, publicly available GM templates meeting 
these criteria are limited. Therefore, a potential direction for model 
development to address the limitations of predefined GM templates 
could be functional brain region segmentation based on data.

5 Conclusion

This study proposed a novel method for constructing whole-brain 
spatio-temporal multilayer FCNs and further incorporates four rich-
club metrics to analyze the dynamic topological characteristics of brain 
networks. By integrating graph theory, hypergraph theory, and the 
sliding time window method, the proposed method effectively captures 
both low-order and high-order associations among functional brain 
regions and their temporal dynamics. The experimental results align 
with previous research while revealing innovative findings. For 
instance, WM demonstrates the capacity to reflect individual 
differences, and the observed rigidity in the topological structure of the 
BGN potentially explains repetitive or restrictive behaviors in patients 
with ASD. The research findings indicate that the proposed method 
offers a novel perspective for the construction of whole-brain FCNs 
and the interpretability of their topological structures, contributing to 
more reliable biomarkers in the study of brain network differences.
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