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Motor evoked potentials (MEPs) are an important measure in transcranial magnetic 
stimulation (TMS) when assessing neuronal excitability in clinical diagnostics related 
to motor function, as well as in neuroscience research. However, manual feature 
extraction from large datasets can be time-consuming and prone to human error, 
and valuable features, such as MEP polyphasia and duration, are often neglected. 
Several packages have been developed to simplify the process; however, they 
are often tailored to specific studies or are not accessible. Here, we introduce 
MEPFeatX, a verified MATLAB package designed for automated and comprehensive 
MEP feature extraction across a wide range of stimulation paradigms. MEPFeatX 
is designed and documented for easy integration into any MEP analysis pipeline. 
Primed templates for specific paradigms, as well as additional analysis coded in R 
language, are also provided. Thus, MEPFeatX provides its users with a comprehensive 
and accurate set of MEP features, along with their visuals, facilitating quick and 
reliable MEP analysis in TMS studies.
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1 Introduction

Motor evoked potentials (MEPs) are crucial in transcranial magnetic stimulation (TMS) 
studies. MEPs induced by TMS were first introduced by Barker et al. in 1985, when magnetic 
pulses were applied to a participant’s motor cortex and induced a muscle contraction in the 
participant’s hand. This demonstrated that MEPs can be used as a non-invasive assessment of 
corticospinal excitability (Barker et al., 1985; Rossini et al., 2015). Enabled by technological 
advancements in TMS, MEPs have been studied across various stimulation paradigms, either 
strengthening or challenging previous hypotheses and exploring novel mechanisms in many 
areas of neuroscience (Rossini et al., 2015; Siebner et al., 2022).

Each MEP feature provides unique insights into the underlying neurophysiological 
mechanisms (Rossini et al., 2015; Siebner et al., 2022). Peak-to-peak amplitude (Amp) and 
onset latency (Lat) are the two most commonly used MEP features. Amp represents the size 
of the MEP; a higher Amp indicates higher cortical excitation, as demonstrated by increasing 
stimulation intensity or navigating closer to the representative area of the targeted muscle at 
the primary motor cortex (Pellegrini et al., 2018). Lat and the time point of the first major peak 
(T1T) are both timing features of MEPs, but they reflect different neuronal mechanisms. Lat 
is the duration required for an activation potential to travel from the stimulated area to the 
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distal muscle. Therefore, it has been utilized in studying central motor 
conduction mechanisms (Rusu et al., 2014). The T1T, or peak latency, 
is the time point at which Amp is the highest. It is almost consistent 
despite changes in SI and might reflect the precision of timed motor 
performance (Nguyen et al., 2023).

Less commonly studied features, such as MEP polyphasia and 
duration (Dur), offer valuable information about the corticospinal 
tract’s status. MEP polyphasia is characterized by the number of turns 
and phases (NT and NP, respectively) present in its waveforms. High 
MEP polyphasia indicates a hyper-excitable motor neuron system in 
multiple sclerosis (Perretti et al., 2004; Neva et al., 2016; Snow et al., 
2019). Abnormal Dur has been detected in several movement 
disorders and motor neuron diseases, such as prolonged Dur in 
multiple sclerosis (Snow et al., 2019; Šoda et al., 2023) and shortened 
Dur in acute stroke (Brum et al., 2016). In addition to these intrinsic 
features, combined features can be  derived from these original 
features, such as the area under the curve (AUC) and thickness, 
defined as the ratio of AUC to Amp (Sollmann et al., 2021).

Despite the development of several toolboxes for MEP feature 
extraction, many are tailored to specific studies, such as recruitment 
curve analysis or online feature extraction, and often provide incomplete 
sets of MEP features. To address these limitations, this study introduces 
MEPFeatX, a robust package designed to automatically extract and 
visualize MEP features, covering essential information about MEP size, 
critical time points, and other morphological characteristics, including 
duration and polyphasia. Figure 1 illustrates an example of an MEP with 
its features extracted and visualized using MEPFeatX. This package was 
validated with MEPs recorded across various stimulation paradigms 

and is available at the following GitHub repository: https://github.com/
NeuromodulationUEF/MEPFeatX. By clearly outlining the significance 
of MEP features and their applications, we  aim to enhance users’ 
understanding of their practical utility in diverse contexts, thereby 
reinforcing the contribution of our work to the field of TMS research.

2 Existing tools for MEP feature 
extraction

The usual data pipeline in MEP studies includes data acquisition, 
preprocessing of raw electromyography (EMG) recordings, feature 
extraction from preprocessed MEPs, data analysis and visualization, 
and reporting. Data acquisition outputs the recorded EMG data and 
metadata of the experiment. Extracting the data from these formats 
requires a tailored process, depending on the devices/software used. 
Preprocessing includes filtering, artifact removal, and segmentation 
of data into trials. Next, features of interest are extracted from each 
trial, analyzed using appropriate statistical methods, and visualized to 
facilitate the interpretation of the results. Reports are generated  
afterward.

Several toolboxes have been developed over the years for various 
steps in this data pipeline, such as MAVIN, CortExTool, Motometrics, 
VETA, and MEP-ART. A summary of these toolboxes is provided in 
Table 1.

MAVIN (Mullins and Hanlon, 2016) is an open-source tool for 
offline MEP visualization and analysis and can be utilized in studies 
involving basic/paired associative stimulation, as well as the cortical 

FIGURE 1

Visualization of an individual MEP with some of its features denoted. Amp, amplitude; Dur, duration; Lat, latency; P, phase; and T, turn. The two major 
peaks are denoted by T1 and T2, each providing a feature of timing and amplitude (T1T, T1A, T2T, and T2A). In addition to the number of turns (NT) and 
number of phases (NP), the area under the curve (AUC) is the sum of all phases’ area. Thickness is defined as a ratio of the AUC to Amp.
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silent period (CSP) and recruitment curves. Motometrics (Ratnadurai 
Giridharan et  al., 2019) focuses specifically on recruitment 
curve analysis.

VETA (Jackson and Greenhouse, 2019) provides real-time data 
acquisition and feature extraction. MEP-ART (Skelly et al., 2020), is a 
real-time feedback and MEP analysis tool used to investigate the 
reliability of recorded data. It is compatible with the Magstim 200 (and 
BiStim) system (Magstim Inc., Eden PrairieMN). VETA, on the other 
hand, focuses on detecting MEPs from EMG recordings and then 
analyzes and visualizes the detected MEPs. CortExTool (Harquel et al., 
2016) is a comprehensive MATLAB toolbox designed for MEP 
analysis. It includes features for EMG preprocessing, automatic MEP 
detection, the extraction of various MEP features, and the analysis of 
I/O curves and cortical silent periods.

MAVIN and Motometrics were inaccessible. In addition, we were 
unable to run MEP-ART, CortExTool, and VETA, primarily due to 
incompatible data formats.

3 Methods

3.1 Design

In comparison to the existing toolboxes mentioned in Section 
II, MEPFeatX focuses on feature extraction. In total, it outputs a set 
of 11 MEP features: Amp, Lat, T1T, Dur, AUC, NT, NP, amplitude 
of the first major turn (T1A), time point of the second major turn 
(T2T), amplitude of the second major turn (T2A), and thickness.

The first version of the package was developed to explore MEP 
patterns in single-pulse TMS performed at the cortical representation 
area for the hand and to estimate the minimum number of trials 

required to reliably represent the entire dataset using bootstrapped 
principal component regression (Nguyen et al., 2019). The current 
version of this package was further improved to offer greater flexibility, 
allowing it to work on MEPs in various conditions, such as across 
multiple age groups, muscles, and stimulation paradigms (Table 2) 
(Nguyen et  al., 2019, 2023). The use cases can be  found on the 
MEPFeatX Wiki, under the “Use cases” page.

In addition to feature extraction, the package also provides a 
workflow for feature extraction, particularly for MEPs, including a 
combination of metadata and features as a comprehensive table that 
can be utilized for exploratory data analysis, logs of the extraction 
process, and reliable evaluation of feature quality through plots. 
Documentation on MEPFeatX use cases was created to enhance the 
package’s usability and ensure the reproducibility of its functions in 
any MEP analysis pipeline (Romano and Moore, 2020). Furthermore, 
the user can select several stimulation paradigms, such as long-
interval intracortical inhibition (LICI), repetition suppression (RS) at 
1 Hz, and short-interval intracortical facilitation (SICF). After the 
feature table is created in MATLAB, the user can opt to use R 
notebooks for analyzing the table. Several R scripts are provided to 
analyze the exported feature table through descriptive analysis and/or 
causal analysis to identify the decisive factors in each study, such as 
stimulation protocols and subject demographics (Figure 2).

MEPFeatX offers a more streamlined approach focused solely on 
feature extraction compared to the existing toolboxes. It accepts 
MATLAB .mat files as input, eliminating data format mismatches. In 
addition, MEPFeatX is fully and freely available to the community, 
with version control for both code and documentation managed 
through Git. Updates and bug fixes for the package can be requested 
via GitHub or directly from the authors. Version control is 
implemented for the package scripts and analysis. MEPFeatX outputs 

TABLE 1 Existing toolboxes for MEP feature extraction.

Toolbox Features Additional functions Tested data Tested paradigms

MAVIN Amp

Lat

MEP visualization: EMG long train and MEP 

segments

41 healthy controls and 

substance-dependent 

individuals

Hand muscle

Single-pulse TMS

Paired-pulse TMS: interhemispheric inhibition/

facilitation

CSP measurement

Recruitment curve fitting

CortExTools Amp

Lat

Dur

Mean RMS

Signal preprocessing, artifact detection, MEP 

detection

CSP detection

Recruitment curve fitting

Motor mapping recreation

Healthy controls

Hand muscle

Baseline

Paired-pulse TMS

CSP measurement

Motor mapping

Simulated data

Motometrics Amp

AUC

RMS

Lat

Datafile annotation

Near real-time feedback during experimental 

procedures

Signal preprocessing

Recruitment curve analysis

No information No information

VETA Amp

Lat

AUC

Dur

Online data collection and visualization

Signal preprocessing, MEP detection

CSP detection

Four healthy participants

Hand muscle

Paired-pulse TMS: SICI

Stop task

Delayed response task

CSP measurement

MEP-ART Amp Real-time feedback during measurement

Recruitment curve fitting

No information Recruitment curve fitting

Paired-pulse TMS: SICI, ICF

Amp, Amplitude; AUC, area under the curve; CSP, cortical silent period; Dur, duration; EMG, electromyograph; ICF, intracortical facilitation; Lat, Latency; MEP, motor evoked potential; 
RMS, root mean squared; SICI, short interval intracortical inhibition; TMS, transcranial magnetic stimulation.
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are automatically organized into specified categories and saved to 
folders named by the date the analysis is performed.

MEPFeatX does not include a graphical user interface (GUI) as a GUI 
requires a specific version of the MATLAB runtime. Instead, the package 
workflow is programmed similarly to the R Markdown Notebook (Allaire 
et al., 2024) and Python Jupyter Notebook (Kluyver et al., 2016), with 
ample comments for easy integration into any analysis pipeline.

3.2 Package components

Given that MEPs are already segmented from the recorded EMG, the 
core functionality of MEPFeatX is the feature extraction algorithm, which 
simply follows the definition of each feature. First, it detects the two most 
prominent peaks (positive and negative) appearing in a signal segment 
from the TMS pulse delivery time to 150 ms afterward. Amp, T1T, T1A, 
and T2T are extracted from the timing and magnitude of these two peaks.

We used the standard deviation of the 50 ms segment prior to the 
delivery of the TMS pulse as the background activity. The MEP onset is 
the time point when the signal first exceeds the background activity within 
the time window from the pulse delivery time to the T1T. Lat is the time 
interval between the pulse delivery time and the MEP onset. The endpoint 
of the MEP is defined as the point when the signal returns to the level of 
the background activity. It is determined as the first sample of a 10 ms 
signal segment that is statistically similar to the background activity, 
meaning this 10 ms segment has a standard deviation comparable to that 
of the background activity. Dur is the time interval between the MEP onset 
and its endpoint. Next, the NT is counted as the significant peaks 
occurring during the MEP Dur, while the NP is counted by the zero-
crossing points between the MEP onset and endpoint. Combined features, 
such as AUC and thickness, are calculated afterward. The AUC is the area 
under the rectified signal during the Dur. Thickness is the ratio of the AUC 
to Amp. The visualization of MEPs and their features is shown in Figure 1.

3.3 Prerequisites

For the current version, the package runs on preprocessed MEP 
datasets stored in MAT files, and the input dataset must have rows as 
samples and columns as a stack of trials.

A ready-made configuration file contains control parameters for 
running MEPFeatX, such as specifying data directories, creating new 
folders for storing outputs, and defining the sampling frequency. All 
these parameters must be checked carefully for the extraction to run. 

Details on the data format and configuration file are provided in the 
MEPFeatX GitHub Wiki.

3.4 Workflow

A complete workflow is provided with the package to help the 
user create a new analysis (Figure 2). This workflow demonstrates 
feature extraction on all datasets or a single dataset stored in the data 
folder and saves the output to the analysis folder. Therefore, the user 
can access the data at different stages of the analysis, such as figures, 
features, or statistical analysis results.

Logs of the current analysis are also recorded and saved to the 
analysis folder. Errors, such as missed MEPs where the extraction 
failed, are reported in a table-format file for review. Details on the 
deployment of MEPFeatX are provided in the MEPFeatX GitHub Wiki.

4 Results

4.1 Package verification and validation

MEPFeatX functions were utilized in our previous studies 
(Nguyen et al., 2019, 2023). The two studies used single-pulse TMS in 
healthy participants across four age groups: children, preadolescents, 
adolescents, and adults. MEPs were recorded from upper extremity 
muscles, such as those in the forearm and hand.

MEPFeatX was validated using a comprehensive dataset of 
participants from several studies on MEP analysis, two of which have 
been published (Nguyen et al., 2019, 2023). In the 2019 study (Nguyen 
et al., 2019), the studied dataset contained data samples from nine healthy 
adult participants. Each sample included 120 MEPs at a stimulation 
intensity of 120% rMT. In the 2023 study (Nguyen et al., 2023), 38 healthy 
participants were categorized into four age groups: children, 
preadolescents, adolescents, and adults. A total of 70 stimuli were 
performed with the stimulation intensity (SI) randomly ranging from 
sub-threshold to supra-threshold. MEPs were recorded from the flexor 
carpi radialis (FCR), extensor carpi radialis (ECR), abductor digiti minimi 
(ADM), and first dorsal interosseous (FDI) muscles. Stimulation was 
performed on both hemispheres, and EMG was recorded from the 
contralateral muscles. The MEPFeatX output was manually verified in 
these studies. Thus, this demonstrated the capabilities of MEPFeatX in 
extracting MEP features across various age groups, muscle groups, and 
stimulation protocols.

TABLE 2 Metadata table for the sample datasets.

Sample Paradigm Protocol Target muscle Experimental design

1 Single-pulse TMS Single pulse Right FDI 152 single pulses at 120% rMT

2 Long-interval cortical inhibition Paired pulse Right TA 20 bursts, each containing two pulses at 120% rMT at a frequency of 0.1 Hz.

3 Repetition suppression rTMS Right TA 20 bursts, each containing four pulses at 120% rMT at a frequency of 1 Hz.

4,5,6 Short-interval intracortical 

facilitation

Paired pulse Right TA 20 bursts, each containing two pulses at 120% rMT. Three sequences were 

performed with inter-trial intervals of 1.4, 3.0, and 7.0 ms, respectively.

7 Coil orientation Single pulse Right FDI 120 single pulses at 120% rMT with the variation in the coil angle

8 Recruitment curve Single pulse Right ECR 70 single pulses at 90–150% rMT

9 Recruitment curve Single pulse Left ECR 70 single pulses at 90–150% rMT

rMT, resting motor threshold; TA, tibialis anterior; FDI, first dorsal interosseous; ECR, Extensor carpi radialis; rTMS, repetitive TMS.
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To verify the output of MEPFeatX in lower extremity muscles 
and other paradigms, we  extracted MEP features from 7,799 
MEPs recorded from the tibialis anterior (TA) muscle across six 
paradigms: single-pulse TMS, repetition suppression (RS) at 
1 Hz, long-interval intracortical inhibition (LICI) at 100 ms, and 
short-interval intracortical facilitation (SICF) with three inter-
pulse intervals of 1.4 ms, 3.0 ms, and 7.0 ms. Data were collected 
from 23 healthy controls. The studies involving human 
participants were reviewed and approved by the Research Ethics 
Committee of the Hospital District of Northern Savo. The 
participants provided written informed consent to participate in 
this study.

Bland–Altman analysis was used to compare the Amp extracted by 
MEPFeatX with the Amp extracted in real-time during the data acquisition 
(Figure 3). The Pearson correlation coefficient between the Amp extracted 
by the two algorithms was r = 0.998 (p < 0.0001), with a coefficient of 
reproducibility of 36 μV. The online-extracted latency was unreliable and 
was not compared.

It is recommended to validate the package’s functionality 
before its first use in a new system. The package includes outputs 
from anonymized sample datasets and the validation function. 
The features extracted from the sample datasets and their plots 
are used as a reference to validate the package’s output before the 
first use.

4.2 Sample datasets and analysis templates

The sample datasets and their analysis templates are provided to 
help users implement MEPFeatX in their own studies (Table 2). Each 
sample dataset contains raw responses and preprocessed MEPs, both 
of which have been segmented into 200 ms segments, from 50 ms 
prior to TMS administration to 150 ms after the pulse. The provided 
templates help users manipulate and visualize MEP features in specific 
paradigms. For a detailed explanation, refer to the MEPFeatX 
GitHub Wiki.

5 Discussion

This study aimed to enhance the analysis of MEPs by introducing 
the MEPFeatX package. Our findings indicate that MEPFeatX 
significantly improves the automatic and comprehensive feature 
extraction of MEPs across various stimulation paradigms.

When comparing MEPFeatX to existing tools, we  found that 
MAVIN and Motometrics were not accessible for our analysis. In 
addition, MEP-ART, CortExTool, and VETA could not be executed 
on our data due to input format mismatches. In contrast, MEPFeatX 
not only provides a user-friendly interface but also includes 
visualizations that reliably evaluate analyzed MEPs and their features. 

FIGURE 2

MEPFeatX workflow. The primary component of MEPFeatX is feature extraction, programmed in MATLAB, designed to extract features from MEP 
responses across various stimulation paradigms. Users can select from several paradigms, including long-interval intracortical inhibition (LICI), 
repetition suppression (RS) at 1 Hz, and short-interval intracortical facilitation (SICF). Once the feature table is generated in MATLAB, users can utilize R 
notebooks for further analysis, including descriptive statistics and linear mixed-effects modeling.
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Furthermore, the package offers workflows and templates for several 
use cases, which enhances reproducibility and integrity within MEP 
analysis pipelines. In addition, MEPFeatX is designed to efficiently 
handle datasets of varying sizes. The MATLAB codes are segmented 
into small functions that support parallel computing. This feature 
allows it to effectively run large datasets.

Despite these advantages, our study has limitations. The 
accessibility issues with other tools highlight the need for data 
pre-processing. Thus, it might not work with EMG signals that contain 
significant interference. Future research should focus on exploring the 
application of MEPFeatX across additional paradigms to further 
validate its effectiveness in diverse settings.

Although the output of MEPFeatX was visually observed by 
two experts in the field, we did not record any objective metrics. 
Thus, future development and validation of MEPFeatX should 
follow a structured procedure that includes human evaluation 
with proven metrics, such as the level of agreement 
among evaluators.

In conclusion, MEPFeatX emerges as a superior tool for MEP 
analysis, allowing researchers to focus on exploratory analysis and derive 
meaningful insights from exported features. We  encourage further 
investigations to expand its applicability and address existing limitations.
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FIGURE 3

A comparison of online-extracted amplitude and MEPFeatX-extracted amplitude using Bland–Altmann analysis. (A) A regression plot between the 
amplitude extracted by the online algorithm and MEPFeatX. (B) A plot of pair-wise differences of the amplitude extracted by the two methods. The 
amplitude extracted by MEPFeatX was lower than the online-extracted amplitude by 19 μV, and the bias became larger with higher amplitude. This bias 
was due to the effect of the low-passed filter during the preprocessing in MEPFeatX, which reduced high-frequency noises. RMSE, root mean squared 
error; IQR, inter-quartile range; RPCnp, non-parametric coefficient of reproducibility.
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