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Intuition plays a crucial role in human driving decision-making, and this

rapid and unconscious cognitive process is essential for improving tra�c

safety. We used the first proposed multi-layer network analysis method, “Joint

Temporal-Frequency Multi-layer Dynamic Brain Network” (JTF-MDBN), to study

the EEG data from the initial and advanced phases of driving intuition training

in the theta, alpha, and beta bands. Additionally, we conducted a comparative

study between these two phases using multi-layer metrics as well as local and

global metrics of single layers. The results show that brain region activity is

more stable in the advanced phase of intuition training compared to the initial

phase. Particularly in the alart state task, the JTF-MDBN demonstrated stronger

connection strength. Multi-layer network analysis indicates that modularity

is significantly higher for the non-alert state task than the alert state task

in the alpha and beta bands. In the W4 time window (1 second before a

collision), we identified significant features that can di�erentiate situations where

a car collision is imminent from those where no collision occurs. Single-layer

network analysis also revealed statistical di�erences in node strength and

local e�ciency for some EEG channels in the alpha and beta bands during

the W4 and W5 time windows. Using these biomarkers to predict vehicle

collision risk, the classification accuracy of a linear kernel SVM reached up

to 87.5%, demonstrating the feasibility of predicting driving collisions through

brain network biomarkers. These findings are important for the study of human

intuition and the development of brain-computer interface-based intelligent

driving hazard perception assistance systems.

KEYWORDS

driving intuition, multi-layer networks, functional connectivity, PLI, EEG

1 Introduction

Intuition, as an essential cognitive process in human decision-making and problem-
solving, has been extensively described and researched across multiple disciplines,
including philosophy (Bealer, 1998), psychology (DePaul and Ramsey, 1998), management
(Akinci and Sadler-Smith, 2012), and cognitive science (Nichols, 2004). Intuition involves
rapid judgment and processing of information, often occurring at a subconscious level. In
psychology, intuitive decision-making is viewed as a swift cognitive process playing a key
role in handling complex situations. Slovic and Västfjäll (2010) proposed that in hazardous
situations, decisions are made through an automatic processing system reliant on emotions

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1421010
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1421010&domain=pdf&date_stamp=2024-06-26
mailto:lihuazhang@fudan.edu.cn
https://doi.org/10.3389/fnins.2024.1421010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1421010/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liang et al. 10.3389/fnins.2024.1421010

and experience, which is mostly irrational and faster than
controlled processing systems. According to Daniel Kahneman’s
dual-system theory (Daniel, 2017), intuitive decision-making is
usually associated with the brain’s System 1 thinking, characterized
by being fast, automatic, and requiring little cognitive resources.
In contrast, System 2 thinking is slower, more logical, and
conscious. Moreover, the effectiveness of intuition varies in
different application scenarios: experienced pilots can make quick
and accurate decisions in adverse weather, seasoned police officers
can rapidly identify suspects, and skilled table tennis players can
accurately anticipate the ball’s landing point and direction in a short
time (Cokely and Feltz, 2014). It is this rapid and unconscious
decision-making process that plays a vital role in enhancing
driving safety.

Driving intuition is a typical manifestation of human brain
intuition in real-world scenarios and is an important focus for
studying the emergence and development of intuition in complex
environments (Risen, 2017). Driving, a daily activity fraught with
risks of injury, death, and associated costs, demands high levels
of cognitive and sensory engagement from drivers (Abay and
Mannering, 2016). Although many manage to maintain safety, the
complexity and variability of the driving environment continually
pose potential risks. In such contexts, human intuition is pivotal,
particularly in collision anticipation. It emerges as a complex
cognitive process, where drivers often take preventative actions,
like quick braking or steering, before fully realizing the risk (Duma
et al., 2017). This preconscious warning in driving scenarios,
crucial for emergency responses, might be key in reducing traffic
accidents. Recent studies, including those by Liang and Lin (2018),
have showed that classical drivers’ risk and safe classification
could very well be done by using physiological and behavioral
measures. Concurrently, Zhang and Yan (2023) has leveraged these
EEG indicators to develop a neural network model that estimates
collision probabilities at unsignalized intersections.

Existing research has confirmed that the human brain can
perceive potential risks before the arrival of danger, a phenomenon
that underscores the importance of intuition in driving safety.
For example, the study by Kveraga highlights the brain’s ability
to use past experiences to interpret sensory information and
predict the future, particularly in visual recognition (Kveraga
et al., 2007). Furthermore, research by Shankaran demonstrates
that the brain’s response to fear is so rapid that it occurs
before conscious recognition, a finding confirmed through the
study of the amygdala using ultra-high field magnetic resonance
imaging techniques (Ravi Shankaran, 2013). Steingroever et al.
(2018)’s study highlights intuitive decision-making mechanisms.
Comparing healthy individuals and frontal lobe-damaged patients
in the Iowa Gambling Task, they find that healthy participants
develop an ability to anticipate and avoid card decks previously
associated with net losses (Steingroever et al., 2018). Moreover, the
Contingent Negative Variation (CNV), an endogenous component
associated with cognition discovered by Walter in 1964, has been
linked to event anticipation and motor preparation. Analysis of
its waveform composition and brain electrical signals related to
prediction has provided new insights into this field (Cohen, 1969;
Berchicci et al., 2020; Kóbor et al., 2021; Fiorini et al., 2023). These
studies reveal that human intuitive responses in decision-making

are driven by complex brain mechanisms, especially in high-
risk and rapid-response scenarios such as driving. This involves
the coordinated work of brain, including sensory information
processing (Frolov et al., 2019), memory retrieval (Rugg and
Vilberg, 2013), risk assessment (Brandtstädter et al., 2004; Li et al.,
2022), and predicting future events (Ramnani and Miall, 2004;
Mullally and Maguire, 2014), enabling drivers to react quickly
in emergencies.

1.1 EEG-based functional brain network

With its high temporal resolution and the ability to precisely
track neural activity, electroencephalography (EEG) has become
a powerful tool for exploring the brain’s working state. Especially
in improving assisted driving systems, EEG has sparked research
interest, such as in driving fatigue detection (Mu et al., 2017;
Ma et al., 2019), distraction detection (Li et al., 2021; Zuo et al.,
2022), and more, providing important foundations for developing
driving safety systems. Additionally, with its temporal resolution
far surpassing that of functional Magnetic Resonance Imaging
(fMRI), EEG plays a key role in neuroscience research on the brain’s
decision-making process in fast, unconscious states (Mullinger
and Bowtell, 2011). Recent neuroscience studies indicate that the
brain’s executive capabilities stem not just from the independent
roles of distinct regions, but also from their interconnectivity and
communication (Stallen and Sanfey, 2015; Lu et al., 2019). Likewise,
intuition, a key cognitive function, depends significantly on the
interconnectedness and cooperation of brain regions (Kuo et al.,
2009; Erdeniz and Done, 2019).

Functional brain networks constructed using EEG serve as an
invaluable methodology for the investigation of interdependencies
among various cerebral regions (van Straaten and Stam, 2013).
These networks facilitate the precise identification and analysis of
interconnected and active cerebral regions during intuitive driving,
thereby yielding pivotal insights into the neural mechanisms
underlying this phenomenon. Currently, this approach has seen
extensive application in research pertinent to driving. Notably,
Wang observed alterations in the optimal topological structure
of the Phase Lag Index (PLI) functional network amidst driving
fatigue, with a particular emphasis on the connectivity alterations
from frontal to parietal or occipital regions (Wang et al., 2021b).
In parallel, Perera et al. (2022) investigated EEG-based driver
distraction classification, employing diverse brain connectivity
estimation methods. In addition to driving, the combined
application of functional brain networks and graph theory analysis
has been extended to other scientific fields, including the diagnosis
and treatment of neurological disorders (Jiao et al., 2023; Zeng et al.,
2024), motor imagery (Gu et al., 2020), and emotion recognition
(Guo et al., 2024), thereby underscoring their extensive scientific
merit and potential for varied applications.

Current research on the neural mechanisms underlying
intuition, particularly in driving, remains limited. The majority of
extant research primarily focuses on discerning intuitive predictive
behaviors by comparing statistical significances in the time-
frequency domains of various EEG signals, which is limited to
establishing probabilistic disparities at the level of EEG signals and
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FIGURE 1

Workflow for EEG data processing and multi-layer dynamic network analysis in anticipation of driving intuition.

lacks a robust physiological interpretability (Duma et al., 2017; Jia
et al., 2023). Moreover, several studies are limited to the correlation
between isolated cerebral region and intuition, thereby neglecting
the crucial interplay among different cerebral regions (Kuo et al.,
2009; Erdeniz and Done, 2019). Notably, intuition is a dynamic
cognitive process involving rapid collaboration and reorganization
among cerebral regions, and it can be enhanced through specific
training (Fellnhofer et al., 2023). However, most related research
focuses on brain activity at fixed time period lengths, neglecting the
dynamics of cerebral region activities over time and the individual
variability and learnability of intuitive capabilities, thereby failing
to explore the temporal evolution of brain connectivity. To address
these limitations, a novel approach has emerged: the multi-layer
dynamic networks (Han et al., 2020; Chang et al., 2022). This
analytical method measures the synchrony of EEG signals across
different time windows or bands, integrating the advantages of
single-layer networks while emphasizing dynamic characteristics in
the temporal dimension.

To address extant gaps in the field, this study represents the first
systematic integration of driving intuition, collision anticipation,
and dynamic networks. Employing a combination of PLI and the
innovative JTF-MDBN approach, we investigated the brain region
connectivity changes corresponding to perception, prediction,
and response in instantaneous vehicle collision scenarios. By
analyzing the dynamic characteristics of brain networks during
the initial (ITIP) and advanced phase (ITAP) of intuition training,
this research reveals the patterns of brain network activity in
situations of emergency evasion or impending collision, identifying
significant changes in the brain network during emergency
responses. These findings offer new perspectives on understanding

the dynamics of brain networks during driving and provide
a scientific basis for the development of EEG-based collision
anticipation systems and Advanced Driver-Assistance Systems
(ADAS). The key contributions of this paper are as follows:

1. Provided a detailed examination of the brain network
characteristics during the driving intuition process by analyzing
dynamic networks, particularly highlighting the dynamic
changes in brain networks at moments of emergency evasion
and potential collision.

2. Conducted a comparative analysis of the brain network
differences between the initial and advanced phases of intuition
training, demonstrating that specific training or stimuli can
enhance the effectiveness of intuition.

3. Integrated and evaluated a suite of biomarkers, encompassing
multi-layer and single-layer network features(both
local and global), substantiating the efficacy of driving
intuition biomarkers in collision identification through
classification testing.

2 Materials and methods

2.1 Public datasets

We utilized a publicly available EEG dataset named the
Simulated Car Crash Anticipation EEG Dataset (SCCA EEG
Datasets) (Duma et al., 2017), which focuses on danger perception
in intuitive driving. This dataset was collected using a simplified
driving simulator as a behavioral task, capturing EEG signals of
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participants during the process of intuitive driving. The dataset
includes EEG recordings from 40 participants using a 32-channel
EEG device based on the 10–20 international system (electrode
channel positions are shown in Supplementary Figure 1). In the
original study, each participant was involved in two task states:
“Non-Alert State” (NAS) and “Alert State” (AS).

During the NAS task, participants were required to watch a
segment of driving simulation to familiarize themselves with the
environment and establish a temporal expectation, with explicit
notification that no collisions would occur during this phase. The
NAS task consisted of 14 trials, each lasting 7 to 10 seconds. In the
AS task, the task involved two possible outcomes: “CrashEnd” (AS-
CE) and “NoCrash” (AS-NC). Participants were informed about the
randomness of the trial endings and were asked to make an effort
to predict whether a car crash would occur. The AS task involved
20 trials each time, with durations randomly varying between 25 to
40 seconds. Collisions occurred randomly in 50 % of the trials.

2.2 EEG preprocessing

In this study, we employed standardized preprocessing steps
to reduce noise interference and used signals from the pre-event
period to correct for EEG responses during the studied events,
thereby controlling for pre-existing differences in brain activity
unrelated to the experimental conditions. The preprocessing of
EEG data was accomplished through custom programming in
MATLAB. The first step in preprocessing involved downsampling
the data to a sampling rate of 256 Hz. This was followed by a series
of filtering operations targeted at three distinct frequency ranges:
theta band (4–8 Hz), alpha band (8–13 Hz), and beta band (13–30
Hz) using finite impulse response (FIR) filters to minimize phase
distortions. After filtering, the data underwent further cleaning and
formatting, which included the removal of outer channels in the
EEG recordings. Additionally, the data was segmented into periods
ending with specific events, each with a duration of three seconds,
to capture brain activity preceding the occurrence of these events.

Independent Component Analysis (ICA) was applied to
identify and remove artifacts using the EEGLAB (Delorme
and Makeig, 2004), plugins FASTER (Nolan et al., 2010), and
ADJUST (Mognon et al., 2011), where FASTER was utilized
for initial automatic artifact detection and ADJUST for fine-
tuning artifact removal based on statistical thresholds. Post-ICA,
channels containing artifacts underwent interpolation to ensure
data integrity and consistency, followed by average reference
processing to reduce common noise and enhance data quality.
Finally, to investigate the two phases of intuition training, ITIP and
ITAP, the study defined the first five experimental trials as ITIP and
the last five trials as ITAP.

2.3 Construction of EEG network

2.3.1 Network construction and sliding time
window

PLI is a phase-based method for analyzing functional
connectivity, utilized to assess phase synchronization between
signals from two channels (Stam et al., 2007). This PLI metric

is particularly apt for exploring functional connectivity in multi-
channel EEG data. It mitigates the volume conduction effects often
encountered in EEG signal acquisition, thereby more accurately
reflecting true connectivity between brain regions.

PLI =
〈

sign
(

1φrel(t)
)〉

〉 = |
1

N
6N

n=1sign
(

1φrel(tn)
)

(1)

Where n represents the time points, and 1φt denotes the
relative phase difference between two signals at time t. The
instantaneous phase is calculated using the Hilbert transform. The
sign of this phase difference, whether positive, negative, or zero,
is determined using the signum function, sign. The PLI is the
average of the signs of the phase differences across all time points.
Consequently, the PLI value ranges from 0 to 1. A value close to 0
indicates a lack of consistent phase lead or lag relationship between
the two signals.

The use of a sliding window method aims to parse the
temporal variability in EEG signals, thereby revealing the dynamic
integration and reconfiguration processes of the brain’s functional
networks (O’Neill et al., 2018). As depicted in Figure 1, each task
epoch, lasting three seconds, is divided into time windows of one-
second width with a step size of 0.5 seconds, resulting in a total of
five time windows (W1 to W5). This choice is based on previous
research (Chang et al., 2022) and empirical evidence, indicating
that these parameters strike a balance between temporal resolution
and computational feasibility. For each time window, the PLI values
are computed between pairs of EEG channels, yielding a symmetric
functional connectivity matrix.

2.3.2 Construction of multi-layer networks
Multi-layer networks, integrating multiple single-layer

networks, can reveal deeper insights that are not discernible in
single-layer networks (Hipp et al., 2012; Boccaletti et al., 2014).
In such a structure, each layer shares the same set of nodes,
representing different regions of the brain. This configuration
encompasses not only the connectivity information among
nodes within each network but also includes the connections
across different layers. The focus of our analysis will be on the
characteristics of the weighted networks both within and between
each layer of this multi-layer network structure.

In constructing multi-layer networks, we use PLI to quantify
inter- and intra-layer connectivity. For intra-layer connectivity,
PLI calculates the likelihood of synchronization between pairs
of EEG channels within the time window, thus encompassing
the functional connectivity within each different network layer.
In contrast, for inter-layer connectivity, PLI evaluates the
synchronization between different time windows, thus providing
insight into the dynamic interactions between the layers of
the network.

To precisely describe the multi-layer network structure in
mathematical terms, the concept of a supra-adjacency matrix
is introduced (Boccaletti et al., 2014). Specifically, the supra-
adjacency matrix can be defined by the following formula:

Asupra = diag(Al)+ (H⊗ B) (2)

Where diag(Al) refers to a block diagonal matrix. This block
diagonal matrix is composed of the adjacency matrices Al for each
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layer l within the multi-layer network, where l ranges from 1 to L.
On the other hand, (H ⊗ B) represents the connections between
layers, where H is a matrix describing the strength and pattern
of connections between different layers, B represents a matrix
that defines the pattern of inter-layer connections. The symbol
⊗ indicates the Kronecker product. In this study, B is set as E,
where E is a matrix composed entirely of ones. Therefore, the
matrix constructed in this manner, incorporating both intra-layer
and inter-layer connections, can be represented as follows:

Asupra =













A1 H12 . . . H1L

H21 A2 . . . H2L
...

...
. . .

...
HL1 HL2 . . . AL













(3)

2.3.3 Multi-layer network measures
In the metric analysis of multi-layer networks, this paper

primarily employs three characteristic parameters. Firstly, to reveal
the coordination consistency between different layers, multi-layer
modularity is a concept quantified by the Q-value. The Q-value
varies from 0 to 1, representing the degree of network separation
from low to high. It signifies the level of separation between
different layers (Mucha et al., 2010; Pedersen et al., 2018). The
definition of Q-value in a multi-layer context is outlined as follows:

Q(γ ,ω) =

1

2µ

∑

ijlm

[

(Al − γl
kiskjl

2ml
)δ(Ail,Ajl)+ δ(i, j) · ωjml

]

δ(Ail,Ajm) (4)

Where γ signifies the cumulative link strength within the multi-
layer network. k represents the strength of a node i at the layer l,
and m denotes the total degree sum of all nodes at the same layer
l. γl denotes the resolution parameters specific to the topology of
the layer l, and ωjml symbolizes the inter-temporal connectivity
parameter for node j across layers l and m. δ(Ail,Ajm) are 1 for
nodes in the same module and 0 otherwise.

To further investigate the brain’s integrative and coordinative
functions under various conditions, the concept of Multi-layer
Participation Coefficient (MPC) is introduced (Boccaletti et al.,
2014). It measures the homogeneity of the number of neighbors a
node has within a multi-layer network. It is calculated as follows:

MPC =

∑N
i=1 MPCi

N
=

L

L− 1



1−
L
∑

l=1

(

k
[l]
i

oi

)2


 (5)

where L is the number of layers. MPCi represents the MPCi value
of node i within a multi-layer network. MPCi=1 when the degree
is the same in all layers and MPCi=0 when a node has non-zero
degree in only one layer. k[l]i is the degree in the layer l. oi is the
overlapping degree of the node i. The mean MPC for the entire
multiplex network is calculated by averaging the individual MPCi

values across all nodes.
In addition to the previously mentioned metrics, the multi-

layer network can also be evaluated using Layer-Layer Correlation
(LLC) Coefficients (Boccaletti et al., 2014). This involves computing

the Pearson correlation coefficient between every pair of network
layers to assess the degree of correlation among the layers,
particularly between layers corresponding to different time
windows.The formula for LLC is as follows:

R(Mi,Mj) =

∑

(Mi −Mi)(Mj −Mj)
√

∑

(Mi −Mi)2
∑

(Mj −Mj)2
(6)

Where Mi and Mj represent the matrix blocks from different time
windows in the super-adjacency matrix. Mi and Mj are the mean
values of the matrix blocksMi andMj, respectively.

2.3.4 Single-layer network measures
In the analysis of single-layer networks, we employed two

types of classic graph theory metrics. These metrics are crucial for
revealing the complex structure and functional characteristics of
brain networks (Rubinov and Sporns, 2010). Local metrics delve
into the properties of individual nodes or small groups of nodes
within the network. Node strength (NS) is defined as the sum
of the weights of all edges connected to that node. Path length

(PL) is the average distance from one node to all other nodes,
reflecting the efficiency of information transfer in the network.
Local efficiency (E-loc) reflects the compactness of the “group” of
adjacent nodes in the network, and is defined as the harmonic
mean of the shortest path between all nodes in the sub-network.
Betweenness centrality (BC) is the proportion of all the shortest
paths in the network that pass through a given node, with nodes
having higher BC values participating in a large number of shortest
paths. Eigenvector centrality (EC) takes into account not only the
number of connections of a node but also the importance of
its neighbors, with higher values indicating that the node is a
key player in information transfer and integration. Global indices
provide a macroscopic understanding of the performance and
characteristics of the network as a whole. The Clustering Coefficient

(CC) of a node is defined as the ratio of the number of existing
connections among the node’s neighbors to the maximum possible
number of edges between them. The Assortativity (Ass) coefficient
refers to the correlation coefficient between the strengths of the
nodes at both ends of an edge, used to measure the correlation
between connected pairs of nodes. The calculation methods for
single-layer network metrics are shown in Supplementary material.

2.3.5 Statistical methods
Before the main analysis, we verified that our data met the

prerequisites for normal distribution and variance homogeneity
required by ANOVA. We conducted the Shapiro-Wilk test for
normality and Levene’s test for equality of variances. Upon
confirming that the data met these assumptions, we proceeded with
one-way ANOVA to examine differences in multi-layer network
metrics, connectivity strengths, and individual single-layer network
characteristics across the three task conditions (NAS, AS-CE, and
AS-NC). Given the multiple metrics and time windows analyzed,
we applied False Discovery Rate (FDR) correction to ensure that
the reported effects are robust statistically. Additionally, a single “*”
indicates a corrected p-value less than 0.05, “**” denote a p-value
less than 0.01, and “***” represent a p-value less than 0.001.
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FIGURE 2

PLI brain network connectivity during initial and advanced phases of intuition training (ITIP vs. ITAP).

3 Results

3.1 Connectivity of multi-layer networks

Figure 2 illustrates the changes in functional connectivity
during intuitive driving, specifically presenting the multi-layer
network super-adjacency matrices across theta, alpha, and beta
bands in three task states (NAS, AS-CE, and AS-NC) for both
ITIP and ITAP. These matrices are derived from the average of
all trial data, with diagonal blocks representing coupling within
time windows and off-diagonal blocks revealing coupling between
time windows.

The analysis indicates that the PLI connectivity strength within
the central diagonal matrix blocks is significantly higher than in
the off-diagonal blocks. Notably, during the ITIP, the connectivity
patterns observed in the ITAP were absent, suggesting that the
brain network during ITIP had not yet formed a stable pattern,
rendering it unsuitable for intuition studies. In the ITAP, regardless
of theta, alpha, or beta bands, intra-layer connectivity was observed
to be markedly stronger than inter-layer connectivity. This was
particularly evident in the NAS task, where connectivity levels
were significantly lower than in the AS task, including both AS-
CE and AS-NC conditions. In AS, enhanced intra- and inter-layer
connectivity was observed in time windows W3, W4, and W5.
Given these findings, subsequent analyses will primarily focus on
the brain networks in the ITAP.

To comprehensively assess the variations in network
connection weights during the ITAP under different conditions,
we calculated the overall mean of the supra-adjacency matrices
for three different experimental conditions (including intra-layer
and inter-layer connections), as shown in Figure 3. The results
indicate that across all bands, the connection weights for AS-CE
and AS-NC are almost identical, while the connection weights for

FIGURE 3

Grand averaged PLI values across task conditions in theta, alpha,

and beta bands. **p-value < 0.01, ***p-value < 0.001.

the NAS Task are significantly lower than those for AS-CE and
AS-NC. Statistical analyses revealed significant differences between
NAS and AS tasks across all three bands. However, the weight
difference between AS-CE and AS-NC was not significant (theta: p
= 0.5054, alpha: p = 0.3254, beta: p = 0.4367).

3.2 Graph metrics of multi-layer networks

To highlight those connections that are crucial for functional
communication in the brain and to ensure the accuracy and
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FIGURE 4

Statistical distribution of PLI value and the PDF for the three

conditions across theta, alpha, and beta Bands.

effectiveness of the analysis, this study employed amethod based on
the statistical distribution of brain network connectivity matrices
to determine the threshold for functional brain networks. For each
band in Figure 2, we constructed a one-dimensional vector of PLI
values for three super-adjacency matrices, which simultaneously
consider the values of diagonal and off-diagonal blocks to equally
consider connections within and between windows. Then, as
illustrated in Figure 4, we analyzed the statistical distribution
and Probability Density Function (PDF) of these PLI values. By
calculating the 95% confidence boundary, we determined the
threshold for the theta band to be 0.2375, for the alpha band to be
0.2349, and for the beta band to be 0.2278.

Based on thresholded weighted networks, we calculated three
multi-layer network metrics: Q-value, MPC, and LLC. The Q-value
results are displayed in Figure 5A using box plots, where the top
and bottom boundaries represent the 25th and 75th percentiles,
respectively, indicating the distribution of the central 50% of the
data. Across all three bands, the Q-value for NAS tasks were
found to be higher than those for AS tasks, with significant
differences observed in the alpha and beta bands. Additionally, in
the theta band, the distribution ranges of Q-value for the three task
states were similar, showing no significant differences. A notable
distinction was also identified in the alpha band between AS-CE
and AS-NC tasks (p <0.001). However, for MPC, as shown in
Figure 5B, the values for the three tasks were similar and did not
demonstrate any significant differences.

We calculated the distribution of LLC across different network
layers under three task states in the theta, alpha, and beta bands.
The observed LLC matrices exhibit symmetry and show higher
LLC values between adjacent time windows, which gradually
decrease with increasing time intervals. This indicates that the PLI
connectivity strength of the brain network maintains a high level
of similarity over short time periods, but gradually weakens over
longer time scales. After conducting a detailed statistical analysis of
the LLC matrices in the theta, alpha, and beta bands, no significant

differences were found in the theta band. However, in the alpha
band, significant differences in correlations were found between w1
and w5; w2 and w4; as well as between w4 and w5. In the beta
band, significant differences were observed between W4 and each
of W1 and W3; and between W5 and each of W2, W3, and W4.
Figure 6 presents the distribution of LLC across different network
layers under three task states in the alpha and beta bands.

3.3 Graph metrics of single-layer networks

3.3.1 Analysis of local metrics
Following an analysis of local graph-theoretical metrics in

single-layer networks, significant findings were observed in the
NS and E-loc metrics within the Alpha and Beta bands, and
did not show any significance in the remaining metrics. Figure 7
illustrates the distribution of these metrics across different task
states (NAS, AS-CE, and AS-NC) and time windows (W1 to W5).
Figures 7A, B depict the topographical distribution of NS and E-
loc in the Alpha band, respectively. It is evident that the NS and
E-loc distributions in NAS tasks are significantly lower than in AS
tasks. Additionally, significant differences between AS-CE, and AS-
NC tasks were observed in some channels during the time window
W4 of the alpha band. Similarly, as shown in Figures 7C, D, NAS
tasks in the Beta band also exhibited lower values. At time window
W5, coinciding with the event occurrence, brain regions showed
more intense activities compared to other time windows, with
significant differences between AS-CE, and AS-NC tasks in some
channels at W5 (Statistically significant channels listed in Table 1.
For metrics that did not show statistical significance, please refer to
the Supplementary Table S1).

3.3.2 Analysis of global metrics
In the complex domain of multi-layer dynamic brain network

research, global metrics play a pivotal role. We computed the CC
and Ass coefficient for each time window within the theta, alpha,
and beta bands. Figure 8 meticulously illustrates the variations
in CC values across NAS, AS-CE, and AS-NC in the alpha
and beta bands. Notably, in the beta band, significant statistical
differences were observed in CC between NAS and AS for each
time window. Of particular interest, significant differences between
AS-CE and AS-NC were evident in the alpha band’s W4 and the
beta band’s W5. Detailed data on global metrics can be found in
Supplementary material.

3.4 Classification of alertness states

To further assess whether network metrics with significant
differences could serve as potential biomarkers to effectively
distinguish between AS-CE and AS-NC, thereby indicating the
predictability of ollision perception in driving intuition under
specific circumstances, we utilized three representative algorithms
for classification: Support Vector Machine (SVM) with linear and
radial basis function (RBF) kernels, based on statistical learning;
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FIGURE 5

(A) illustrates the distribution of the Q-value, while (B) depicts the MPC value, both measured across theta, alpha, and beta bands under three task

conditions. **p-value < 0.01, ***p-value < 0.001.

FIGURE 6

The LLC matrix displays numerical values representing LLC coe�cients. “*” mark statistically significant di�erences between NAS and AS (including

AS-CE and AS-NC), The top down is alpha and beta.

Random Forest (RF), based on ensemble learning; and the K-
Nearest Neighbors algorithm (KNN), based on Euclidean distance.
These potential biomarkers were employed as inputs for these
classifiers, with the biomarkers used listed in Table 1. To ensure

unbiased and statistically significant results, the classifiers were
evaluated using 5-fold cross-validation. Classification performance
was quantified and assessed using the average accuracy, sensitivity,
specificity, and precision, as detailed in Table 2, with linear kernel
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FIGURE 7

(A, B) Illustrate the topographical distribution of NS and E-loc in the Alpha band, while (C, D) depict the same for the Beta band. Each row

corresponds to a distinct task state, while each column represents a specific time window. The intensity of the metric values is depicted through a

gradient of color shades.

FIGURE 8

Comparison of CC: (A) presents comparisons in the alpha band, and (B) in the beta band. **p-value < 0.01, ***p-value < 0.001.

SVM demonstrating the best performance. In addition, we also
conducted comparative analysis using features extracted only
from a single-layer network without constructing a multi-layer
network to evaluate the effectiveness of simpler network models in
classification tasks.

The t-distributed Stochastic Neighbor Embedding (t-SNE)
results, as depicted in Figure 9, are derived from a dimensionality
reduction of 22 features aimed at distinguishing alertness states
between AS-CE and AS-NC. The scatter plot demonstrates that,
although there is some overlap between the two categories in the
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TABLE 1 Statistically significant metrics utilized.

Bands Windows Metrics EEG channels

Alpha / Q-value /

NS Pz, P4, T6, FT7, CP4

4 E-loc Fp1, P3, P4, T6, CP4, CPz

CC /

Beta NS F3, Fz, C4, CP3, CP4

5 E-loc F3, P3, FC4

CC /

two-dimensional t-SNE space, a clear pattern along one of the
axes suggests that these features have the potential for effective
classification of the AS.

4 Discussion

In this study, we conducted an in-depth analysis of EEG-
based multi-layer dynamic brain networks using PLI, with the
aim of exploring driving intuition and anticipatory collision
perception capabilities. Our findings reveal that intuition training
enhances drivers’ predictive intuitive responses to potential
collision scenarios, concurrently facilitating the stabilization of
brain network structures. By conducting a comprehensive analysis
of various graph-theoretical metrics, we identified significant
biomarkers in the context of intuitive driving, such as Q-
value and NS in certain channels. We also adopted MPC and
LLC to enhance our understanding of the brain’s predictive
ability in collision scenarios. These multi-layer network analysis
methods have proven their effectiveness in EEG analysis of
driving scenarios (Dang et al., 2020). These biomarkers effectively
discriminate between AS-CE and AS-NC scenarios under the AS
in the ITAP. This classification task holds practical importance
for unveiling the underlying mechanisms of intuitive driving.
Our results demonstrate significant differences in parameters
of multi-layer and single-layer networks across different task
states, particularly during AS tasks, offering new insights into
understanding and predicting drivers’ intuitive responses in
potential collision scenarios.

4.1 Enhancement of intuitive driving skills
through training

In this study, the role of intuition training is evaluated for its
impact on enhancing individuals’ intuitive response capabilities in
complex driving tasks. We study the first five trials and the last five
trials of the experimental process separately and constructed the
JTF-MDBN as shown in Figure 2. We observe that brain network
connectivity patterns in the ITAP are more stable and pronounced
compared to the ITIP, especially in the intra-layer connections,
it shows a stronger connection strength. This stability may stem
from the enhanced functioning of task-related brain regions and
neuroplastic changes induced by repetitive task execution (Chu

et al., 2012). These findings provide evidence for the plasticity
of intuitive abilities, supporting the notion that intuition is not
only innate but can also be enhanced through appropriate training
(Hogarth, 2001; Fellnhofer et al., 2023).

Given that the EEG data from the ITAP reflect a more mature
and stable intuitive processing ability, our analysis is confined to
this phase. The ITAP data more accurately represent the enhanced
intuitive capabilities post-training, and the brain networks during
the ITAP have adapted to the experimental environment, the data’s
stability and reliability are higher, thus making the analysis more
representative and predictive.

4.2 Dynamics of brain network in driving
intuition

We conducted a detailed analysis of the brain network
structural features under NAS, AS-CE, and AS-NC. By establishing
a hyperadjacency matrix, we observed that in all three bands,
as shown in the ITAP brain network of Figure 2, the NAS task
exhibited significantly lower PLI connectivity strength compared
to the AS task. Specifically, in the AS task, the differences appeared
after W3, with the AS-CE task showing stronger network activity
in time window W4, persisting until W5, while the AS-NC
task exhibited a gradual weakening trend in W5. This difference
was particularly pronounced in the Beta band, potentially due
to the correlation between the Beta frequency and human
brain alertness (Braboszcz and Delorme, 2011). Additionally, as
shown in Figure 7, the NS distribution indicated that the PLI
connectivity strength in the NAS was lower than in the AS,
and in the AS, the NS distribution on both sides of the brain
roughly exhibited a symmetric distribution. In addition to the NS
distribution mentioned above, in the single-layer metrics, both E-
loc distribution and global metrics CC revealed features similar to
those mentioned earlier.

Under the AS, the brain network exhibited significantly higher
PLI connectivity strength compared to the NAS, which may
be attributed to the increased information processing demands
and rapid response requirements during alertness (Wang et al.,
2021a). As shown in Figure 7, both NS and E-loc distribution
maps, the prefrontal regions of the brain under the AS task
gradually increased in the W3, W4, and W5 time windows
before the collision occurred, and especially the left prefrontal
region of the brain was significantly activated in the W4 time
window of AS-CE. This result supports the idea that the left
prefrontal cortex plays a key role in the regulation of alertness
(Kim et al., 2017). According to several neuroscience studies, the
left prefrontal cortex is recognized as one of the key brain regions
regulating attention, decision making and executive functions.
For example, in their study, Dosenbach et al. (2007) noted that
the prefrontal cortex is involved in the regulation of higher
cognitive processes such as planning, decision making, and task
switching, which are essential for maintaining high alertness in
complex environments. In addition, Corbetta and Shulman (2002)’s
study emphasized the role of prefrontal vs. parietal networks
in regulating attention and alertness, particularly in anticipating
and responding to external stimuli. These studies echo our
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TABLE 2 Classification outcomes corresponding to di�erent classifiers.

JTF-MDBN features Single-layer features

SVM-rbf SVM-Linear RF KNN-3 SVM-rbf SVM-Linear RF KNN-3

Accuracy 81.5% 87.5% 87.2% 73.3% 69.8% 72.4% 74.1% 65.3%

Sensitivity 0.80 0.86 0.82 0.65 0.68 0.70 0.73 0.55

Specificity 0.83 0.89 0.92 0.82 0.70 0.77 0.76 0.70

Precision 0.82 0.88 0.91 0.78 0.69 0.75 0.73 0.68

The bold values signify the largest numerical results.

FIGURE 9

t-SNE visualization of AS di�erentiation between AS-CE and AS-NC.

findings, suggesting that during the state of alertness, the PLI
connectivity strength of brain networks increases, especially in
prefrontal regions, possibly to enhance information processing and
rapid response.

Surprisingly, when analyzing multi-layer graph-theoretical
metrics, we observed a phenomenon different from the previously
mentioned features. We observed that under the NAS, the
value of Q-value was significantly higher than under the AS,
as shown in Figure 5A. This difference may reflect the inherent
structural differences in the brain network under different states.
In the NAS, the brain may tend to maintain a higher degree
of Q-value among various regions, indicating that different
brain regions may engage in more independent processing,
reducing interregional information exchange. Conversely, in
the AS, due to the need for rapid response and stimulus
processing, different brain regions may require closer cooperation,
resulting in reduced Q-value. This tight network connectivity
may facilitate rapid information transmission and integration,
enabling the brain to effectively respond to urgent situations
(Zhang et al., 2017). Therefore, the high Q-value under the
NAS may reflect the independent processing characteristics
of the brain in this state, while the low Q-value under
the alertness state may be related to rapid response and
decision-making processes.

4.3 Prediction of collision perception in
driving intuition

We observed numerous significant features between the AS and
NAS; however, given the presence of continuous risks in normal
driving conditions and the necessity for drivers to maintain a
high level of vigilance at all times, we chose not to classify these
two states. Our research primarily focuses on investigating how
changes in brain network features during the AS can predict a
driver’s perception of potential collision risks. It is essential to
emphasize that the intuitive driver perception of danger referred
to in this study is not a mystical sensation detached from scientific
facts but is based on the driver’s experience and a comprehensive
assessment of various elements in the driving environment. This
intuition can be acquired and enhanced through training and
is not disconnected from scientific reality (Fellnhofer et al.,
2023).

We performed classification using a combination of multi-
layer network metrics, single-layer network local metrics, and
global metrics. The results demonstrate that individuals can
indeed anticipate potential dangers before they occur. In time
windows W4 and W5 during AS, we identified several significant
biomarkers (see Table 1) that contribute to distinguishing different
AS outcomes. Our analysis indicates that in the W4 time window,
participants may have formed clear expectations regarding the
outcome of an impending collision event. This expectation may
enhance the correlation between the W4 time window and its
adjacent time windows, as shown in the analysis results of LLC
Figure 6, with significant correlation between time windows near
W4. Furthermore, key parameters within the W4 and W5 time
windows, such as NS and E-loc, show statistically significant
differences, highlighting the importance of these time windows
in predicting dangers during the AS. We also conducted an in-
depth analysis of Q-value, MPC and LLC metrics, which exhibit
significant dynamic changes in the W4 and W5 time windows. By
using these statistically significant biomarkers, we finally achieved
an average classification accuracy of up to 87.5% in a linear kernel
SVM classifier, showing the feasibility of using these biomarkers
to predict collision hazards during driving, and the application
of this technique to automated driver assistance systems will
further enhance driving safety. In the comparative study, we
further analyzed classification performance using only single-
layer network features. As indicated in Table 2, the classification
results from single-layer network features alone were suboptimal.
This underscores the complexity of brain dynamics, where
a multi-layered, integrative approach significantly outperforms
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single-layer static analysis. The brain’s functional architecture
appears too intricate to be effectively captured by static, single-layer
analyses alone.

5 Conclusion

Our study successfully demonstrated the feasibility of intuition-
based driving collision perception through an in-depth analysis of
driving intuition and collision anticipation perception. This finding
not only highlights the important role of intuition in dealing with
emergency driving situations, but also confirms the validity and
value of brain network analysis as a research tool. We found
that during intuitive driving, the ITAP brain network showed a
more stable and significant pattern of connectivity. Specifically, the
multi-layer network during the ITAP showed significantly stronger
intra-layer connections than inter-layer connections, especially in
the W3, W4, and W5 time windows in the AS task. In terms of
multi-layer network metrics, there were significant differences in
Q-value across task states, especially in the Alpha and Beta bands.
In addition, the LLCmatrix revealed that brain network connection
strengths remained similar in short time scales but gradually
weakened with increasing time intervals, and among the single-
layer network metrics, NS and E-loc showed significant differences
in the Alpha and Beta bands. Among the single-layer global metrics,
CC showed variations across task states, especially in Beta bands
with significant differences between AS-CE and AS-NC. Finally, by
using SVM with linear kernel, the average classification accuracy
reaches up to 87.5%, demonstrating that biomarkers with statistical
differences can be effective in detecting potential driving collisions.

What sets our research apart is that we proposed a novel multi-
layer network analysis method JTF-MDBN that can simultaneously
analyze driving intuition in different bands and continuous time
windows. It is well known that different bands of EEG act
functionally differently and that brain networks for cognitive
processing in the brain change rapidly, making our proposed
method well-suited for such a study. And we combine the
features of multi-layer and single-layer brain networks to provide
insights from both global and local. Multi-layer network analysis
provides a richer understanding of brain network dynamics
in the spatial domain than static methods. Single-layer brain
network analysis reveals differences between states in more detail,
providing critical information for identifying and categorizing
driving states.

In our future work, we expect to design more realistic and
diversified intuition-evoking experimental scenarios to fully evoke
human intuitive responses. To further strengthen the credibility
and depth of our research results, we will collect multimodal data.
Additionally, we will utilize EEG equipment with a larger number
of channels and more advanced EEG data analysis methods to
study the intuitive ability in the human brain. We will continue
to develop and refine network analysis methodologies based on
neural network algorithms, aiming to enhance their applicability
and effectiveness across datasets of varying sizes and complexities.
Combined with the current analysis results, we will develop new
biomarkers for intuition research, as well as study the associations
between the brain regions that exhibit significance across different
intuitive tasks, and further explore the connection between intrinsic

intuitive mechanisms and external stimuli. Moreover, we will
explore integrating human intuition with AI to enhance its
capabilities to correctly handle unfamiliar and complex situations.
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