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Background: White matter hyperintensities (WMH) observed in T2 fluid-
attenuated inversion recovery (FLAIR) images have emerged as potential 
markers of neurodegenerative diseases like Multiple Sclerosis (MS). Lacking 
comprehensive automated WMH classification systems in current research, 
there is a need to develop accurate detection and classification methods for 
WMH that will benefit the diagnosis and monitoring of brain diseases.

Objective: Juxtacortical WMH (JCWMH) is a less explored subtype of WMH, 
primarily due to the hard definition of the cortex in FLAIR images, which is escalated 
by the presence of lesions to obtain appropriate gray matter (GM) masks.

Methods: In this study, we present a method to perform a specialized GM 
segmentation developed for the classification of WMH, especially JCWMH. Using 
T1 and FLAIR images, we propose a pipeline to integrate masks of white matter, 
cerebrospinal fluid, ventricles, and WMH to create a unique mask to refine the 
primary GM map. Subsequently, we utilize this pipeline to generate paired data 
for training a conditional generative adversarial network (cGAN) to substitute the 
pipeline and reduce the inputs to only FLAIR images. The classification of WMH is 
then based on the distances between WMH and ventricular and GM masks. Due to 
the lack of multi-class labeled WMH datasets and the need for extensive data for 
training deep learning models, we attempted to collect a large local dataset and 
manually segment and label some data for WMH and ventricles.

Results: In JCWMH classification, the proposed method exhibited a Dice similarity 
coefficient, precision, and sensitivity of 0.76, 0.69, and 0.84, respectively. With 
values of 0.66, 0.55, and 0.81, the proposed method clearly outperformed the 
approach commonly used in the literature, which uses extracted GM masks 
from registered T1 images on FLAIR.

Conclusion: After training, the method proves its efficiency by providing results in less 
than one second. In contrast, the usual approach would require at least two minutes 
for registration and segmentation alone. The proposed method is automated and 
fast and requires no initialization as it works exclusively with FLAIR images. Such 
innovative methods will undoubtedly facilitate accurate and meaningful analysis of 
WMH in clinical practice by reducing complexity and increasing efficiency.
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1 Introduction

White matter hyperintensities (WMH) or white matter signal 
abnormalities observed in MRI results have a significant impact on 
the diagnosis and monitoring of brain diseases (Fazekas et al., 1987). 
T2 fluid-attenuated inversion recovery (FLAIR) images offer the most 
effective visualization of WMH for clinical application (Wardlaw et al., 
2013). Consequently, WMH observed in FLAIR images have emerged 
as potential markers for neurodegenerative diseases such as cerebral 
small vessel disease (SVD) and multiple sclerosis (MS) (Kuchcinski 
and Wright, 2021). Since the premier research on brain abnormality 
(Fazekas et al., 1987), WMH have been commonly categorized into 
two primary classes: periventricular WMH (PEWMH) and deep 
WMH (DWMH) (DeCarli et al., 2005). However, it is important to 
note that other significant subclasses such as juxtacortical WMH 
(JCWMH) also exist (Kim et al., 2008), but these receive comparatively 
less attention. Accurately detecting and classifying WMH into 
meaningful categories not only aids in disease diagnosis but also 
facilitates the identification of various cognitive, microstructural, and 
clinical correlations (Griffanti et al., 2018).

Manual segmentation of white matter hyperintensities (WMH) is 
known to be a laborious task that can be subject to intra- and inter-
observer variabilities (Tran et  al., 2022). Conversely, automated 
segmentation methods have the potential to streamline clinical 
processes. A variety of accurate WMH segmentation techniques 
currently exist, ranging from statistical to machine learning algorithms 
(Shah et al., 2023; Huang et al., 2023). Some of these methods are 
tailored to address specific diseases such as SVD or MS by co-analyzing 
the ventricular structures of the brain and other normal tissues (i.e., 
gray matter) (Tran et al., 2022; Atlason et al., 2022; Rieu et al., 2021). In 
recent years, AI applications in medicine have surged, particularly in 
medical imaging. Deep Learning (DL) has been especially successful 
in tasks like image processing and segmentation, potentially enhancing 
or even surpassing human diagnostic accuracy (Borys et al., 2023; 
Hosny et al., 2024; Kassem et al., 2023; Kumar et al., 2023a, b).

Following the development of powerful WMH segmentation 
methods, there is a practical need to localize and classify WMH to 
investigate their correlation with the development or progression of brain 
diseases ranging from Alzheimer’s to MS (Parent et al., 2023). 
Furthermore, to have distinct classes with different clinical risk factors, 
WMH could be classified into specific progressions based on features 
such as location, volume, and contrast with surrounding normal-
appearing tissue: (1) multiple, small, low contrast lesions in DWMH (2) 
large, confluent lesions in PEWMH (3) high contrast lesions confined to 
juxtaventricular WMH (Jung et al., 2021). The integration of machine 
learning algorithms has enabled the redefinition of the Fazekas scale for 
automatic assessment, alongside deep-learning-based detection and 
measurement of WMH and ventricular analysis (Rieu et al., 2023; Hong 
et al., 2020). While comprehensive automatic WMH classification is 
currently missing in state-of-the-art research on brain diseases, WMH 
can be meticulously categorized into subgroups such as subcortical spots, 
peri-basal ganglia, anterior, and posterior subcortical patches so that the 
impact of different WMH can be analyzed on cognitive impairments 
(Wang et al., 2022; Yang et al., 2023; Guo and Shi, 2022; Melazzini et al., 
2021). In another study, WMH were manually divided into five distinct 
classes: deep frontal, periventricular, juxtacortical, parietal, and posterior 
with juxtacortical, deep frontal, and parietal WMH being linked to 
cognitive impairment, while the others showed no association with 
cognitive decline (Phuah et al., 2022).

During neurodegenerative diseases, both white matter (WM) and 
gray matter (GM) are affected by demyelination (Nakamura and Fisher, 
2009). Advanced MRI techniques have enabled direct visualization of 
GM atrophy and demyelinating lesions, that progress over time and in 
the early stages of MS (Honce, 2013). Also, studying gray matter (GM) 
meticulously can uncover long-term neurological effects of mild 
COVID-19 infection. Individuals who tested positive for COVID-19 
exhibited increased brain and GM shrinkage, as well as tissue damage, 
compared to a control group (Kumar et al., 2023a, b). Therefore, the 
study of GM-related demyelination plays an indisputable role in the 
pathology of neurodegenerative diseases. JCWMH fit best in GM 
studies. For instance, fronto-parietal and temporal PEWMH and have 
been independently linked to the processing speed and episodic 
memory, respectively (Jiménez-Balado et al., 2022). In Jiménez-Balado 
et al. (2022), GM maps were first derived from T1-weighted images, 
and then JCWMH were identified based on the proximity to registered 
GM maps on FLAIR images. Needless to say, GM segmentation of a 
brain with abnormalities presents challenges arising from lesions and 
brain atrophy (Nakamura and Fisher, 2009). More specifically, the 
presence of lesions or brain atrophy disrupt the normal appearing 
tissue both in intensity values and borders. For instance, hypointense 
appearing lesions in T1 images have intensities close enough to GM 
tissue to be  falsely segmented as GM by most common methods. 
Consequently, new algorithms have been proposed to enhance 
standard GM segmentation methods for abnormal images. Both earlier 
and recent studies such as Nakamura and Fisher (2009) and Zhu et al. 
(2022) have used T1 images to indirectly specify GM on FLAIR images 
for JCWMH classification. Of course, another approach to address this 
issue involves focusing on hypointensities in T1 space rather than 
hyperintensities in FLAIR space. In this case, the GM mask would 
be  assuredly extracted, which allow a simple definition of 
hypointensities near cortical (Dadar et  al., 2019). However, it is 
important to note that all hypointensities (i.e., black holes) are a subset 
of hyperintensities. Therefore, on the exclusive use of hypointensities 
visible in T1 images may not capture all JCWMH instances. In 
addition, the accuracy of well-established GM segmentation methods, 
including widely used tools such as FreeSurfer (Fischl, 2012), may not 
be as accurate as expected due to the overlapping intensities of black 
holes and GM in T1-weighted images (Dadar et al., 2021).

To reinstate the aforementioned points, the majority of studies 
have opted to utilize T1-weighted images for GM segmentation as they 
provide better contrast, although two key issues have been overlooked. 
First, the registration of T1 images on FLAIR is not flawless, even with 
the best algorithms, and factors such as patient movements and 
artifacts can interfere with the alignment between T1 and FLAIR 
images, resulting in imperfect registration. Second, the presence of 
hypointensities or hyperintensities overlapping with GM poses a 
challenge even for the most advanced GM segmentation methods. 
Thus, to the best of our knowledge, there is currently no specialized 
GM segmentation method for lesion-present MRI images that 
exclusively utilizes FLAIR images to identify JCWMH. In this study, 
we introduce a novel pipeline that aims to improve GM segmentation 
in the presence of lesions by using both FLAIR and T1 images to 
classify WMH, with a focus on JCWMH. The proposed pipeline starts 
by segmenting brain tissue using a well-established tool and applies 
basic morphological operations to create relevant tissue masks. 
Subsequently, it utilizes the extracted WMH and ventricle masks to 
create separate dilated masks through morphological operations. 
Finally, the processed GM mask is refined with a combined mask of 
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all processed tissue masks. We  employ this pipeline to generate 
specialized GM masks for both healthy individuals and MS patients 
from our extensive local dataset, in order to train a deep learning 
network such as a conditional generative adversarial network (cGAN). 
This model is trained to produce specialized GM masks based on 
FLAIR images, thereby reducing the dependency on T1 images, 
streamlining the complexity of the proposed pipeline and performing 
real-time. By generating specialized GM masks in conjunction with 
extracted ventricular masks, we  classify WMH into three classes: 
periventricular (i.e., PEWMH), paraventricular (i.e., PAWMH), and 
juxtacortical (i.e., JCWMH) based on their proximity to the masks.

The first section of this paper reviewed existing literature and 
encountered obstacles. The subsequent sections are organized as such: 
section 2 will outline the proposed method, whereas section 3 will 
present its performance and outcomes. Sections 4 and 5 will discuss 
the findings and draw a conclusion, respectively.

2 Materials and methods

2.1 Subjects and MRI data description

The data of the article was drawn out of 1,000 healthy individuals 
and 270 MS patients imaged by a 1.5-Tesla, TOSHIBA Vantage 
scanner (Canon Medical Systems, Japan) at the Golghasht Medical 
Imaging Center, Tabriz, Iran. Standardized protocols for MRI scanning 
were followed, which included the use of various sequences such as 
[repetition time (TR) = 540 ms, echo time (TE) = 15 ms, flip angle (FA) 
=70°, field of view (FOV) = 230 × 230 mm2, number of slices = 18, 
acquisition matrix = (0, 256, 176, 0), voxel size = 0.45 × 0.45, slice 
thickness = 6 mm], T2-weighted sequence [TR = 4,800 ms, TE = 105 ms, 
FA = 90°, FOV = 230 × 230 mm2, number of slices = 20, acquisition 
matrix = (0, 352, 256, 0), voxel size = 0.33 × 0.33, slice thickness = 5 mm], 
T2-FLAIR sequence [TR = 10,000 ms, TE = 100 ms, inversion time 
(TI) = 2,500 ms, FA = 90°, FOV = 230 × 230 mm2, number of slices = 20, 
acquisition matrix = (0, 256, 192, 0), voxel size = 0.9 × 0.9, slice 
thickness = 6 mm], and diffusion-weighted sequence [TR = 2,585 ms, 
TE = 100 ms, FA = 90°, FOV = 230 × 230 mm2, number of slices = 15, 
acquisition matrix = (144, 0, 0, 144), voxel size = 0.8 × 0.8, slice 
thickness = 6 mm]. A neuroradiologist reviewed every scan of patients.

In this study, we employed the T2-FLAIR and T1 images acquired 
horizontally with the voxel sizes of (0.9, 0.9, 6) and (0.45, 0.45, 6) 
millimeters, respectively. Ethical approval was granted by the Tabriz 
University of Medical Sciences Research Ethics Committee, and 
written approval letters were obtained from all participating patients. 
Additionally, all raw data has been anonymized at the very first stage 
so that patients are trackable only by a patient ID not their name.

2.2 Manual WMH and ventricles 
segmentation

In order to quantitatively evaluate the performance of the 
proposed method, we  randomly selected MRI data from 9 MS 
patients. Among these patients, there were four males (aged 
30–59 years, mean = 43, SD = 14.7) and five females (aged 29–46 years, 
mean = 37.2, SD = 9.1). The manual segmentation and labeling of this 
MRI data was carried out by a radiologist with over 20 years of 

experience in assessing MRI scans. The image computing platform 3D 
Slicer (Fedorov et al., 2012) was used for the segmentation tasks.

When segmenting WMH in the images, they were segmented into 
PEWMH, PAWMH, and JCWMH classes based on their distance to 
the adjacent ventricles and GM tissue. Figure 1 shows an example of 
a FLAIR slice of a patient, along with its manual segmentation and 
labeling. There are several rules that help classify WMH into above 
categories. These rules include continuity to the ventricles (Fazekas 
et al., 1987; Fazekas et al., 1993; van den Heuvel et al., 2006) or a 
distance of 10 mm from the ventricles (DeCarli et  al., 2005) to 
determine whether the WMH is periventricular or deep, and a 
distance of 3–13 mm (Kim et  al., 2008) to consider a new 
juxtaventricular category in addition to periventricular and deep 
WMH categories. Juxtacortical WMH can be characterized as small 
lesions, no more than 5 mm in diameter, located relatively close to the 
cortex, especially at a distance of less than 10 mm from the 
corticomedullary junction (Shan et al., 2017). The process of manual 
segmentation and labeling in this study followed Algorithm 1. To 
illustrate how the labeling process is implemented according to the 
algorithm, Figure 2 presents an illustration of a FLAIR slice depicting 
the 5 mm and 10 mm boundary of the ventricles, as well as the 5 mm 
boundary of the GM tissue.

2.3 Proposed pipeline

2.3.1 Brain tissue segmentation and 
post-processing

In this study, we first register T1 images to FLAIR images using 
the flirt command of FSL (Jenkinson et  al., 2012). The registered 
images are then segmented using the SPM toolbox (Friston and Penny, 
2003) within MATLAB software1 to obtain three main masks of brain 
tissue in FLAIR space. However, it is challenging to obtain exact brain 
slices in both T1 and FLAIR images of a patient. Consequently, using 
the registered T1 images for brain tissue segmentation may result in 
less precise maps, especially for GM.

ALGORITHM 1 Decision-making process of WMH 
classification into three classes.

  For each WMH found:

 Calculate the distances from nearby ventricle and GM masks

  If the shortest distance of the WMH from the nearby ventricle ≤5 mm:

   It is a PEWMH

   Continue to line 1

  If the mass center distance of the WMH from the nearby ventricle ≤10 mm:

   It is a PEWMH

   Continue to line 1

  If the shortest distance of the WMH from the nearby GM mask <5 mm and 

the area of the WMH <20 mm2:

   It is a JCWMH

   Continue to line 1

  Else:

   It is a PAWMH

   Continue to line 1

1 https://www.mathworks.com/
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To overcome this challenge, after segmenting the brain tissue with 
the SPM toolbox, we first attempt a few fundamental image processing 
morphology operations as a post-processing step to enhance the 
results obtained from the SPM. For the GM map, we  use a low 
threshold to create a binarized GM mask that contains as many GM 
voxels as possible, while minimizing the inclusion of indeterminate 
voxels. For the WM mask, we use a high threshold to secure the most 

certain WM voxels. The CSF map, on the other hand, is post-processed 
similarly to the WM map, but with a lower threshold, as the accuracy 
of the CSF map is higher due to its distinct nature. All these post-
processing steps are part of the brain tissue segmentation process 
outlined in Figure 3, which summarizes the key steps of the proposed 
pipeline for specialized GM segmentation.

2.3.2 WMH and ventricles segmentation and 
post-processing

While LST-LPA (Schmidt, 2017; Schmidt et al., 2012) is utilized 
for WMH segmentation, a more intricate approach is taken for 
ventricular segmentation. It involves normalizing previously 
registered T1 images to MNI space, segmenting the normalized 
images to obtain CSF masks, and then matching these masks with 
MNI ventricular masks to identify potential ventricular regions. 
Subsequently, the ventricular masks are registered back to the input 
space, which is FLAIR. As in the post-processing steps for brain 
tissue maps, we employ fundamental morphological operations such 
as dilation, closing, and opening to the segmented WMH and 
ventricular masks. However, in this particular section, our main 
objective is to inflate the WMH and ventricle masks. The slight 
inflation of WMH masks is necessary due to the uncertain 
boundaries of segmented WMH, which can be done automatically 
or manually. To address this problem, we apply a 5-by-5 rectangular 
element. On the other hand, the ventricular masks not only face the 
same problem, but also have neighboring regions that may be falsely 
labeled or segmented as GM tissue. This is undesirable when 
studying the classification of juxtacortical WMH. Thus, Therefore, 
we attempt to post-process ventricle masks first by a large closing 
element to remove any noises or dispersed punctuate regions, and 
then by a rather large dilation element like a rectangular 9-by-9 
element multiple times, causing the mask dilated more than 10 mm 
in real-world terms to cover any problematic regions of 
unwanted GM.

FIGURE 1

A sample slice of FLAIR images (left) and manually segmented WMH and ventricular system (right). The ventricular system is highlighted as blue, 
whereas the periventricular, paraventricular, and juxtacortical WMH are differentiated by red, green, and yellow colors, respectively.

FIGURE 2

An illustration of WMH and corresponding labels, in a FLAIR slice. The 
abbreviations PE, PA, and JC are used to denote PEWMH, PAWMH, 
and JCWMH, respectively.
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2.3.3 Gray matter processing
Our proposed method involves utilizing all three post-processed 

main brain tissue masks along with the WMH and ventricular masks, 
to filter out all unrelated, unwanted, and/or falsely labeled tissue that 
might be present in the GM map originally generated by the SPM. To 
achieve this, we create a union mask by combining the post-processed 
masks for WM, CSF, WMH, and ventricular masks. We then subtract 
binarily the post-processed GM mask from the union mask so that 
we obtain a specialized GM mask. The entire process of our proposed 
pipeline is illustrated and briefly described in Figure 3.

2.3.4 cGAN training
As the last step of our proposed method, shown in Figure  3, 

we aim for training a cGAN for substituting the entire pipeline in 
generating GM masks. For our local dataset, which contains both 
healthy and non-healthy patients, we  can utilize the pipeline to 
produce specialized GM masks. Subsequently, we can train a deep-
learning model, such as the pix2pix model (Isola et al., 2016), also 
referred to as a cGAN, to learn the mapping between the input FLAIR 
images and the corresponding specialized GM masks. We use the data 
of the mentioned 9 MS patients, as validation data and split the rest 
into 80% for training and 20% for testing. The architecture of the 
model remains mostly unchanged as originally introduced by Isola 
et al. (2016). Figure 4 illustrates the structure of the pix2pix model, 
where the generator and discriminator units are a modified U-net 
network (Ronneberger et al., 2015) and a convolutional PatchGAN 
classifier (Isola et al., 2016), respectively. The generator network’s input 
and output are single images, while the discriminator’s input consists 
of the concatenation of the generated mask and the target mask. The 
discriminator’s output, in turn, provides a patch that contributes to the 
updating processes of both networks. The details of these updating 
processes are described separately in the bottom line of Figure 4.

2.4 WMH classification

In this study, as stated in the introduction, our objective is to 
classify WMH into three classes: periventricular, paraventricular, and 
juxtacortical. Therefore, to achieve this classification, we require both 
the shortest distance to the GM and ventricular masks. Initially, 
we obtain the contours of the GM and ventricular masks separately. 
Subsequently, for each WMH object in a given segmented image, 
we determine the object’s contour and calculate its distance to the 
ventricles’ contours. To do this, we choose the minimum measured 
Euclidean distance between the mass center of the object’s contour and 
each point on the ventricles’ contours. Additionally, we calculate the 
shortest distance between the object’s contour and the GM’s contours 
by selecting the minimum measured Euclidean distance between each 
point on the object’s contour and the GM’s contours. According to 
Algorithm 1, the understudy object will be classified as a periventricular 
WMH, if the shortest distance to the ventricles is equal to or less than 
5 mm or if the distance of mass centers to the ventricles is equal to or 
less than 10 mm. Otherwise, it is classified as either paraventricular or 
juxtacortical. If the shortest distance to the GM mask is 5 mm or less 
and the area of the object is less than 20 mm2, the object is classified as 
juxtacortical. Otherwise, it is classified as paraventricular.

3 Results

3.1 GM segmentation

The enhancement of WMH classification relies on the accurate 
segmentation of ventricles and GM. Initially, three brain tissue 
masks, in addition to WMH and ventricle masks, were acquired 
for a patient. Subsequent post-processing steps were implemented 

FIGURE 3

Graphical flowchart of the proposed method for the specialized GM segmentation pipeline and training a cGAN model.
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to prepare these masks for integration into the final filtered GM 
mask. Finally, a deep learning model was trained to learn the 
entire process of specialized GM segmentation from FLAIR 
images only.

In the method section, the SPM toolbox was employed to extract 
brain tissue maps from T1 images registered on FLAIR images. 
Furthermore, automatic algorithms such as LST-LPA and atlas-
matching were utilized to provide WMH and ventricle masks, 
respectively. Figure 5 displays five extracted masks and their post-
processing results. It is noteworthy that the first three images in the 
first row of Figure 5 are grayscale images, while the remaining images 
are binary.

Following the preparation of the five masks, the final GM mask 
was formulated. As illustrated in Figure  5, a union mask was 
initially created from the post-processed WM, CSF, WMH, and 
ventricle masks, which was then binarily subtracted from the 

post-processed GM mask. Eventually, the resulting GM mask was 
post-processed by basic morphological operations. Figure 6 shows 
the final GM mask, which serves as a specialized GM mask for 
JCWMH, and its transparent overlay on the corresponding FLAIR 
image of a patient.

3.2 cGAN training

To evaluate the performance of the trained cGAN model 
statistically, several metrics were used including accuracy, sensitivity 
[i.e., true positive rate (TPR)], and specificity [i.e., true negative rate 
(TNR)], as defined in Equations 1–3:

 
Accuracy

TP TN

TP FN TN FP
�

�
� � �  

(1)

FIGURE 4

The architecture of pix2pix model. The model is trained with a paired set of images as input FLAIR and target GM mask. Updating blocks in the bottom 
row describe the learning process of corresponding networks.
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Sensitivity or Recall

TP

TP FN
�

�  
(2)

 
Specificity

TN

TN FP
�

�  
(3)

TP, TN, FP, and FN are short for true positive, true negative, false 
positive, and false negative, respectively. Additionally, as of the most 
commonly used metrics in medical image segmentation, precision, 
the Dice similarity coefficient (DSC), and intersection over union 
(IoU) were measured by subsequent Equations 4–6, respectively.

 
Precision

TP

TP FP
�

�  
(4)

 
DSC

TP

TP FP FN
�

� �
2

2  
(5)

 
IoU

TP

TP FP FN
�

� �  
(6)

Precision, Equation 4, measures a method’s ability to correctly 
identify only the relevant areas (true positives) without labeling 
irrelevant areas as positive (false positives). Sensitivity, Equation 2, 

focuses on the ability to capture all relevant instances, i.e., 
minimizing the number of false negatives. While, DSC, 
Equation 5, is a measure of how well the predicted segmentation 
overlaps with the ground truth. DSC is particularly useful because 
it balances the need for both high sensitivity (capturing most of 
the target region) and high precision (minimizing false positives). 
In practice, these metrics are often used together to provide a 
comprehensive evaluation of a segmentation method’s  
performance.

The study utilized all defined metrics except specificity to evaluate 
the performance of the trained model. The pix2pix model was trained 
on data from healthy individuals and MS patients for 20 epochs, as 
described in the method section. As shown in Figure 7, the model’s 
performance was observed to quickly improve from the first epoch to 
the fourth, after which it stabilized with only minor fluctuations. Both 
Figures  8, 9 demonstrate the stabilized and acceptable model 
performance in the fourth epoch. Examination of Table 1 provided 
further insights into the model’s performance at the fourth epoch and 
the average performance across all subsequent epochs. The 
comparison reveals that the model’s accuracy, DSC, and IoU were 
similar in both scenarios, with differences of about 1%. However, 
precision and recall differed by more than 5%, favoring one scenario 
for each metric. Therefore, it can be inferred that the fourth epoch 
represents a satisfactory point of peak learning for the model.

FIGURE 5

From left to right, the first row exhibits GM, WM, CSF, WMH, and ventricle masks, respectively. The second row exhibits post-processed masks by 
morphological operations for the corresponding masks in the first row.

FIGURE 6

(A) Post-processed GM mask, (B) the union mask generated from WM, CSF, WMH, and ventricles masks, (C) filtered GM mask by the union mask, 
(D) post-processed, filtered GM mask, and (E) FLAIR image with the imposition of the generated GM mask and highlighted WMH.
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FIGURE 8

Normalized confusion matrix of the pix2pix model on fourth epoch. Figures from left to right, display the confusion matrix using training, test, and 
validation dataset, respectively.

3.3 WMH classification

The final GM mask plays a crucial role in facilitating the intended 
WMH classification. In our study, Algorithm 1 was employed to 
determine the class of WMH detected in the FLAIR images. 
Additionally, specific colors were assigned to classes to enhance visual 

representation, as depicted in Figure  10. Alongside the visual 
presentation of the classified WMH, we  conducted a statistical 
evaluation of the proposed method using various metrics mentioned 
in section 3.2, except for IoU.

To performance assessment, we  calculated and presented five 
metrics in Tables 2, 3, listed in order of importance, based on the 

FIGURE 7

Performance evaluation of the trained pix2pix model. The model behaves more steadily after the 4th epoch, indicating a reliable choice for the trained 
model. Across all plots, with the exception of the final one, we analyzed the model’s performance on all three datasets. The last plot, represented by a 
violin plot, exclusively displays the model’s performance on the validation data across all five metrics.
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manual ground truth of data. Table 2 reports for utilizing the proposed 
pipeline without any training, while Table 3 reports for employing a 
trained model based on the pipeline, applied to the WMH 
classification task. The last column of both tables, labeled “Support,” 
indicates the actual number of pixels belonging to each WMH class. 
Also, the last two rows of the tables present simple and weighted 
averages for the aforementioned metrics.

3.4 Performance comparison

In order to compare our proposed method, we  considered a 
commonly adopted approach in the literature for WMH classification. 

The most straightforward approach involves using T1 images to 
generate accurate GM masks, which are known for their high 
effectiveness. This approach solely relies on the gray matter mask 
extracted from registered T1 images onto FLAIR images, without any 
further processing (Jiménez-Balado et al., 2022).

Similar to our evaluation of the proposed method, we  also 
conducted statistical analyses for this approach. It is worth noting that 
we  initially registered T1 images to FLAIR images using the flirt 
command of FSL, and then segmented them using the SPM toolbox. 
Table 4 presents the classification results obtained by segmenting only 
the T1 images for GM masks. Moreover, we can see the origin of 
Tables 2–4 in Figure  11, which also demonstrates well the 
outperformance of WMH classification by using the trained model.

FIGURE 9

Receiver operating characteristic (ROC) curve of the trained model based on the fourth epoch. The reported AUC in the plot refers to area under the 
curve.

TABLE 1 Segmentation performance of the used pix2pix cGAN model at the 4th epoch and subsequent epochs.

Metrics 4th epoch 4th epoch till the enda

Training Test Validation Training Test Validation

Accuracy 93.7 94 93.1 94.4 (0.33) 94.7 (0.32) 93.9 (0.37)

Precision 70.2 71.8 68.6 75.8 (2.45) 77.4 (2.45) 74.8 (2.55)

Recall 91.1 91.6 90 85.1 (3.25) 85.9 (3.05) 83.1 (3.71)

DSC 79.3 80.5 77.9 80.1 (0.96) 81.4 (0.91) 78.6 (1.18)

IoU 65.7 67.4 63.8 66.8 (1.33) 68.6 (1.29) 64.8 (1.58)

All numbers are in presented in percentage (%) format. 
aMean values and standard deviations are measured.
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3.5 Implementation details

The MATLAB programming language was utilized for brain tissue 
extraction in the proposed pipeline, whereas Python was employed 
for the remaining tasks, including classification. The implementation 
was carried out on a personal computer equipped with an Intel core-i7 
CPU, an Nvidia RTX 3060 GPU, and 32G RAM running Windows10. 

Table 5 presents the implementation time for WMH classification 
using the proposed pipeline, both with and without training. It also 
includes the implementation time for using only T1 segmentation for 
GM masks in WMH classification. Given the wide range of WMH 
load in patients’ images and the substantial number of healthy 
individuals in our local dataset, we  chose to report the rounded 
average execution time in Table 5. It is evident that the brain tissue 

TABLE 2 Classification report of using the proposed method—no training.

DSC Precision Sensitivity Specificity Accuracy Support

Periventricular 0.92 0.91 0.93 0.95 0.95 4,992

Paraventricular 0.91 0.92 0.90 0.91 0.90 8,040

Juxtacortical 0.78 0.75 0.80 0.97 0.95 1,450

Macro average 0.87 0.86 0.88 0.94 0.93 14,482

Weighted average 0.90 0.90 0.90 0.93 0.92 14,482

TABLE 3 Classification report of using the proposed method—with training.

DSC Precision Sensitivity Specificity Accuracy Support

Periventricular 0.92 0.91 0.93 0.95 0.95 4,992

Paraventricular 0.91 0.93 0.89 0.92 0.90 8,040

Juxtacortical 0.76 0.69 0.84 0.96 0.95 1,450

Macro average 0.86 0.84 0.89 0.94 0.93 14,482

Weighted average 0.90 0.90 0.90 0.93 0.92 14,482

FIGURE 10

Classifying all WMH into three classes: periventricular (red), paraventricular (green), and juxtacortical (yellow). The ventricular system is marked by blue 
in all slices.
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segmentation (using SPM) and registration (using FSL or SPM) 
accounted for most of the execution time, while other parts of the 
pipeline were accomplished in less than a second. Furthermore, the 
classification task took less than 10 s, depending on the number of 
detected WMH. As a final note, only the GPU was utilized for training 
the model, while all other computations were performed on the CPU.

4 Discussion

The diagnosis and monitoring of neurodegenerative brain diseases 
rely heavily on the detection and analysis of abnormalities in medical 
images. Automating the detection and classification of WMH can 
be  immensely beneficial for both radiologists and neurologists. 
Computer-based methods for these tasks require relevant data, 
especially labeled data from MS patients. Unfortunately, there is 
currently no MRI dataset available that includes three or more class 
labels of WMH in MS. To address this gap, we collected data from 

healthy individuals and MS patients, and manually segmented and 
labeled some of them into PEWMH, PAWMH, JCWMH, and 
ventricular masks.

As outlined in Algorithm 1, PEWMH can be  independently 
defined based on their distance from the ventricular masks, while 
PAWMH should be  determined as neither PEWMH nor 
JCWMH. However, the main focus of this article is on distinguishing 
JCWMH from the other two classes. To support this classification 
task, we proposed a pipeline that incorporated a brain cortex map. As 
described in the method section, we have developed a process that 
ultimately generates a specialized gray matter mask, as shown in 
Figure  6. Although this mask may not precisely represent the 
segmentation of gray matter or cortex, it serves our purpose of 
classifying JCWMH most effectively.

The cGAN model was trained using the proposed pipeline to learn 
the entire process and generate a specialized GM mask solely from 
FLAIR images. The performance of the trained model was evaluated 
using the metrics presented in Table 1, demonstrating its effectiveness 
based on the ground truth provided by our proposed pipeline. 
However, it is important to note that the specialized GM masks 
produced by the pipeline, which served as the ground truth for model 
training, were not completely accurate and precise. Consequently, 
further investigation was conducted to assess the actual and practical 
performance of the model in the specific task of WMH classification, 
particularly for JCWMH.

Following the provision of a specialized GM mask through either 
the proposed pipeline or the trained model, WMH classification was 
carried out using Algorithm 1. Despite the limited manually 
segmented data, the proposed method demonstrated promising 
performance. Not only do the visual outcomes indicate that, but also 
the statistical metrics presented in Table 2 substantiate its competency. 

TABLE 4 Classification report of using T1 images segmentation.

DSC Precision Sensitivity Specificity Accuracy Support

Periventricular 0.92 0.91 0.93 0.95 0.95 4,992

Paraventricular 0.88 0.93 0.84 0.92 0.87 8,040

Juxtacortical 0.66 0.55 0.81 0.93 0.91 1,450

Macro average 0.82 0.80 0.86 0.93 0.91 14,482

Weighted average 0.87 0.89 0.87 0.93 0.90 14,482

FIGURE 11

Normalized confusion matrix of classifying WMH. Figures from left to right, display confusion matrix using only the proposed pipeline, using trained 
model, and using only T1 images for the GM segmentation task, respectively.

TABLE 5 Average execution time of producing a specialized GM mask for 
using the proposed method, in both with and without training, as well as 
using only T1 images segmentations.

Proposed 
method 

no 
training

Proposed 
method 

with 
training

Only T1 
segmentation

Training time ____ 50 min* ____

Execution time** 320 s <1 s 110 s

*This was obtained using GPU. 
**More significant time due to the clinical practices.
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Precision and sensitivity, and the Dice similarity coefficient, which 
offers a harmonic mean between precision and sensitivity, are more 
decisive metrics for segmenting and classifying objects within an 
image. Hence, these significant numbers highlighted in Table  2, 
specifically pertain to the JCWMH classification performance. All 
three numbers support the success of the proposed method in 
JCWMH classification, though further refinements could enhance its 
effectiveness in the future. On the other hand, a comparison of the 
results obtained from the trained model, as presented in Table 3, 
indicates that the model performed on par with the proposed pipeline 
in overall WMH classification and achieved similar results in JCWMH 
classification. This highlights the superiority of the trained model due 
to its advantages, such as exclusively utilizing FLAIR images instead 
of T1 images and delivering results in less than a second. Therefore, 
we  can employ the proposed pipeline once to generate sufficient 
paired training data for our model, and subsequently utilize the 
trained model to generate specialized GM masks.

Further elaborating on Tables 2, 3, the metrics of PEWMH 
classification were expected to reach 100% due to the manual WMH 
and ventricular masks provided. However, as indicated in Tables 2, 
3, this did not happen. There are several arguments explaining this 
discrepancy. First, despite the use of manual segmentation, automatic 
methods lack the full extent of prior knowledge that experts have. 
For instance, due to slice thickness, ventricles might not be fully 
visible in an image, but an expert can mentally fill in the gaps, 
enabling them to correctly classify a WMH as PEWMH, whereas an 
automatic algorithm may struggle. Additionally, even though an 
expert performed manual segmentations for both ventricle and 
WMH tasks, there could be minor yet impactful errors, especially 
when making decisions near predefined limits or estimating the 
mass center of WMH. Last but not least, software errors such as 
rounding distances or making rigid choices near limits, can also 
contribute to lower PEWMH statistics. Unlike PEWMH, PAWMH 
is influenced by other classes, so improving the classification of 
JCWMH will naturally enhance the classification of PAWMH.

In order to evaluate the performance of the proposed method, 
Table  4 represents classification metrics when using only the 
segmentation of registered T1 images for GM masks. The metrics for 
PEWMH remained unchanged, as expected, since the ventricular 
masks remained the same. However, the classification results for 
JCWMH and consequently for PAWMH were notably lower. This was 
anticipated due to the inherent differences between T1 and FLAIR 
images, which are affected by artifacts and imperfections in registration 
algorithms. Also, the presence of some lesions may challenge and 
misguide GM segmentation even in high-contrast T1 images.

The proposed pipeline uses both T1 and FLAIR images and the 
obtained tissue masks from them to refine the primary GM mask 
obtained from T1 images. This pipeline may take longer time than 
common GM segmentation from T1 images, however, not only its 
outcome is much more reliable and useful for JCWMH classification, 
based on Tables 3, 4, but also it could provide paired data for 
training a subsequent deep model to replace itself. The trained 
model will generate the GM mask under a second for a new given 
data. Having examined the aforementioned approaches on WMH 
classification, the outperformance of the proposed method, 
particularly when using a trained model, is evident. The model, 
trained based on the proposed pipeline, offers several advantages, 
including automation, speed, no initials, and reliance on a single MR 
imaging weight. To ensure an unbiased and authentic evaluation of 

our proposed method, we employed manually segmented WMH 
and ventricles in this study. Moving forward, we could explore other 
advanced deep learning algorithms to achieve more precise 
segmentation of the cortex within FLAIR images, potentially 
surpassing our current method. Additionally, these algorithms could 
be employed to identify both simple and complex features of WMH, 
allowing for more meaningful classification through the analysis of 
extensive data on specific diseases. Furthermore, as a practical future 
direction, our automated method could be used to comprehensively 
study the longitudinal progression of neurodegenerative brain 
diseases, an emerging and crucial objective in clinical applications.

5 Conclusion

Our primary objective in this research was to classify WMH, 
particularly JCWMH, associated with neurodegenerative diseases 
like MS, into clinically interpretable categories to enhance the 
accuracy and inclusivity of brain disease diagnosis and monitoring 
analyses. Given the inadequacy of satisfactory classification 
methods and data, we  first acquired a substantial local dataset 
containing manual segmentation and labeling for 9 MS patients. 
Subsequently, we  proposed a pipeline to segment gray matter 
specialized for the classification of JCWMH. This pipeline was 
utilized to create paired data for training a cGAN model. Notably, 
the trained model relies exclusively on FLAIR images, despite the 
pipeline’s incorporation of both FLAIR and T1 images to generate 
specialized GM masks. The proposed method is automated, fast, 
and do not require any initials. To ensure unbiased and authentic 
evaluations, we employed data with manually segmented WMH 
and ventricles. DSC, precision, and sensitivity of our proposed 
method were 0.76, 0.69, and 0.84 for JCWMH and 0.90, 0.90, and 
0.90 for all WMH, respectively. When compared to the common 
approach for extracting GM masks, using only registered T1 images 
on FLAIR images, our method demonstrated superior results, 
surpassing by a margin of at least 0.10 (i.e., 10%) in DSC. Needless 
to say, our method achieved these results using only FLAIR images 
and operates in less than a second, after being trained. Such cutting-
edge methods will undoubtedly streamline the precise and 
meaningful analysis of WMH in clinical practice, reducing 
complexity and increasing efficiency.
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