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The concentrations of neurofilament light chain (NfL) in cerebrospinal fluid

(CSF) and plasma have become key biomarkers of many neurodegenerative

diseases, including Huntington’s Disease (HD). However, the relationship

between the dynamics of NfL concentrations in CSF and the time-course

of neurodegeneration (whole brain atrophy) has not yet been described in

a quantitative and mechanistic manner. Here, we present a novel semi-

mechanistic model, which postulates that the amount of NfL entering the CSF

corresponds to the amount of NfL released from damaged neurons, whose

degeneration results in a decrease in brain volume. In mathematical terms, the

model expresses the NfL concentration in CSF in terms of the NfL concentration

in brain tissue, the rate of change of whole brain volume and the CSF flow rate.

To test our model, we used a non-linear mixed e�ects approach to analyze

NfL and brain volume data from the HD-CSF study, a 24-month prospective

study of individuals with premanifest HD, manifest HD and healthy controls.

The time-course of whole brain volume, obtained from MRI, was represented

empirically by a 2nd order polynomial, from which its rate of change was

computed. CSF flow rates in healthy and HD populations were taken from recent

literature data. By estimating the NfL concentration in brain tissue, the model

successfully described the time-course of the NfL concentration in CSF in both

HD subjects and healthy controls. Furthermore, the model-derived estimate

of NfL concentration in brain agreed well with recent direct experimental

measurements. The consistency of our model with the NfL and brain volume

data suggests that the NfL concentration in CSF reflects the rate, rather than

the extent, of neurodegeneration and that the increase in NfL concentration

over time is a measure of the accelerating rate of neurodegeneration associated

with aging and HD. For HD subjects, the degree of acceleration was found to

increase markedly with the number of CAG repeats on their HTT gene. The

application of our semi-mechanistic NfL model to other neurodegenerative

diseases is discussed.
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1 Introduction

Neurofilament light chain (NfL), a 61.5 kDa structural protein

exclusive to neurons, combines with medium and heavy chain

(NfM and NfH) neurofilaments to form type IV intermediate fibers

(Khalil et al., 2018). Upon axonal damage or neuronal death, NfL is

released to the extracellular space where it is removed viamicroglia-

and CSF-mediated mechanisms (Khalil et al., 2018; Kölliker Frers

et al., 2022). The concentrations of NfL in cerebrospinal fluid

(CSF) and plasma are purported markers of neurodegeneration in

a number of neurological diseases (Khalil et al., 2018; Gaetani et al.,

2019). In Huntington’s disease (HD), for example, elevated NfL

levels are a highly sensitive marker of disease onset and progression

(Rodrigues et al., 2020; Scahill et al., 2020). The elevations of NfL

are associated in HDwith the number of CAG repeats found on the

mutant HTT gene (Rodrigues et al., 2020).

Despite the relevance of NfL as a biomarker of

neurodegeneration, the mechanistic link between neuronal

damage and NfL concentration in CSF has not been well described

(Gafson et al., 2020). In particular, the quantitative relationships

between NfL concentrations in biofluids such as CSF, blood,

serum or plasma and the extent or rate of neurodegeneration

in various disease states is still not well defined. In the case of

the blood compartment, into which NfL enters from the CSF,

a number of physiological and demographic variables have

been shown to influence the NfL concentration. These include

blood volume and BMI, which are inversely related to NfL levels

(Manouchehrinia et al., 2020); diabetes, COPD, cardiovascular

disease, and COVID-19 infection, which are associated with

increased NfL levels (Fitzgerald et al., 2022; Abdelhak et al.,

2023); and pre-eclampsia and parturition, in which NfL levels

are also elevated (Evers et al., 2018, 2019). In contrast, the NfL

concentrations in CSF are appreciably higher than in blood and

provide a more direct assessment of NfL input from the brain.

They are primarily influenced by CSF flow rates, rather than the

confounders that affect NfL in the blood compartment (Andersson

et al., 2020; Manouchehrinia et al., 2020; Tang et al., 2022).

The usefulness of NfL as a biomarker of neurodegeneration

is, presumably, due to its neuron-specific location, high relative

expression, cellular release during axonal damage or degeneration,

and size that enables CSF-mediated clearance. Furthermore, the

inability of central nervous system neurons to proliferate or

regenerate in adulthood (Huebner and Strittmatter, 2009; Sorrells

et al., 2018) suggests that NfL release is not a consequence of

turnover and instead results from neuronal damage or death.

Here, we characterize the quantitative relationships between

MRI measurements of whole brain volume, NfL concentration

in CSF, and measurements of CSF flow rates in healthy controls

and HD subjects using published data from the HD-CSF study

(Rodrigues et al., 2020) and a separate study of CSF flow (Hett

et al., 2023). Based on mass-balance principles, we derive a

novel, semi-mechanistic model that relates the NfL concentration

in CSF to the rate of change of whole brain volume, the

respective CSF flow rates, and the estimated NfL concentration

in brain tissue. An empirically chosen 2nd order polynomial

is used to represent the time-course of whole brain volume

in healthy controls and HD subjects, from which its rate of

change is computed. We use a population non-linear mixed effects

(NLME) approach to estimate population parameters across all data

sources combined.

Our semi-mechanistic model is shown to successfully predict

the longitudinal and age-related changes in whole brain volume

and NfL concentration in CSF in both healthy controls and HD

populations over the age range of 26–77 years. Thus, in both cases,

we conclude that the amount of NfL that is eliminated via CSF

over a certain time period equals the amount of NfL contained

in the volume of brain that is lost over the same time period.

In essence, this means that the NfL concentration in CSF reflects

the rate, rather than the extent, of neurodegeneration. Moreover,

the increase in NfL concentration over time is a measure of the

accelerating rate of neurodegeneration associated with aging and

HD. In addition, our model provides an estimate of the average

concentration of NfL in brain tissue that can be compared to direct

biochemical measurements in post-mortem subjects (Sjölin et al.,

2022) as a validation test. As a further test, the model is used to

simulate an independent cross-sectional study of brain mass vs. age

in healthy subjects (Svennerholm et al., 1997).

We conclude by discussing the application of our model of NfL

to other neurodegenerative conditions along with its mechanistic

and clinical implications.

2 Methods

2.1 Data acquisition

Individual data from the HD-CSF study (Rodrigues et al.,

2020) for healthy controls (n = 20; mean age 50.7 yr), premanifest

HD subjects (n = 20; mean age = 42.4 yr; mean CAG repeats

= 42.0) and manifest HD subjects (n = 40; mean age = 56.0

yr; mean CAG repeats = 42.75) were downloaded from the

UCL website (University College London, 2020). The following

variables were used in the present analysis: ID, sample_day,

gender, CAG (for premanifest and manifest HD subjects), age,

group, wb_adj (adjusted whole brain volume, mL), and NfL_CSF2

(NfL concentration in CSF measured by assay 2; 4-Plex B,

Quanterix, pg/mL).

Details of the MRI methodology used for measuring whole

brain volume in the HD-CSF study can be found in prior

publications (Byrne et al., 2018; Rodrigues et al., 2020) and are

briefly summarized here. T1-weighted MRI data were acquired on

a single 3T Siemens Prisma scanner. Images were acquired using

a 3D magnetization-prepared 180 degrees radio-frequency pulses

and rapid gradient-echo (MPRAGE) sequence with a repetition

time (TR) = 2,000ms and echo time (TE) = 2.05ms. The

acquisition had an inversion time of 850ms, flip angle of 8

degrees, matrix size 256 × 240mm. 256 coronal partitions were

collected to cover the entire brain with a slice thickness of 1.0mm.

A semi-automated segmentation procedure was performed via

Medical Image Display Analysis Software (MIDAS) to generate

volumetric regions of the whole-brain and Total Intracranial

Volume (TIV). Follow-up whole-brain volume was measured via

the same semi-automated procedure. The adjusted total brain

volume was computed as the ratio of whole brain volume-to-

TIV, multiplied by the mean TIV of the population (personal

communication from R. Scahill). The median net CSF flow
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rates (µL/min) for healthy controls (n = 51), premanifest HD

(n = 17) and manifest HD (n = 12) measured by MRI

methods were obtained from a separate study (Hett et al.,

2023).

For the validation testing of the model, individual post-mortem

brain mass data were obtained from the Svennerholm study

(Svennerholm et al., 1997) in females (n = 83) and males (n =

101) ranging in age from 20 to 100 years, with no prior history or

pathological evidence of neurological disease. Svennerholm’s data

were digitized using the DigitizeIt software (Bormann, 2016). To

convert mass (g) to volume (mL), the density of brain tissue was

taken to be 1.03 g/mL (Berger et al., 2017).

2.2 Modeling

The assumptions and mathematical derivation of the

semi-mechanistic model describing the dynamics of the NfL

concentration in CSF and its relationship to the time-course

of whole brain volume are given in Results (Section 3.1). The

equations used to model the time-course of whole brain volume in

the healthy controls and HD subjects are given in Results (Section

3.2). Values of the CSF flow rates for healthy controls and HD

subjects, which are equivalent to the NfL clearances rates in CSF,

were obtained from literature data, as discussed in Results (Section

3.3). The remaining model parameters were estimated from an

integrated analysis of the brain volume and NfL concentration in

CSF reported in the HD-CSF study using a non-linear mixed effects

analysis in Monolix 2023R1. Details of the parameter estimation,

statistical model, covariate analysis and model-based simulations

are given in the Supplementary material (Section 1).

2.3 Software and computer systems

All data programming, data exploration, model building, and

simulations were done on a desktop computer (PowerCrunch-

8) running Windows 10 Professional. For parameter estimation

and diagnostic plots, a validated version of Monolix 2023R1 was

used (Monolix 2023R1). For simulations, a validated version of

Simulx 2023R1, and a validated version of R 4.3.2 (R Core Team,

2021) were used.

3 Results

3.1 Development of a semi-mechanistic
model of NfL dynamics in CSF

In developing our semi-mechanistic model of NfL dynamics in

CSF, we made the following simplifying assumptions:

1. NfL is only contained in neurons, which cannot regenerate or

turn over.

2. Decreases in whole brain volume reflect loss of neurons, glial

cells and interstitial fluid.

3. NfL concentration in brain tissue is the same for healthy

controls and HD subjects and is assumed to be homogenous

throughout the brain.

4. NfL is released from neurons only upon axonal damage or

cell death.

5. All NfL molecules released (including any proteolytic

fragments) enter the CSF and are cleared from the brain by

bulk CSF flow.

6. CSF flow rates may differ between healthy controls and HD

subjects and can potentially vary with age.

Combining these mechanistic assumptions with the principles

of mass balance, we illustrate in Figure 1 our conceptual model

of NfL dynamics in the brain and CSF. Qualitatively, the figure

shows that the loss of brain volume releases NfL into the CSF

(represented as a single compartment). The NfL in CSF is then

cleared by CSF flow.

Based on assumptions 1–4, Equation 1 states that the NfL

input rate into the CSF (mass/time) is the product of the

NfL concentration in brain tissue (denoted cNfLBrain) and the

neurodegeneration rate, expressed as the negative rate of change of

brain volume (-dVBrain/dt).

NfL input rate= cNfLBrain ·

(

−
dVBrain

dt

)

,
dVBrain

dt
< 0, (1)

Based on assumption 5, the elimination rate of NfL from the

CSF compartment is equal to the product of NfL concentration

in the CSF (denoted cNFLCSF) and the CSF flow rate, which, in

principle, corresponds to the clearance rate of NfL from the CSF

(denoted CLNfL). Equation 2 expresses the rate of change of NfL

concentration in the CSF compartment as the difference between

the NfL input rate and NfL elimination rate, divided by the CSF

volume (VCSF).

dcNfLCSF

dt
=

[

cNfLBrain ·
(

−
dVBrain

dt

)

− CLNfL (t) × cNfLCSF (t)
]

VCSF
, (2)

Due to the fast rate of CSF turnover (ca. hours) relative to the

slow timescale of chronic neurodegeneration (ca. months to years),

one can reasonably assume that the NfL concentration in CSF is in a

quasi-steady-state (i.e., dcNfLCSF/dt)≈ 0). Equation 2 then reduces

to Equation 3, which states that the NfL concentration in CSF is

equal to the NfL concentration in brain multiplied by the negative

rate of change of brain volume, divided by the NfL clearance rate.

cNfLCSF (t) =
cNfLBrain ·

(

−
dVBrain

dt

)

CLNfL (t)
, (3)

The ability of Equation 3 to predict the dynamics of cNfLCSF
seen in the HD-CSF study will be presented after describing how

the time-course of whole brain volume was modeled and the CSF

flow rates (CLNfL) were estimated in healthy controls and HD

patients (consistent with assumption 6).
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FIGURE 1

Conceptual representation of NfL in the brain and CSF, where cNFLBrain (dense pattern) and cNFLCSF (light pattern) indicate the concentrations of NfL

in brain tissue and CSF, respectively. VBrain is the volume of brain tissue, VCSF is the volume in the CSF compartment and t is the time variable, which is

also equivalent to age in the model. –dVBrain/dt is the negative rate of change of the brain volume; the negative sign expresses this as a positive rate

of neurodegeneration. Flow into and out of the CSF compartment is denoted CSFFlow. The observed NfL concentration in CSF can change due to

alterations in the rate of neurodegeneration (NfL input to CSF) or CSFFlow (NfL elimination from CSF). The latter is physiologically equivalent to CSF

clearance, denoted CLNfL.

3.2 Modeling the time-course of whole
brain volume

Visual inspection of the longitudinal and cross sectional

relationship between the whole brain volume and subject’s age

(which increased by 2 years during the study) suggested that a

2nd order (quadratic) polynomial could empirically describe the

observed data in the HD-CSF study (Figure 2).

Equation 4 expresses this quadratic dependence as:

VBrain (t) = k0 + k1t − k2t
2, (4)

where VBrain (t) is the whole brain volume at time t (equivalent

to age) and k0 (in mL), k1 (in mL/yr) and k2 (in mL/yr/yr) are

the three polynomial coefficients. From this equation, the rate of

neurodegeneration, i.e., negative rate of change of VBrain (t), is

given by Equation 5.

−
dVBrain

dt
(t) = − k1 + 2 k2t, (5)

This result shows that the neurodegeneration rate increases

linearly in time (or age) from the basal rate of − k1 with a slope

(acceleration) of 2 k2. Fitting Equation 4 to the brain volume data in

Figure 2 (simultaneously with fitting the cNfLCSF data, as described

in Section 3.4) showed that the estimated value of k1, i.e., 4.84

mL/yr, was the same for healthy controls and HD subjects. In

contrast, the value of k2 in healthy controls, i.e., 0.0902 mL/yr/yr,

was smaller than the k2 value in HD subjects. The latter was

found to increase markedly with the CAG repeat value based

on a covariate analysis (see Supplementary material; Section 1).

Equation 6 describes this relationship:

k2 HD, i = k2 HD, Pop ×

(CAGi

42.5

)βCAG
, (6)

where k2 HD, i is the k2 value for HD subject i with a CAG

repeat value of CAGi, k2 HD, Pop is the k2 value for the overall HD

population with themean CAG repeat value of 42.5, estimated to be

0.125mL/yr/yr, and βCAG is a dimensionless exponent, estimated to

be 2.74.

Based on Equations 5, 6 and Figure 3 illustrates the

neurodegeneration rate as a function of age (time) for healthy

controls and HD subjects with CAG values ranging from 39 to 51,

as in the HD-CSF dataset.

At any given age, the model-based neurodegeneration rate in

HD subjects increases markedly from the corresponding value in

healthy controls, as the CAG repeat length increases from 39 to 51.

3.3 CSF flow rates in healthy controls and
HD subjects

As depicted in Figure 1, it is assumed that the clearance

rate of NfL from the CSF compartment is equal to the CSF

flow rate. CSF flow rates (or equivalently, CSF production rates)

have been reported for humans in health and disease using a

variety of methods (Liu et al., 2022). According to current reviews

(Khasawneh et al., 2018; Liu et al., 2022; Czarniak et al., 2023),

the CSF production rate in healthy adults typically ranges between

300 and 400 µL/min, consistent with the early measurement of 350

µL/min by Davson et al. (1987) and the recent model-derived value

of 380± 20 µL/min (Elbert et al., 2022).

The current gold standard for quantifying CSF production

is regarded to be the MRI-based measurement of net CSF flow

rate through the cerebral aqueduct (Liu et al., 2022). Using this

technique, Hett et al. (2023) recently reported the median values of

the net CSF flow rate to be 303 µL/min in healthy controls (mean

age 46.6 yr; CAG < 37), 136 µL/min in premanifest HD subjects

(mean age 41.5 yr; mean CAG 42) and 108 µL/min in manifest HD
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FIGURE 2

Observed and predicted dependence of the whole brain volume vs. age for healthy controls, premanifest HD subjects and manifest HD subjects in

the HD-CSF study. Filled circles represent individual observations with line segments connecting the baseline and 24-month follow up

measurements. A small number of data points had no follow up measurement. Dashed curves correspond to the predicted median values for each

group based on the 2nd order polynomials in Equation 4. For premanifest and manifest HD subjects, k2 was computed from Equation 6 using the

mean CAG repeat values of 42.0 and 42.75, respectively. Shaded areas represent the 90 percent prediction intervals of the model.

FIGURE 3

Dependence of neurodegeneration rate (–dVBrain/dt) on age in healthy controls (HC) and in HD subjects as a function of the CAG repeat length

based on Equations 5, 6.

subjects (mean age 45.9 yr; mean CAG 45). Given the consistency

of the healthy control value with the normative data summarized

above, we have taken the three median values from Hett’s study

as fixed parameter estimates of the CLNfL values for the respective

groups in our model. Based on the findings of Elbert’s study, we

assume that in healthy subjects, CLNfL is not dependent on age

(or time).

3.4 Neurodegeneration rates and CLNfL
values predict CSF NfL

Having shown in Figure 2 that Equations 4–6 of our model

can successfully describe the time-course of brain volume in

healthy controls and HD subjects, we assess here the ability of

Equation 3 to predict the time-course of the NfL concentrations
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in CSF observed in the HD-CSF study. To do this, the

individual rates of neurodegeneration derived from Equations 5,

6 were combined with the median values of CLNfL from

Hett’s study, and the value of the NfL brain concentration

(cNfLBrain) was estimated by fitting the model to the cNfLCSF
data. Details of the mixed effects modeling approach used

for simultaneously estimating all model parameters and their

population variances are given in the Supplementary material

(Section 1).

Figure 4 shows the longitudinal and cross-sectional

dependence of the cNfLCSF data on age for the healthy controls,

premanifest HD subjects and manifest HD subjects.

In general, the linear cross-sectional trends in all three

groups are well predicted by the age-dependences of the

model. The longitudinal changes for the healthy controls

and premanifest HD subjects are also well predicted. In the

manifest HD subjects, however, a number of individuals exhibit

sharp increases that exceed the 90% prediction interval of

the model.

We attribute these sporadic increases to observational or

measurement errors in the cNfLCSF values, which the model

also estimates when fitting the data. In Section 2 of the

Supplementary material, graphical assessments of the observational

errors in both the NfL concentrations and brain volume data

are given. For cNfLCSF, the observational error is proportional

to the measured value with a coefficient of 0.216 (equivalent

to a coefficient of variation of ca. 22%). For large values of

cNfLCSF, e.g., 5,000 pg/mL, the observational error can be sizeable,

with a standard deviation of ca. 1,000 pg/mL. In constrast, for

the brain volume data the observational error is found to be

additive, with a standard deviation of 11mL, independent of

the measured value. Observational errors can therefore account

for the small increases in brain volume seen occasionally in

Figure 2. As shown in the Supplementary material (Section 2)

the standard goodness of fit measures used to assess non-

linear mixed effect models of this type demonstrate that the

model provides a robust description of the cNfLCSF and brain

volume data, as well as the observational errors associated

with them.

Additional analysis of the model, exploring the effect

of the CAG repeat length on the age-dependences of

VBrain and cNfLCSF, is given in Supplementary material

(Section 3) and further supports the robustness of

the model.

3.5 Model derived estimate of the NfL
concentration in brain tissue

As an outcome of modeling the NfL concentrations in CSF

by Equation 3, we obtained an estimate of the NfL concentration

in brain tissue (cNfLBrain) equal to 15.5µg/g (assuming a tissue

density of 1.03 g/mL; Berger et al., 2017). This value is in good

agreement with the range of experimental NfL concentrations, 10

to 47µg/g, measured by ELISA in post-mortem brain and spinal

cord tissue samples from 10 neurologically healthy subjects (Sjölin

et al., 2022).

4 Discussion

We have developed a novel quantitative, semi-mechanistic

model of the dynamics of NfL concentrations in CSF and its

relationship to neurodegeneration, based on an analysis of data

from healthy controls and HD subjects in the HD-CSF study

(Rodrigues et al., 2020). Our principal findings are that the NfL

concentration in CSF is directly proportional to the rate, rather

than the extent, of neurodegeneration (defined as the negative rate

of change of whole brain volume) and is inversely proportional

to the flow rate of CSF, which is reduced in HD subjects relative

to healthy subjects (Hett et al., 2023). The linear increase of the

NfL concentration in CSF with age (or time), observed in both

healthy controls and HD subjects, is explained in our model by

the acceleration of the neurodegeneration rate, which is quantified

by modeling the time-course of brain volume with a 2nd order

polynomial, i.e., a quadratic dependence. The degree of acceleration

in HD subjects is further shown to increase strongly with their CAG

repeat length. Our findings agree with, and put into mechanistic

context, previous findings on the relationship between the rate of

brain atrophy and NfL levels in blood serum (Khalil et al., 2020,

2024; Gallingani et al., 2024).

It may be noted that we also tested a linear model for the

age/time dependence of the brain volume data and found that

it was incompatible with the increase in NfL concentrations

observed in all three groups of subjects. The corrected Bayesian

Information Criterion, a statistical measure of the goodness of

fit, confirmed the overall superiority of the quadratic dependence

(see Supplementary material, Section 1.1). Additional support for

the 2nd order polynomial used in our model is given in the

Supplementary material (Section 4), where it is shown that the same

function describes well the cross-sectional relationship between

brain mass and age in a different population of neurologically

healthy subjects studied post-mortem by Svennerholm et al.

(1997). Whitwell also used a quadratic function to represent the

longitudinal trajectory of brain volume data in an AD patient

studied over 6.8 years (Whitwell et al., 2001).

We believe that the strengths of our model are its simplicity,

use of physiologic mechanisms, ability to describe brain volume

and NfL data from healthy controls and HD subjects, and the

incorporation of CSF flow measurements reported in populations

that are similar to those in the HD-CSF study. Our model differs

in a number of important ways from the mathematical model

developed by Paris et al. (2022) to describe the age-dependence

of NfL (and other neurofilament species) in CSF and plasma from

healthy subjects. While both models are based on compartmental

analysis and physiologic principals, the Paris model has more than

13 parameters and does not incorporate any changes in brain

volume. It assumes that in healthy subjects the leakage rate of NfL

from neurons is not caused by neurodegeneration and instead, uses

an empirical function to modulate the leakage rate constants in

proportion to age. In contrast, the present model accounts for the

age-related increase in NfL concentrations seen in healthy controls

and HD subjects by the acceleration of the neurodegeneration rate

inferred from the brain volume data. Recently, the Paris model

was adapted to analyze the dynamics of neurofilament heavy chain

(NfH) in pediatric patients with spinal muscular atrophy (SMA)
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FIGURE 4

Observed and predicted dependence of the NfL concentrations in CSF (cNfLCSF) vs. age for healthy controls, premanifest HD subjects and manifest

HD subjects in the HD-CSF study. Filled circles represent individual observations with line segments connecting the baseline and 24-month follow up

measurements. A small number of data points had no follow up measurement. Dashed lines correspond to the predicted median values for each

group based on Equations 3, 5, 6. For premanifest and manifest HD subjects, k2 was computed from Equation 6 using the mean CAG repeat values of

42 and 42.75, respectively. Shaded areas represent the 90 percent prediction intervals of the model.

and the effects of treatment (Paris et al., 2023). The adapted SMA

model included an extra term to characterize the increased leakage

rate constant of NfH from the spinal neuron compartment and its

downregulation during treatment.

Further support for the model derives from our estimate of

the NfL concentration in brain tissue, which is found to be in

good agreement with the experimental data reported in post-

mortem samples of brain and spinal cord using ELISA methods

that are similar to those used in the HD-CSF study (Sjölin et al.,

2022). Such agreement provides important validation of the mass-

balance principles used in the model and suggests that most of

the NfL released from damaged neurons in the brain appears in

the CSF. An early study of neurofilament levels in human brain

tissue using Western blot methods obtained NfL concentrations

that were approximately 10-fold higher than the ELISA results

when converted to µg/g (Ferrer-Alcón et al., 2000). We have found

no other experimental data in the literature that can be compared

to our model-based estimate of cNflBrain. In this regard, the detailed

immunoprecipitation-mass spectrometry study of NfL molecular

species by Budelier showed that in brain tissue, NfL is present

mostly as a full-length, intact molecule, while in CSF it is present in

at least three main fragments (Budelier et al., 2022). Unfortunately,

Budelier’s characterization of NfL in brain tissue is not readily

expressible in the µg/g units needed for comparison with our

estimate of cNfLBrain. While recent literature suggests that NfL

fragments may be secreted in exosomes (Zanardini et al., 2022), it is

unclear to what extent exosomal NfL derived from healthy neurons

may contribute to the concentrations in biofluids. In the context

of our model, we believe that exosomal NfL would represent a

relatively small and roughly constant addition to the CSF NfL

concentration and not materially alter the results.

Limitations of our model primarily reflect the relatively small

number of HD subjects in the HD-CSF and Hett studies. Concerns

have also been raised about the MRI methods for quantifying

net CSF flow (Liu et al., 2022), including diurnal variation

(Nilsson et al., 1992) and the effects of respiration (Spijkerman

et al., 2019). In this regard, any systematic errors in the assumed

values of CLCSF will be compensated for in our model by the

estimated value of cNfLBrain, thereby preserving the agreement

between the predictions of Equation 3 and the cNfLCSF data.

Lastly, the model is currently limited to describing NfL dynamics

in CSF rather than plasma where similar changes with age

and neurodegenerative disease have been observed (Khalil et al.,

2018). For the reasons noted in the Introduction, extending the

current model to the blood compartment will require a better

understanding of the input, metabolism and clearance processes

affecting circulating NfL in order to account for the observed effects

of blood volume, BMI, renal function and other factors.

In principle, our semi-mechanistic model could apply to other

chronic neurodegenerative conditions such as Amyotrophic Lateral

Sclerosis, Alzheimer’s disease, Multiple Sclerosis, Parkinson’s

disease and others (Khalil et al., 2018). In these other conditions,

the validity of our model will depend on the mechanisms that

release and clear NfL from damaged neurons. While for aging

and HD, the data are consistent with the hypothesis that all of

the NfL released from damaged neurons is cleared by CSF flow,

it is possible that in other diseases some of the NfL released

could be cleared prior to reaching the CSF. For example, in

Alzheimer’s disease it was reported that low plasma levels of NfL

were associated with increased activation of cortical microglia

(Parbo et al., 2020), suggesting in this case that NfL clearance

by microglia could be an important contributor to the NfL mass

balance. It is also conceivable that in some neurological conditions,

NfL could be released into CSF from damaged neurons that might

not fully degenerate and lead to measurable loss of brain volume.

Such cases would require adaptions to Equation 1. Extending the

application of our model to other diseases will require quantitative

data on the time-course of brain volume, NfL concentrations in

CSF, and ideally measurements of CSF flow in these states. In the

case of modeling acute traumatic conditions where NfL increases
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sharply (Khalil et al., 2018), the quasi-steady-state assumption of

Equation 3 may not be appropriate. In that case, Equation 2 will be

required and the volume of the CSF compartment will have to be

estimated or taken from the literature.

Finally, from the clinical perspective our model has two

important implications. First, it suggests that the NfL concentration

in CSF may indicate the current rate of neurodegeneration as

opposed to the extent of neurodegeneration. Second, to assess the

extent of neurodegeneration, the area under the NfL concentration-

time curve over a relevant time interval would yield a measure

proportional to the total brain volume lost during that time—a

prediction of themodel that is testable empirically.We believe these

two points will benefit researchers investigating NfL in the context

of neurodegeneration.
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