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The noisy encoding of disparity 
model predicts perception of the 
McGurk effect in native Japanese 
speakers
John F. Magnotti , Anastasia Lado  and Michael S. Beauchamp *

Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 
PA, United States

In the McGurk effect, visual speech from the face of the talker alters the perception 
of auditory speech. The diversity of human languages has prompted many 
intercultural studies of the effect in both Western and non-Western cultures, 
including native Japanese speakers. Studies of large samples of native English 
speakers have shown that the McGurk effect is characterized by high variability 
in the susceptibility of different individuals to the illusion and in the strength 
of different experimental stimuli to induce the illusion. The noisy encoding of 
disparity (NED) model of the McGurk effect uses principles from Bayesian causal 
inference to account for this variability, separately estimating the susceptibility 
and sensory noise for each individual and the strength of each stimulus. To 
determine whether variation in McGurk perception is similar between Western 
and non-Western cultures, we applied the NED model to data collected from 
80 native Japanese-speaking participants. Fifteen different McGurk stimuli that 
varied in syllable content (unvoiced auditory “pa”  +  visual “ka” or voiced auditory 
“ba”  +  visual “ga”) were presented interleaved with audiovisual congruent stimuli. 
The McGurk effect was highly variable across stimuli and participants, with the 
percentage of illusory fusion responses ranging from 3 to 78% across stimuli 
and from 0 to 91% across participants. Despite this variability, the NED model 
accurately predicted perception, predicting fusion rates for individual stimuli 
with 2.1% error and for individual participants with 2.4% error. Stimuli containing 
the unvoiced pa/ka pairing evoked more fusion responses than the voiced ba/ga 
pairing. Model estimates of sensory noise were correlated with participant age, 
with greater sensory noise in older participants. The NED model of the McGurk 
effect offers a principled way to account for individual and stimulus differences 
when examining the McGurk effect in different cultures.
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Introduction

In the McGurk effect, pairing an auditory syllable with an incongruent visual syllable 
produces the percept of a third syllable different than either component syllable (McGurk and 
MacDonald, 1976). The illusion demonstrates the powerful influence of visual information on 
auditory speech perception and has become a popular instrument for examining audiovisual 
integration (Beauchamp, 2018).
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Several models have been developed to account for various 
properties of the McGurk effect. The pioneering fuzzy logic model of 
Massaro (1998) was developed to explain why some pairings of 
incongruent audiovisual combinations produce an illusory fusion 
percept, but for most, participants report the auditory component of 
the stimulus. More recent models improve on the fuzzy logic model 
(Schwartz, 2010) often by incorporating principles of Bayesian 
inference (Andersen and Winther, 2020; Lindborg and Andersen, 
2021) and causal inference (Magnotti et al., 2013, 2018; Magnotti and 
Beauchamp, 2017), although models featuring dynamic predictive 
mechanisms (Olasagasti et  al., 2015) and parallel linear dynamic 
processes (Altieri and Yang, 2016) have also been proposed.

One challenge to modeling studies of the McGurk effect is the 
relatively recent realization that there is enormous variability in the 
McGurk effect across experimental stimuli and participants (Schwartz, 
2010; Jiang and Bernstein, 2011; Stevenson et al., 2012; Basu Mallick 
et  al., 2015). The original description of the McGurk effect used 
stimuli recorded from a single talker and reported that the illusion was 
experienced by nearly all participants. In contrast, Basu Mallick et al. 
tested 12 different McGurk stimuli used in published studies and 
found that the efficacy of the different stimuli ranged from 17 to 58%. 
Across participants, some never perceived the illusion (0%) while 
others perceived the illusion on every presentation of every stimulus 
(100%) (Basu Mallick et al., 2015).

The noisy encoding of disparity (NED) model was developed in 
response to this observation of high variability. Rather than attempt 
to model the perceptual processes that produce the McGurk effect (as 
in the models described above), the NED model uses Bayesian, 
probabilistic inference to predict variation in the McGurk effect across 
stimuli and participants. Stimulus differences are modeled using a 
single parameter for each stimulus (the audiovisual disparity inherent 
in the stimulus), while participant differences are modeled with two 
parameters for each participant (an audiovisual disparity threshold 
and a sensory noise measure).

Using three parameters, the NED model was able to accurately 
predict perception in a sample of 165 native English speakers 
(Magnotti and Beauchamp, 2015). NED also accurately modeled 
perceptual differences between 8 adult cochlear implant users and 24 
normal-hearing subjects who were native German speakers (Stropahl 
et al., 2017). The NED model validated the experimental prediction of 
stronger audiovisual integration in cochlear implant users while 
controlling for differences between stimuli.

Both previous studies that applied the NED model used 
participants from Western cultures (native speakers of English and 
German, respectively). However, perception of the McGurk effect has 
been reported to be markedly reduced in native Japanese speakers 
(Sekiyama and Tohkura, 1991, 1993). This raised the question of 
whether the underlying assumptions of the NED model generalize 
from speakers of Western languages to native speakers of Japanese. To 
answer this question, we measured the percepts of 80 native Japanese-
speaking participants presented with 15 different McGurk stimuli and 
assessed the fit of the NED model.

Methods

All experiments were approved by the Institutional Review Board 
of the University of Pennsylvania, Philadelphia, PA. Data were 
collected from 101 Japanese-speaking participants recruited from the 

communities of the Okinawan Institute of Science and Technology, 
Kyoto University, and the University of Tokyo. All data and analysis 
code are available in Supplementary material. Participants received an 
Amazon gift card for ¥2000 upon completion of the experiment.

A total of 240 audiovisual stimuli were presented to each 
participant in pseudorandom order. The primary stimulus set 
consisted of 15 McGurk videos each containing the incongruent 
pairing of auditory ba with visual ga (AbaVga) or auditory pa with 
visual ka (ApaVka; Table 1). Each McGurk video was presented 10 
times to each participant. As a control, each participant was also 
presented with 90 congruent audiovisual stimuli (30 different stimuli 
presented three times each). Each of the 30 congruent stimuli was 
recorded from a different talker (9 male, 21 female, no overlap with 
the McGurk talkers). The syllable composition of the congruent 
stimuli was 5 AbaVba, 5AgaVga, 5 AdaVda, 5 ApaVpa, 5 AkaVka, 
and 5 AtaVta.

Experimental procedures and data analysis

The study was conducted online using the SoSci Survey research 
platform (Information about SoSci Survey, n.d.). At the beginning of 
the experiment, all participants received a short description of the 
study in Japanese (Table 2). Figure 1 shows the structure of each trial. 
An instruction screen was presented and remained on screen while 
the stimulus video played. At the conclusion of the video, a response 
text box appeared that accepted a variety of characteristics, including 
the Latin alphabet, hiragana, and katakana (sets of symbols used to 
represent Japanese syllable-like morae).

Fusion responses to the McGurk videos were defined as “da,” “ta,” 
or “tha.” Responses were translated into English and assigned to one of 
four mutually exclusive categories: auditory responses, visual responses, 
fusion responses, and other responses (e.g., “ha,” “va”). For double 
syllable stimuli, each syllable received a half-point rating. For example, 
the response “dada” was given a score of 1.0 as a complete fusion 
response, while “bada” was rated as 0.5 for auditory and 0.5 for fusion.

Participants with less than 90% accuracy for congruent syllable 
recognition were excluded from the analysis, ensuring that accuracy 
for congruent syllables in the remaining participants was high 
(mean = 96%, standard error of the mean across participants, 
SEM = 0.3%, range = 90 to 100%). Congruent stimuli almost never 
evoked fusion responses (2 out of 7,200 trials, 0.03%).

Excluding participants with low congruent accuracy left 80 
participants whose data are reported in the manuscript. For these 
participants, 36 self-reported as male and 44 as female with a mean 
age of 29 years (range from 18 to 63 years). All participants completed 
high school and 80% had also completed at least a professional or 
bachelor’s degree. All participants reported their native language as 
Japanese. Participants were asked to rate their level of English 
proficiency on a 0 to 6 scale (0 meaning no proficiency at all); the 
mean proficiency was 3.0. All participants reported normal hearing 
and normal or corrected-to-normal vision.

Noisy encoding of disparity model

The noisy encoding of disparity (NED) model was fit as described 
in the study by Magnotti and Beauchamp (2015). All analysis code is 
available in Supplementary material. The model calculates the 
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long-run probability of a fusion percept for each participant and 
stimulus as follows:

 ( ) ( )NormFusion | ;P P X T D= < σ

where X is the disparity encoded by the participant on an 
individual trial. The model parameters are D, the stimulus disparity; 

T, the participant’s disparity threshold; and σ, the participant’s sensory 
noise level (the standard deviation of the sensory encoding 
distribution). The best-fitting parameters were determined by 
minimizing the error between the model’s predictions and the fusion 
rate measured for each participant for each stimulus. Error was 
calculated as the mean absolute error (MAE) for individual subjects 
across stimuli, individual stimuli across subjects, and for each subject-
by-stimulus combination.

TABLE 1 Participants were presented with 15 different McGurk stimuli.

Rank Aud Vis Fusion 
percept

Auditory 
percept

Voiced/
unvoiced

Talker native 
language is 
Japanese?

Source

1 baba gaga dada baba V
no

http://youtu.

be/5Lq26mgFpOc

2 baba gaga dada baba V
no

http://youtu.be/

tUf0672xAOU

3 ba ga da ba V yes Kaoru Sekiyama

4 ba ga da ba V
no

http://youtu.be/

WK3T7LWIkP8

5 ba ga da ba V no (Quinto et al., 2010)

6 ba ga da ba V no Kaoru Sekiyama

7 baba gaga dada baba V
no

http://youtu.be/

aFPtc8BVdJk

8 ba ga da ba V
no

http://youtu.be/

rIWrnJH2jAY

9 ba ga da ba V yes Kaoru Sekiyama

10 ba ga da ba V no Kaoru Sekiyama

11 ba ga da ba V no (Dodd et al., 2008)

12 ba ga da ba V
no

http://youtu.be/

jtsfidRq2tw

13 papa kaka tata papa U no Arnt Maaso

14 pa ka ta pa U
no

http://youtu.be/An5vvn-

gcwA

15 pa ka ta pa U
no

http://youtu.

be/51lVOJ8jfxA

Stimuli were ranked based on their strength in evoking the McGurk fusion percept from weakest (1) to strongest (15).

TABLE 2 Task instructions were presented in Japanese to participants before the beginning of the experiment (first row) and during each trial (second 
row).

Japanese language instructions English translation

様々な音節を発音する人々のビデオが流れます。

この人たちが何を言っているのか、回答してください。

必ず静かな環境で、またはノイズキャンセリングヘッドホンを着用してビデ

オを 見てください。

携帯電話ではなく、必ずノートパソコンまたはPCでビデオを見てください。

A video will show people pronouncing different syllables. Please, type what these 

people are saying. Please, watch the videos in a quiet environment or wear noise-

cancelling headphones. Please, watch the videos on a laptop or PC, not a mobile 

phone.

ビデオのフレーム全体(上のボックス)が見えるように、ブラウザのウィンド

ウを調整してください。

上の再生ボタンを押してから、その人が何と言ったか、あなたの考えを下の

ボックスに入力してください。

間違った答えはありませんので、何度も聴いたり見たりする必要はありませ

ん。

Adjust your browser window so that you can see the entire frame of the video. Press 

the play button above and then type what you think the person said in the box 

below. There are no wrong answers, so please, play the video only once.

The English translation was not shown to the participants.
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In more detail, Di (where i is the stimulus index) captures the 
likelihood that the auditory and visual component stimulus i produce 
the McGurk effect, which is averaged across all presentations of 
stimulus i to all participants. Tj (where j is the participant index) 
describes each participant’s prior probability for fusing the auditory 
and visual components of any stimulus. If the disparity of a stimulus 
(as estimated by the participant in a single trial) is less than Tj, the 
auditory and visual speech cues are fused, and the participant reports 
a fusion percept. If the estimated disparity is greater than Tj, the 
participant reports the auditory components of the stimulus. The 
estimated disparity is not always equal to D because auditory and 
visual speech features are measured with noise (Ma et  al., 2009; 
Bejjanki et al., 2011), resulting in variability in the measured stimulus 
disparity across multiple presentations of the same stimulus. Across 
many trials, the distribution of measured strengths will be Gaussian 
in shape, centered at the true stimulus disparity, Di with standard 
deviation equal to the participant’s sensory noise, σj. The amount of 
sensory noise is assumed to be  constant across stimuli for 
each participant.

The probability of a fusion percept for subject j on stimulus i is 
as follows:

 
( ) ( )| ; , 

jT

j i i jp x T D N x D dx
−∞

< = ∫ σ

where N is the normal (Gaussian) distribution with mean Di and 
standard deviation σj. The invariance of the disparity threshold and 
sensory noise across stimuli allows the model to predict a participant’s 
fusion proportion for any stimulus with known strength, even if the 
participant has not observed the stimulus. Because the stimulus 
disparities are fixed across participants, they cannot fit participant 
variability; stimulus disparities and participant disparity thresholds 
are independent.

Generalization testing

To assess the generalizability of the model results, a hold-out 
procedure was implemented. For each participant, the NED model 
was fit without that participant’s data to obtain stimulus disparity 

values. Next, holding out a single stimulus, the best-fitting threshold 
and sensory noise parameters were determined for the held-out 
participant (without using data from the held-out stimulus). Using the 
fitted subject-level parameters and the stimulus disparity values 
obtained from other participants, the participant’s fusion perception 
was predicted for the held-out stimulus. This procedure was repeated 
for each stimulus, resulting in a predicted fusion response for each 
stimulus that was unbiased by the participant’s data for that stimulus. 
The result of this procedure is a predicted fusion proportion for each 
participant for each stimulus.

Predictors of participant and stimulus 
variability

Multiple linear regression models were constructed to examine 
the relationship between participant-level model parameters (one 
model for disparity threshold, one for sensory noise) and participant 
demographic variables (age, gender, English proficiency, and highest 
education level). The models were obtained using stepwise 
regression to automatically select the best parameters using the 
Bayesian Information Criterion (BIC) cost function. Because of the 
small sample size, no interactions were allowed during the stepwise 
model building procedure. The initial model was the model 
including all variables, and the minimal model was the intercept-
only model.

To understand stimulus-level variation, the same procedure was 
applied to the stimulus parameter of disparity, with stimulus variables 
of syllabic content (voiced AbaVga vs. voiceless ApaVka), talker 
gender (male vs. female), and talker native language (Japanese vs. 
non-Japanese).

Stimulus details

The McGurk stimuli used in the original description of the 
effect are lost to history (MacDonald, 2018). To sample currently 
available McGurk stimuli, 15 different stimuli (s1–s15) were 
collected from popular online demonstrations and previously 
published studies (Table 1). Previous in-person and online studies 
presented many of the same stimuli (Basu Mallick et  al., 2015; 
Magnotti et al., 2015, 2024).

The stimuli were made at different times by different groups using 
different methods. For the details of stimulus creation for s2, see 
Green and Kuhl (1989, 1991); for s3, s6, s9, s10, see Sekiyama (1994, 
1997); Sekiyama and Tohkura (1991, 1993); for s4 and s14, see Nath 
et al. (2011); Nath and Beauchamp (2012); for s5, see Quinto et al. 
(2010); for s11, see Dodd et al. (2008); Erdener (2015); Erdener and 
Burnham (2013); for s15, see Skipper et al. (2007); van Wassenhove 
et al. (2007). For s7 and s13, speech was recorded to Betamax analog 
videotape (recordings were made in 1997). The talker had an earpiece 
in the right ear with a click at 120 BPM to equate the syllabic tempo 
across different recordings. The two component recordings used to 
create each McGurk stimulus (video and audio) were synchronized by 
editing the audio track so that the replacement auditory speech 
commenced at the same time as the first audible sound in the video 
track whose audio track was being replaced.

FIGURE 1

Participants were instructed to report their percept of audiovisual 
movies containing McGurk and congruent syllables (complete 
instructions shown in Table 2). On each trial, a stimulus movie was 
played, and participants entered their response using a free-text 
response box.
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For online presentation, all stimuli were encoded using the 
MPEG-4 AAC encoder with an auditory sampling rate of 48,000 Hz. 
Videos were presented at a fixed size of 1,300 × 650 pixels.

Results

Responses to McGurk stimuli

Across the 15 different McGurk stimuli (each presented 10 times), 
the 80 participants reported an average of 23% fusion responses (± 1% 
standard error of the mean across participant). There was a high 
degree of variability in the number of fusion responses across the 15 
different McGurk stimuli: the weakest stimulus evoked the McGurk 
effect on 3% (± 1%) of trials while fusion responses were evoked on 
78% (± 4%) of trials by the strongest stimulus. There was also a high 
degree of variability in the percentage of McGurk responses across 
different participants: across stimuli, the least-susceptible participant 
perceived the illusion on 0% of trials (± 0% standard error of the mean 
across stimuli), while the most-susceptible participant perceived the 
illusion on 91% of trials (± 3%). The combination of high stimulus and 
high participant variability meant that for most of the tested stimuli, 
the frequency of fusion responses ranged from the lowest possible 

value of 0% for some participants to the highest possible value of 100% 
for other participants.

Model fitting examples

Figure 2A illustrates the model fitting process for three stimuli 
which evoked different average rates of fusion perception. For each 
stimulus, the model estimates an audiovisual disparity, which is 
assumed to be constant (i.e., a physical property of the stimulus). 
On each presentation of a stimulus, the participant must encode the 
audiovisual disparity of the stimulus. Due to sensory noise, the 
encoding is not precise, resulting in a Gaussian distribution of 
disparity estimates across presentations. The mean of this 
distribution is the true disparity of the stimulus, and the degree of 
sensory noise (width of the Gaussian distribution) is estimated by 
the model separately for each participant. For each stimulus 
presentation, the participant compares the estimated stimulus 
disparity with a fixed, internal threshold. If the estimated stimulus 
disparity exceeds the internal threshold, the participant assumes 
that the auditory and visual component of the speech comes from 
different talkers, and perception defaults to the auditory component 
of the stimulus. If the estimated disparity does not exceed the 

FIGURE 2

(A) Fits of the noisy encoding of disparity (NED) model across participants and stimuli. Each row shows a single participant (p18, p35, p75; one color per 
participant). Each column shows a different stimulus (s4, s13, s14). The x-axis shows the estimated stimulus disparity. The y-axis shows probability. The 
thin black line is the Gaussian probability distribution of the disparity estimates. The stimulus disparity is fixed for each stimulus (gray vertical lines). On 
each presentation of a stimulus, the stimulus disparity is estimated by the observer with sensory noise, σ (horizontal arrows; fixed for each participant). 
The estimated disparity is compared with the participant’s integration threshold (vertical colored dashed line, fixed for each participant). If the estimated 
disparity is below the threshold, the participant experiences the McGurk fusion percept. The shaded area is the predicted percent fusion for that 
participant and stimulus. (B) Summary of the model fit for all stimuli for the three participants. The x-axis shows the estimated stimulus disparity, with 
values reversed to produce an increasing psychometric function. The y-axis shows the % fusion reports for each stimulus. Each gray point shows raw 
data, colored line shows model prediction (shaded color region shows model SD).
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threshold, the participant integrates the auditory and visual 
components of the stimulus and perceives the illusion.

For participants with three very different rates of average 
fusion perception: low (p18; 10%), moderate (p35; 17%), and 
high (p75; 53%), the model accurately predicted perception 
across the 15 different McGurk stimuli (Figure 2B). Instead of 
fitting the NED model, one could simply use the mean fusion rate 
of each participant as a predictor. However, this approach 
produces very large errors. For instance, for p18, stimulus 14 
evoked 60% fusion percepts, which is identical to the NED model 
prediction (0% error). In contrast, predicting the mean fusion 
rate for p18 of 10% produces a 50% error. Similarly, the mean 
fusion rate for p75 across stimuli is 53%, resulting in a large error 
if this is used as the prediction for stimulus 1 (0% fusion percepts; 
53% error). In contrast, the NED model predicts 0.3% fusion 
percepts (0.3% error). High error also results if participant 
variability is ignored, and the mean fusion rate for each stimulus 
is used for prediction.

Model fitting

Figure 3 shows the model results across stimuli and participants. 
The model accurately reproduced stimulus-level variation, predicting 
stimulus-level mean fusion responses with a mean absolute error of 
2.1% ± 0.4% SEM. The model reproduced subject-level variation with 
an average error of 2.4% ± 0.3%. For single stimulus-participant pairs, 
the response could be predicted with an average error of 4.7% ± 0.5%.

Validating the model assumption of a constant audiovisual 
disparity for each stimulus, the stimulus ranks were highly correlated 
across subjects (average subject-level rank correlation with global 
rank, r = 0.68 ± 0.02, p < 10−16).

We also estimated out-of-sample generalization using leave-one-
stimulus-out model fitting. Fusion percentages on untrained stimuli 
could be predicted with an error of 9.7% ± 0.5%. The error rate was low 
for untrained stimuli (9.7% vs. 4.7% for trained data) demonstrating 
that the high accuracy of the model predictions was not due to 
overfitting of the training data.

Stimulus differences

The 15 McGurk stimuli differed along several dimensions, 
including syllabic composition (the voiced syllables AbaVga vs. the 
unvoiced syllables ApaVka), the gender of the talker, and the native 
language of the talkers (Japanese vs. non-Japanese). To test the 
importance of these factors, we used stepwise linear regression to find 
the predictors of stimulus disparity as a function of syllable, talker 
gender, and talker native language. The best-fitting model explained 
70% of the variance in the stimulus disparity parameter [R2 = 0.70, F(1, 
13) = 30.2, p = 10−4] and included only syllable content (b = −0.92). The 
mean fusion rate was 65% for voiceless ApaVka stimuli compared 
with 12% for voiced AbaVga stimuli.

A possible concern is confounding of talker differences and 
syllable content. This concern was mitigated by the fact that the 
stimulus set contained examples of both pairings recorded from the 
same talkers (Magnotti et  al., 2024). For talker Audrey Nath, the 
ApaVka pairing evoked 72% fusion responses while AbaVga evoked 
6% fusion responses. For talker Arnt Maasø, ApaVka evoked 45% 
fusion while AbaVga evoked 11% fusion responses.

Neither talker gender [F(1, 11) = 1.2, p = 0.3] nor talker language 
[F(1, 11) = 10−4, p = 0.99] were significant predictors of stimulus-
level differences.

Participant differences

The NED model estimated sensory noise and disparity threshold 
parameters for each participant. Statistical modeling revealed two 
significant associations between these parameters and participant 
demographic variables. There was a significant positive correlation 
between the sensory noise parameter and age of the participant 
[b = 0.003, R2 = 0.07, F(1, 78) = 5.7, p = 0.02], indicating greater sensory 
noise with increasing age. In contrast, the disparity threshold 
parameter was not predicted by participant age [b = 0.002, R2 = 0.003, 
F(1, 78) = 0.20, p = 0.66].

Conversely, there was a significant negative correlation between 
self-reported English proficiency rating and the disparity threshold 

FIGURE 3

(A) Participants reported their percepts of 15 different McGurk stimuli (10 repetitions each, randomly interleaved with congruent speech). Gray circles 
denote the mean percentage of fusion responses across participants for each McGurk stimulus (raw data; bars show standard error of the mean across 
participants). Stimuli are sorted from fewest to most fusion responses. The pink shaded region shows the fit of the noisy encoding of disparity model 
(mean  ±  one standard error). (B) For each of 80 participants, the mean percentage of fusion responses across the 15 different McGurk stimuli was 
calculated (one gray circle per participant; raw data; bars show standard error of the mean across stimuli; participants sorted from fewest to most 
fusion responses). The shaded region shows the fit of the noisy encoding of disparity model (mean  ±  one standard error).
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parameter [b = −0.07, R2 = 0.06, F(1, 78) = 5.1, p = 0.03], while English 
proficiency was not predictive of the sensory noise parameter 
[b = −0.011, R2 = 0.02, F(1, 78) = 1.9, p = 0.17].

Discussion

The noisy encoding of disparity (NED) model was fit to the 
perceptual reports of 80 native Japanese speakers presented with 15 
different McGurk stimuli. Despite the high variability of the McGurk 
effect (ranging from 0 to 100% fusion reports across participants for 
most stimuli), the NED model predicted perception of the illusion 
with only a few percent error for individual stimuli, participants, and 
stimulus-participant pairs.

The NED model makes two fundamental assumptions. First, it 
assumes that individual differences in audiovisual speech perception 
can be captured by two simple parameters, that of sensory noise and 
sensitivity to audiovisual disparity. Second, the model assumes that 
different McGurk stimuli can be characterized by the amount of 
audiovisual disparity they contain. The ability of the NED model to 
accurately predict perception in native Japanese speakers, native 
English speakers, native German speakers, and native German 
adults with cochlear implants (Magnotti and Beauchamp, 2015; 
Stropahl et  al., 2017) demonstrate that these assumptions are 
satisfied in three very different participant populations.

To more concretely test the assumption that different McGurk 
stimuli can be  characterized by an intrinsic audiovisual disparity 
independent of participant native language, we compared the model 
results for the present study of native Japanese speakers and the native 
English speakers tested in the original description of the NED model. 
The stimulus rankings between the two studies were strongly 
correlated, r = 0.87, p < 10−16, demonstrating the reasonableness of 
defining an intrinsic disparity for each stimulus.

Participant variability and intercultural 
comparisons

In the present study, we found high variability in the McGurk 
effect across native Japanese speakers, consistent with the high 
variability observed in studies of native English speakers (Schwartz, 
2010; Jiang and Bernstein, 2011; Stevenson et al., 2012; Basu Mallick 
et al., 2015). The high variability inherent in the McGurk effect 
within single cultures complicates studies of potential differences in 
the effect across cultures. Using simulations, Magnotti and 
Beauchamp (2018) estimated the number of participants required 
to detect group differences in the McGurk effect with 80% power, a 
common statistical benchmark (Cohen, 1992). Even assuming a 
moderately-sized mean difference of 10% in fusion rate between 
groups, more than 300 participants would be required to reliably 
detect this difference.

The large sample size required for well-powered detection of 
group differences in fusion rates necessitates careful evaluation of 
published studies: a “statistically significant” finding in an 
underpowered study may greatly inflate the measured effect-size 
(Gelman and Weakliem, 2009). Intercultural comparisons of the 
McGurk effect with larger sample sizes have largely failed to detect any 

difference in fusion rates. A study with a sample size of 307 did not 
find a significant difference in fusion rates between native English 
speakers tested in the USA and native Mandarin speakers tested in 
China (Magnotti et al., 2015). A study with a sample size of 99 did not 
find a significant difference in fusion rates between native Finnish 
speakers and native Japanese speakers (Tiippana et  al., 2023). In 
contrast, a study reporting low rates of McGurk fusion in native 
Japanese speakers tested just 10 participants (Sekiyama and 
Tohkura, 1991).

Stimulus variability

Just as variability across participants complicates intercultural 
comparisons, so does variability across stimuli. Across the 15 different 
McGurk stimuli tested in the present study, there was high variability 
in the rate of fusion percepts, ranging from 3 to 78%. This large 
variability is problematic when making inferences from only a 
few stimuli.

For instance, there are mixed reports in the literature about the 
existence of cross-language influences in the McGurk effect. Some 
studies report more fusion responses when native speakers of one 
language are presented with McGurk stimuli recorded by a native 
talker of another language (Ujiie and Takahashi, 2022); other studies 
report fewer fusion responses or mixed results (Chen and Hazan, 
2007). In the present study, there was no significant difference in 
fusion responses between the two stimuli recorded by native Japanese 
speakers and the other stimuli (recorded by native speakers of 
other languages).

Given the high variability across McGurk stimuli, attempts to 
identify differences between stimulus categories with only one or 
two examples from each category are unlikely to yield reliable 
results. Instead, it is important to test as many stimuli from each 
category as possible. The largest study of this type tested Japanese 
and Finnish participants using McGurk stimuli recorded by four 
native Japanese talkers and four native Finnish talkers and found 
no significant difference between Japanese and Finnish talkers 
(Tiippana et al., 2023).

There are many differences between the 15 McGurk stimuli that 
we tested, since they have been made at different times by different 
groups. However, high perceptual variability was also observed across 
20 different McGurk stimuli created by the same talker with identical 
recording and editing methods (Magnotti et al., 2020), suggesting that 
auditory and visual speech features are the key drivers of variability 
rather than technical issues (such as analog vs. digital recording). In 
the present study, the only reliable predictor of the efficacy of different 
McGurk stimuli was their syllabic composition, with much higher 
fusion rates for ApaVka than AbaVga.

Online testing

Data for this study were collected online, which have both 
advantages and disadvantages. An advantage of online testing is 
that it is easier to sample participants with a wider range of ages. 
The NED model was developed with data collected in-person from 
university students, resulting in a limited participant age range of 
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17 to 26 years old. In contrast, online participants had a broader 
range of ages between 18 and 63 years. This larger age range revealed 
a correlation between age and the sensory noise parameter of the 
NED model that was not apparent within the limited age range of 
university students.

A disadvantage of online testing is that compared with in-person 
testing, it provides less control over stimulus details, such as the size 
of the visual image or the loudness of the speech stimuli. However, the 
variability observed in the present study cannot be attributed solely to 
online testing, as in-person testing revealed similarly high levels of 
variability (Basu Mallick et al., 2015; Magnotti et al., 2015; Feng et al., 
2019). Variability in the McGurk effect also cannot be solely attributed 
to failure to observe the display, as shown by high variability even 
when participant eye movements are monitored (Gurler et al., 2015; 
Rennig et al., 2020; Stacey et al., 2020).

We cannot rule out the possibility that some participants with low 
fusion rates ignored the task instructions to watch the stimulus videos. 
However, the cadence of the task was designed to encourage attention 
to the display; participants were required to click on a “play” button; 
attend to a ~ 2-s stimulus video; click on a response box; type in what 
the participant said; and repeat. Therefore, a hypothetical 
troublemaker would have to look at the display to click the play button 
and avert their gaze from the brief video while still attending to the 
auditory portion of the stimulus and then return their gaze to the 
display to click on the response text box and enter a response 
corresponding to the auditory portion of the stimulus (if the 
participant completely ignored the stimulus, the accuracy of their 
responses to congruent stimuli would be  low and they would 
be  excluded from the analysis). Furthermore, they would have to 
adopt this strategy on some trials but not others, as all but two 
participants reported the McGurk effect on at least one trial.

Collecting data online could affect the NED model fit in several 
ways. Since increased auditory noise increases McGurk fusion 
percepts (Fixmer and Hawkins, 1998; Stacey et  al., 2020), online 
participants who ignored the task instructions to complete the task in 
a quiet environment and were in a noisy environment would 
be expected to have higher fusion rates. If online participants were less 
attentive to the stimuli than in-person participants, this could lead to 
more variability in responding, manifesting as increased estimates of 
participant sensory noise or increased error in the NED model fit. 
Arguing against these scenarios, the disparity threshold and sensory 
noise parameters were comparable for online participants in the 
present study and in-person participants in the original description of 
the model, with less cross-validated fit error (10% for online vs. 19% 
for in-person).

Limitations

A limitation of the NED model is that it is primarily descriptive 
rather than mechanistic. For instance, it takes as a given that 
participants who integrate auditory “ba” with visual “ga” report the 
fusion percept of “da” rather than providing an explanation for the 
fusion percept. Mechanistic models often ignore individual differences 
but incorporate sequential steps of unisensory estimation and 
multisensory integration using principles of Bayesian inference 
(Andersen and Winther, 2020; Lindborg and Andersen, 2021) and 

causal inference (Magnotti et  al., 2013, 2018; Magnotti and 
Beauchamp, 2017). Fitting mechanistic models require substantially 
more data, including perceptual measurements of unisensory auditory 
and visual speech, usually with sensory noise added to each modality 
at varying levels or different degrees of temporal asynchrony between 
modalities. In contrast, the simpler NED model only requires 
measuring the perception of McGurk stimuli.

It remains to be clarified how the parameters in the NED model 
relate to real-world variables. The model assumes that audiovisual 
disparity is an intrinsic property of different McGurk stimuli. 
Perceptual studies using advanced synthetic faces should also allow 
more insight into understanding and manipulating the factors 
contributing to stimulus disparity (Thézé et al., 2020; Varano et al., 
2021; Shan et al., 2022; Yu et al., 2024), as should measurements of the 
mouth and face movements made by real talkers (Jiang et al., 2007). 
The NED model fits a sensory noise parameter for each participant, 
with the finding that sensory noise increases with age. The variability 
of the BOLD fMRI response to audiovisual speech also increases with 
age (Baum and Beauchamp, 2014). This suggests that measuring 
neural variability in speech processing regions could allow an 
independent assessment of sensory noise, linking a NED model 
parameter to brain activity. A recent fMRI study found that observers’ 
response entropy was greater for McGurk compared with congruent 
audiovisual stimuli, corresponding to increased BOLD activity in 
brain regions important for cognitive control (Dong et  al., 2024). 
Parietal and frontal regions are important for causal inference on 
audiovisual stimuli (Gau and Noppeney, 2016; Mihalik and Noppeney, 
2020). Brain activity in these regions could be measured to provide an 
independent estimate of a participant’s disparity threshold for 
integrating auditory and visual speech.
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