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Background: Inferring directional connectivity of brain regions from functional 
magnetic resonance imaging (fMRI) data has been shown to provide additional 
insights into predicting mental disorders such as schizophrenia. However, 
existing research has focused on the magnitude data from complex-valued fMRI 
data without considering the informative phase data, thus ignoring potentially 
important information.

Methods: We propose a new complex-valued transfer entropy (CTE) method to 
measure causal links among brain regions in complex-valued fMRI data. We use 
the transfer entropy to model a general non-linear magnitude–magnitude 
and phase–phase directed connectivity and utilize partial transfer entropy to 
measure the complementary phase and magnitude effects on magnitude–phase 
and phase–magnitude causality. We also define the significance of the causality 
based on a statistical test and the shuffling strategy of the two complex-valued 
signals.

Results: Simulated results verified higher accuracy of CTE than four causal 
analysis methods, including a simplified complex-valued approach and three 
real-valued approaches. Using experimental fMRI data from schizophrenia and 
controls, CTE yields results consistent with previous findings but with more 
significant group differences. The proposed method detects new directed 
connectivity related to the right frontal parietal regions and achieves 10.2–
20.9% higher SVM classification accuracy when inferring directed connectivity 
using anatomical automatic labeling (AAL) regions as features.

Conclusion: The proposed CTE provides a new general method for fully 
detecting highly predictive directed connectivity from complex-valued fMRI 
data, with magnitude-only fMRI data as a specific case.
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1 Introduction

To date, a huge number of studies have investigated directed 
functional connectivity (FC) or functional network connectivity 
(FNC) using fMRI data (Demirci et al., 2009; Stevens et al., 2009; 
Lizier et al., 2011; Ursino et al., 2020; Crimi et al., 2021). Directed FC/
FNC refers to the statistical causality between different time series 
from brain regions of interest (ROIs) or time courses of brain networks 
extracted by data-driven methods from fMRI data (Stevens et al., 
2009; Ursino et al., 2020; Mahmood et al., 2022). The directed FC/
FNC results have been widely used as putative biomarkers to identify/
predict brain function changes linked to mental disorders such as 
schizophrenia (Fogelson et al., 2014; Bastos-Leite et al., 2015; Dietz 
et al., 2020).

Directed FC/FNC analyses can be generally classified into model-
based and model-free methods. Typical model-based methods include 
dynamic causal modeling (DCM) (Friston et al., 2019), structural 
equation modeling (Bielczyk et  al., 2019), and dynamic Bayesian 
network (Wu et  al., 2014). Regarding model-free methods, the 
Granger causal test is frequently used to determine whether there is a 
linear causal relationship between ROIs and brain networks (Demirci 
et al., 2009; Crimi et al., 2021). Demirci et al. (2009) exploited the 
Granger causal test to calculate directed FNC of fMRI data and found 
abnormal connections from frontal areas to visual areas for patients 
with schizophrenia. Crimi et al. (2021) used Granger connections to 
classify patients with autism spectrum disorder and healthy controls.

Real-valued transfer entropy is utilized to identify the underlying 
non-linearly directed information between ROIs or between brain 
networks (Lizier et al., 2011; Ursino et al., 2020; Liu et al., 2022). 
Ursino et  al. (2020) verified that transfer entropy is a promising 
method to estimate the causality of connections between regions with 
long time delays. Lizier et  al. (2011) presented a transfer entropy 
method to detect causality between brain regions in cognitive tasks 
and showed task difficulty being related to causal strength for the 
motor cortex. Following this, Liu et  al. (2022) proposed a scored 
function based on transfer entropy and conditional entropy to 
quantify directed FC, which accurately inferred directed connectivity 
networks of time series. The most commonly used method for 
estimating real-valued transfer entropy is the histogram-based transfer 
entropy (HTE), which estimates the joint probability density function 
via a histogram-based function. Other transfer entropy algorithms 
were proposed to improve the accuracy of causal inference or noise 
robustness, including symbolic transfer entropy (STE) (Li and Zhang, 
2022), effective transfer entropy (Behrendt et al., 2019; Caserini and 
Pagnottoni, 2022), Renyi transfer entropy (Jizba et al., 2022; Zhang 
et al., 2023), and phase transfer entropy (Wang and Chen, 2020; Gu 
et al., 2021).

Our study is motivated by two key points. First, previous studies 
show non-linear FC/FNC properties in fMRI (Li et al., 2010, 2011; 
Motlaghian et al., 2023). The transfer entropy approach is designed to 
forecast non-linear causality (Schreiber, 2000), while the Granger 
causal test may fail as a linear model-free approach (Bastos and 
Schoffelen, 2016). Second, fMRI data are initially acquired as complex-
valued image pairs including both magnitude and phase data 
(Calhoun et al., 2002; Rowe and Logan, 2004; Adali and Calhoun, 
2007). A new transfer entropy approach is needed to incorporate 
unique and additional information from the phase data in addition to 
the magnitude-only fMRI data (Yu et al., 2015). The simple sum of the 

separate real-valued results from the magnitude and the phase data 
suffers from a loss of accuracy as there is also a correlation between 
the magnitude and the phase. As such, we propose a new complex-
valued transfer entropy (CTE) to detect full causality between two 
complex-valued signals.

The main contributions of this study are 3-fold:

 1. We propose a new CTE method to measure non-linear causal 
(directed) connectivity among two complex-valued signals by 
incorporating complementary causality between magnitude 
and phase using the partial transfer entropy, in addition to 
detecting magnitude–magnitude and phase–phase causality 
using transfer entropy. Simulated data verify the high accuracy 
of CTE compared to a simplified CTE (sCTE) without 
magnitude–phase causality and the three real-valued methods, 
including STE, HTE, and Granger causal test.

 2. We evaluate the significance of the non-linear directed 
connectivity via a one-sample t-test by using a shuffling 
strategy of two complex-valued signals. The statistical test 
assists in eliminating spurious causality, ensuring the stability 
and accuracy of the causality measurement.

 3. We analyze directed FC using experimental resting-state 
complex-valued fMRI data from 40 schizophrenia patients and 
40 healthy controls. CTE yields results consistent with previous 
findings but with more significant group differences, detects 
new directed connectivity, and achieves higher SVM 
classification accuracy, compared to sCTE, STE, HTE, and 
Granger causal test.

2 Methods

2.1 Modeling and deviation of CTE

Figure 1 shows the framework diagram for measuring directed FC 
using CTE. Take two AAL regions AAL_n1 and AAL_n2 for example, 
each region can obtain an average complex-valued time series 
involving magnitude and phase. To quantify complete complex-valued 
causality, CTE measures magnitude–magnitude and phase–phase, and 
two parts of magnitude and phase causality. To guarantee the reliability 
of causality measurement, a causal significant test is performed. The 
direction of FC can be judged by the polarity of CTE. If the CTE value 
is positive, the direction FC points from AAL_n1 to AAL_n2; if the 
CTE value is negative, the direction is the opposite; if CTE equals zero, 
there is no directed FC between the two AAL regions.

We denote two complex-valued signals as 
z1 � � �� � � � � � � ��� ��z t z z T1 1 11 , ,

T, z2 � � �� � � � � � � ��� ��z t z z T2 2 21 , ,
T, 

t T� �1, , , and T is the data length. The two signals are represented 
with magnitude and phase in Eq. (1) as follows:

 

z a
z b
1

2

� � �
� � �
exp

exp

j
j
��
��  

(1)

where a∈T  and �� �T  are the magnitude and phase of z1, and 
b∈T  and �� �T  are the magnitude and phase of z2.

Based on the relationship between the magnitude and phase of the 
brain networks (Yu et  al., 2015), we  propose a definition of CTE 
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considering complete causality between two complex-valued signals. 
Motivated by the complex-valued mutual information introduced by 
Goebel et al. (2011), CTE combines the magnitude and phase to make 
causality inference and is represented as follows:

 
C R R R Rz z a b a b a1 2� � � � �� � � ��� �� �� �� ��  (2)

where a b→  and �� ���  are real-valued transfer entropy from the 
magnitude and the phase of the two signals, respectively. a b� ��  and 
�� ��� a  are partial transfer entropy (Papana et al., 2012), which 
extends transfer entropy to account for the presence of the third 
variable. We  extend to quantify the complementary phase and 
magnitude effects on the causality a b→  and �� ��� .

Real-valued transfer entropy a b→  and �� ���  in Eq. (2) can 
be calculated as follows (Schreiber, 2000):
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(3)

where a b→  denotes causal direction from a  to b, p �� �  is a marginal 
probability density function, " "p � �� �  represents a condition 
probability density function, τ  is the parameter of time delay, and at��  
and bt��  are delayed a  and b by τ  time points. By calculating the 
Pearson correlation coefficient between the two signals with different 
time delays, the time delay corresponding to the maximum correlation 
coefficient is selected as the value of τ .

Real-valued partial transfer entropy a b� ��  in Eq. (2) is 
determined as follows:
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(4)

In Eq. (4), it can be observed that phase θθ  and magnitude a  are 
jointly used to determine the causal direction to magnitude b. In other 
words, a b� ��  incorporates magnitude–phase causality between θθ  

and b by quantifying the complementary magnitude effects of a  on the 
causality. Similarly, �� ��� a  can be calculated as follows:
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(5)

In Eqs. (2)–(5), we need to estimate condition probability density 
functions and joint probability density functions. We represent the 
condition probability density function with joint probability density 
functions and then estimate joint probability density functions. Taking 
p t t tb b| � �� �� �,��  as an example, we have the following:
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(6)

where p t t t�� � �� �� �, ,b b  and p t t�� � �� �� �,b  are joint probability 
density functions. To estimate the joint probability density functions, 
we  perform symbolic processing on each of the variables. The 
symbolic process helps to improve the noise robustness to traditional 
transfer entropy and helps capture more non-linear causality proved 
by the previous study (Gu et  al., 2021). Taking the phase 
�� � � � � � ��� ��� �1 , ,

TT  as an example, where superscript “T” 
represents the matrix transpose, the symbolic � t� �, 1≤ ≤t T , denoted 
as �� � �t  is computed as follows (Wessel et al., 2000):

 

�

� � � �

� � �

� � � �
� � � �

� � � � �� �
�� � � � � � �
�� � � � � �

t

t
t
t

p p

p

p p

0 1

1 1

2 1

3

:

:

:

: 00 1

0

� � � � �� �

�

�

�
�

�

�
�

� � �

� � �

�

t

if t

p

,

 

(7)

 

�

� � � �

� � �

� � � �
� � � �

�� � � � � �
�� � � � � �� �

� � � � �� �
t

t
t
t

n n

n

n n

0 1

1 1

2 1

3

:

:

:

::

,

1 0

0

�� � � � � �

�

�

�
�

�

�
�

� � �

� � �

�

n t

if t

 

(8)

AAL regions Time series

Magnitude_n1

Phase_n1

Average

Magnitude_n2

Phase_n2

Causality 
significant

 test

Directed FC

Calculate

Transfer 

Entropy

Magnitude_n1 Magnitude_n2

Phase_n1 Phase_n2

Magnitude_n1 Phase_n2

Phase_n1 Magnitude_n2

Sum

CTE

Transfer entropy

AAL_n1

AAL_n2 AAL_n2

Average

AAL_n1

AAL_n1

AAL_n2

CTE = 0

No causality

FIGURE 1

Framework diagram for directed FC measured by CTE. First, average complex-valued time series from two AAL regions are obtained. Each average 
time series involves magnitude and phase. To quantify complete complex-valued causality, CTE considers four parts of causality, including 
magnitude–magnitude, phase–phase, and two magnitude–phase causality. After the causal significant test, the directed FC between two regions is 
measured by CTE.
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where β  is a control parameter and set to be 0.05 according to the 
previous study (Wessel et al., 2000), and µ p and µn are the mean of 
positive and negative variables of θθ ,  respectively. As such, we obtain 

the symbolic variable vector of θθ  as ��� � �� � � � � ��
�

�
�� �1 , ,
T

T .  For 
simplicity, superscript “*” is omitted. ϕϕ  can be symbolized in the 
same way. Magnitude a , b is symbolized only using Eq. (7) with 
non-negative values.

Then, we exploit a histogram-based method to estimate the joint 
probability density function by counting the number of common 
elements in segmented bins between vectors. Take p t t�� � �� �� �,b  in 
Eq. (6), for example, ��t��  is divided into kθ  equal bins with the bin 
index denoted as i, and bt��  is divided into kθ  equal bins with the bin 
index as j. Denoting the segmented bin of ��t��  and bt��  as ��  and 
∆b,  the joint probability density function p t t¸ b� �� �� �,  is estimated 
by counting the elements number of ��t��  and bt��  within the 
segmented bin [ , ].� �� b  The parameters of bin width ��  and ∆b  
are determined by the number of segmented bins and data length. For 
simplicity, the parameters ��  or ∆b  are equal and can be selected 
as follows:

 
�� � � � �

�
� �� � � � �� �� � � �max min�� ��t t t t

T
; ;b b

 
(9)

Thus, the joint probability density function p t t�� � �� �� �,b  located 
around the point i j,� � is represented as follows:

 
p

num i j
Tt t�� � �� � � � �
�

� � �
,

,
b

 
(10)

where num b� �� ,� �  is the number of elements between ��t��  and 
bt��  within the segmented bin [ , ]� �� b  around i j,� �.

2.2 Significance test of causality

The complex-valued transfer entropy z z1 2→  quantifies causality 
from z1 to z2 but cannot measure the significance of the causality. As 
such, we  define the causality significance using a statistical test 
together with a shuffling strategy, which has been previously used in 
real-valued transfer entropy studies (Bossomaier et al., 2016). The 
shuffling process assists in eliminating spurious causality between z1 
and z2 , ensuring the stability and accuracy of the causality 
measurement. Various transfer entropy differences between the 
original and shuffled signals are obtained by repeating the shuffling 
process (R times). Here, the number of times we perform shuffling, 
i.e., R, is set to 100. Then, one-sample t-test on the R causality 
differences is performed to detect the causality significance 
from z1 to z2.

If we denote the shuffled transfer entropy as z z1 2→
shuffled, the transfer 

entropy difference z z1 2�
�  is obtained in Eq. (11) as follows:

 
  z z z z z z1 2 1 2 1 2�
�

� �� � shuffled

 (11)

Similarly, z z2 1�
�  is obtained in Eq. (12) as follows:
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all the transfer entropy differences between z z1 2�
�  and z z2 1�

� , 
we perform one sample t-test with the false discovery rate (FDR) 
correction as follows (Guo and Bhaskara, 2008):

 
�

� �



� � � ��
�
�

��

p ttest

otherwise

th.

,

 p
0  

(13)

where ∆  is the mean of ∆,  pth=0.05. We  define the causal 
direction by the sign of ∆  as follows:
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3 Experimental methods

3.1 Simulated signals

To evaluate the efficacy of CTE, we generate two sets of simulated 
complex-valued signals with linear and non-linear causality, 
respectively. Each set has three types of causal directions and is 
randomly generated 1,000 times and divided into 10 groups.

The baseline signals are generated using a widely used MATLAB 
toolbox named Granger causal connectivity analysis (GCCA) (Seth, 
2010). The signals are generated with real-valued linear causality via 
an AR model as Seth (2010):

 

x t x t x t w t
x t x t w t
1 1 1 1

2 1 2

0 95 2 1 0 9025 2

0 5 1

� � � �� � � �� � � � �
� � � �� � �

. .

. �� �  
(15)

where 3 ≤ ≤t T , T is the data length and set to be 146 to keep the 
same data length as in the fMRI data. w t1 � � and w t2 � �  are random 
variables with zero mean and unit variance satisfying normal 
distribution. The linear and non-linear causality with different 
causality cases can be  obtained by exploiting and modifying the 
baseline signals defined in Eq. (15).

When generating simulated signals with linear causality, the three 
types of simulated complex-valued signals are denoted as type L1, L2, and 
L3, respectively. The magnitude and phase of the two signals z1 and z2  
from the three linear types are generated using Eqs. (16)–(18) as follows::

 1. type L1:

 

a t a t a t w t
b t a t w t
t
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 2.  type L2:

 

a t a t a t w t
b t a t w t
t

� � � �� � � �� � � � �
� � � �� � � � �
�

0 95 2 1 0 9025 2

0 5 1

1

2

. .

.

� ��
� �

� � � � �� � � � �
� � � � � � ��

� �
�t
t t w t
t w t

0 95 0 9025 2

0 6

3

4

. .

.  

(17)

 3.  type L3:
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where r t1 � �  and r t2 � �  are randoms without causality.
The non-linear causality can be obtained by adding quadratic and 

three-order terms to (Eq. 15). The magnitude and phase of the three 
types (N1, N2, and N3) can be generated using Eqs. (19)–(21) as follows:

 1.  type N1:
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 2. type N2:
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where w t1 � �, w t2 � �, w t3 � �, and w t4 � � are variables with zero-valued 
mean, unit variance satisfying normal distribution, and 
without causality.

Figure 2 shows the ground truth causal directions for the three 
types of two simulated complex-valued signals with non-linear and 
linear causality. Specifically, type L1/N1 has the complete complex-
valued causality including magnitude–magnitude, phase–phase, and 
magnitude–phase; type L2/N2 has the incomplete complex-valued 
causality including magnitude–magnitude and phase–phase; type L3/
N3 only has magnitude–magnitude causality.

Figure 3 presents example waveforms of simulated signals z1 and 
z2 from type L1 and type N1. The ground-truth causal direction for 

the magnitude and phase is shown in Figure 2A. We observe the peaks 
of the cause signals (z1 magnitude and z1 phase, in red) are ahead of 
the effect signals (z2 magnitude and z2 phase, in blue) in all cases, 
which are consistent with the causal direction of Figure 2. To test the 
noise effects on CTE, we also add Gaussian noise to the simulated 
signals with the signal-to-noise ratio (SNR) ranging from −10 dB 
to 10 dB.

3.2 Experimental fMRI data

The resting-state complex-valued fMRI data were a self-collected 
dataset from 80 subjects, including 40 healthy controls (HCs) and 40 
patients with schizophrenia (SZs) with written subject consent 
overseen by the University of New Mexico Institutional Review Board. 
Specifically, there are 28 men and 12 women for HCs (mean 
age ± standard deviation: 36.25 ± 11.40) and 33 men and 7 women for 
SZs (mean age ± standard deviation: 40.73 ± 14.43). During the scan, 
all the participants were instructed to rest quietly in the scanner and 
keep their eyes open without sleeping and not to think of anything in 
particular (Lin et al., 2022). fMRI scans were acquired by a Siemens 
3 T TIM Trio scanner equipped with a 12-channel head coil. The 
functional scan was acquired with the following parameters: TR = 2 s, 
TE = 29 ms, field of view = 24 cm, acquisition matrix = 64 × 64, flip 
angle = 75°, slice thickness = 3.5 mm, and slice gap = 1 mm. Data 
preprocessing was performed using the SPM software package.1 
Functional images were motion-corrected and then spatially 
normalized into the standard Montreal Neurological Institute space. 
Following spatial normalization, the data were resampled to 
3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels. Both magnitude and 
phase images were spatially smoothed with an 8 × 8 × 8 mm3 full-width 
half-maximum (FWHM) Gaussian kernel. Phase images were first 
motion corrected using the transformations computed from 
magnitude-only data; then, complex division of phase data by the first 
time point reduced the need for phase unwrapping; and spatial 
normalization of phase images used the warp parameters computed 
from magnitude-only data.

3.3 Complex-valued time series of ROI

Brodmann area (BA) and anatomical automatic labeling (AAL) 
atlas are two commonly used references to divide the brain into ROIs 
for FC analysis. Compared with BA, AAL obtains more ROIs and 

1 Available at: http://www.fil.ion.ucl.ac.uk/spm.
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involves the cerebellum regions. To achieve a more comprehensive 
and detailed segmentation of the brain regions, we used AAL to obtain 
116 ROIs (Tzourio-Mazoyer et al., 2002) and divided the 116 ROIs 
into 10 brain networks proposed by Smith et al. (2009), consisting of 
medial visual areas (MV), occipital pole visual areas (OPV), lateral 
visual areas (LV), default mode network (DMN), cerebellum (CER), 
sensorimotor (SEM), temporal lobe (TEM), anterior DMN (ADMN), 
left frontal parietal area (LFP), and right frontal parietal area (RFP). 
By dividing the 116 ROIs into these 10 networks, it is better to reveal 
the regularities of connections and establish relationships between FC 
and FNC.

The complex-valued time series for each ROI is expressed in 
Eq. (22) as follows:

 
x x xn n nt j t� � � � �� �� �exp �

 (22)

where xn t� � � xn t n t T� �� � � �, ,.., , ,..,1 116 1  are the averaged 
magnitude and phase time series across all voxels within each ROI, 
and T denotes the total number of time points. The causality between 
any two ROIs can be  quantified by CTE as � x xn n1 2,� �  using 
Eqs. (2), (13), and (14).

3.4 Performance measures

In order to evaluate the proposed CTE, we compare it with the 
three real-valued causal analysis methods STE, HTE, and Granger, 
and one complex-valued approach, i.e., sCTE without considering 
magnitude and phase causality defined in Eq. (23) as follows:

 
C R Rz z a b1 2� � �� � �� ��  (23)

For the real-valued causal methods, both STE and HTE calculate 
real-valued TE a b→  between magnitudes in Eq. (3). Specifically, STE 
utilized the symbolic process in Eqs. (7) and (8) before estimating 

joint PDF using Eqs. (9) and (10), while HTE estimates joint PDF 
without symbolic process.

Granger causal test is based on utilizing linear regression models 
to perform a statistical causality inference. Given two variables a and 
b, the autoregressive (AR) model of the Granger causal test is 
represented in Eq. (24) as follows:
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where u j, v j, and c j are the regression coefficients for the model, J is 
the estimated time delay between a  and b, and µt and ηηt  are two 
independent series satisfying Gaussian distribution. The fitting 
variances of using at j− , bt j−  to fit at , and only using at j−  are denoted 
as � 2 a a bt t j t j|, |,� �� �  and � 2 a at t j| �� � , respectively. The causal 
direction between a  and b is judged by comparing the fitting variance 
using Eq. (25) as follows:

 
b a a a a a b� � � � � �� � �,if t t j t t j t j� �2 2

| |, |,
 (25)

As such, the causal direction is evaluated by Granger causality.
For simulated signals, we  calculate the accuracy of directed 

inference in Eq. (26), denoted as AOC, as follows:

 AOC correct total= N N/  (26)

where Ncorrect  is the number of correct causal direction judgments 
and Ntotal  is the total number of causality evaluations between 
two signals.

For experimental fMRI data, we first calculate the average Pearson 
correlation coefficient between the magnitude and phase from two 
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different ROI signals in HCs or SZs, to validate magnitude and phase 
dependence in Eq. (27) as follows:
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Second, we perform two-sample t-tests (pth = 0.05) on connections 
from HCs and SZs with the FDR correction (Guo and Bhaskara, 2008) 
to obtain significant intergroup differences in Eq. (28) as follows:
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where n and m represent two different ROIs or two brain 
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Third, we  compare the number of common and unique 
connections detected by each method. Finally, we compare the efficacy 
of the common and unique connections as features to classify HCs 
and SZs using support vector machine (SVM). The multilayer 
perceptron kernel is selected, and SVM is repeated 1,000 times. Given 
a training dataset of K1 subjects as x x1 1 1 1, , , ,y yK K� � � � ��� �� , where 
xk M k K� � � 1

1 1,  represents the connectivity vector from the kth 
subject, M1 is the vector length, and yk  is the label denoted as either 
1 or − 1, indicating which class of xk belongs to. SVM aims to find a 
hyperplane to maximize the distance between the dataset and the 
hyperplane. The hyperplane can be represented in Eq. (29) as follows:

 
f bk kx x� � � � � ���T�

 (29)

where É and b are parameters of the hyperplane, and � xk� � is the 
kernel function. Multiple kernel functions can be used, e.g., the linear 
kernel, quadric kernel, and sigmoid kernel. By comparing the 
clustering performance, we select the multilayer perceptron (MLP) 
kernel for SVM and there are three layers including the input, hidden, 
and output layers. The input is the connectivity vectors xk , the 
non-linear activation function is tanh{},⋅  and the 
output of the MLP kernel is represented in Eq. (30) as follows (Suykens 
and Vandewalle, 1999):

 
� x x xk k

T
k b� � � � � � � �� �tanh �1 1

 
(30)

where É1 and b1 are weights and biases and are initially set to be 1 and 
−1, respectively. As such, the SVM classifier is built based on MLP 
kernel and can be  realized by MATLAB built-in function named 
“mlp_kernel.”

The results are evaluated in terms of accuracy (ACC), 
sensitivity (SEN), and specificity (SPEC) defined in Eq. (31) as follows 
(Lin et al., 2022):
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where TP, TN, FP, and FN denote true positive, true negative, false 
positive, and false negative, respectively. To mitigate overfitting and 
guarantee reliability, leave one out cross-validation (LOOV) is 
performed. Specifically, LOOV leaves out the data from one subject as 
test data and exploits the data from the rest of the selected subjects for 
training. Given that, the test data are independent of the training data 
in each LOOV loop. LOOV is used for cross-validation purposes, 
given we  have limited data. As such, we  repeat the validation 
1,000 times.

4 Results

4.1 Simulated signals

Table 1 shows the accuracy of linear/non-linear directed inference 
for the three types of simulated signals without noise. Five types of 
directed analysis methods are compared including the proposed CTE, 
sCTE, and three real-valued methods: STE, HTE, and Granger. 
Compared with the other three transfer entropy methods (sCTE, STE, 
and THE), CTE obtains higher accuracy for causality inference, 
especially when having complete complex-valued causality (type L1/
N1). Specifically, for type N1 (non-linear signals containing complete 
complex-valued causality), CTE achieves slightly higher accuracy than 
the sCTE and 18.7–85.9% higher accuracy than the three real-
valued algorithms.

TABLE 1 Comparison of the mean and standard deviation of the accuracy of causality inference by five methods for simulated signals without noise.

CTE (%) sCTE (%) STE (%) HTE (%) Granger (%)

Linear Type L1 94.1 ± 1.5 88.4 ± 2.5 84.3 ± 4.7 52.7 ± 3.9 86.8 ± 1.7

Type L2 89.2 ± 1.7 87.7 ± 2.8 83.5 ± 4.3 51.9 ± 4.3 89.1 ± 2.4

Type L3 86.3 ± 3.3 85.8 ± 2.9 82.9 ± 4.1 50.3 ± 4.5 86.1 ± 2.6

Non-linear Type N1 95.3 ± 1.3 87.5 ± 2.8 76.6 ± 3.5 66.1 ± 4.7 9.4 ± 2.9

Type N2 91.3 ± 1.1 86.8 ± 2.6 74.2 ± 3.9 65.7 ± 4.4 8.1 ± 2.1

Type N3 85.4 ± 3.7 83.3 ± 3.1 74.1 ± 4.1 64.3 ± 4.2 8.5 ± 2.6
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Figure 4 shows the estimated causality accuracy for simulated 
signals with different SNRs. CTE achieves the highest accuracy and 
noise robustness for type L1/N1, due to the consideration of complete 
complex-valued causality. For type L2/N2, CTE and sCTE yield higher 
accuracy than three real-valued methods, including STE, HTE, and 
Granger, especially with low SNR (<-6 dB), due to the inclusion of 
phase causality. Regarding type L3/N3, CTE and the other transfer 
entropy algorithms have similar accuracy with high SNR (> 6 dB) as 
there only has magnitude causality. In this case, CTE is a general 
method suitable for measuring linear and non-linear causality for 
both complex-valued and real-valued signals. For type L3, note that 
Granger shows higher directed accuracy than CTE with SNR being 
-4 dB–4 dB. The reason is that Granger is built on the AR model for 
linear causality, making it optimal when only magnitude causality 
exists. However, Granger fails to detect non-linear causality. Therefore, 
considering both linear and non-linear scenarios, the proposed CTE 
is the optimal-directed algorithm in most cases.

4.2 Experimental fMRI data

After performing a two-sample t-test (p < 0.05, df = 78, FDR 
corrected) for the connections between HCs and SZs, we compare the 
numbers of common and unique connections detected by two 
different methods with significant HC-SZ differences. We select sCTE 
and STE as comparison methods since they have better performance 
for the simulated signals (refer to Figure 4).

Figure 5 shows the number of common and unique connections 
in terms of ten brain networks. In total, CTE obtains more common 
connections with sCTE than with STE (505 vs. 344), while detecting 
fewer unique connections with sCTE than with STE (105 vs. 266). The 
reason is that sCTE is closer to CTE by considering additional phase–
phase causality relative to STE. Most of the common and unique 
connections belong to CER, which has been reported by previous 
studies to identify schizophrenia (Su et al., 2013; Watanabe et al., 
2014). Other biomarker regions such as TEM, RFP, and visual areas 
(LV and MV) also show larger numbers of common and unique  
connections.

Table 2 shows common and unique connections between CTE 
and sCTE/STE with the top five significant HCs-SZs differences. These 
connections are mainly related to the brain networks including CER, 
RFP, and TEM, which are consistent with the abnormal connections 
of schizophrenia obtained by previous studies (Su et  al., 2013; 

Watanabe et al., 2014; Oestreich et al., 2016; Maher et al., 2019; Dietz 
et  al., 2020; Rashidi et  al., 2021). Moreover, CTE detects unique 
connections with highly significant HCs-SZs differences related to 
RFP (vs. sCTE), DMN, and TEM (vs. STE). Considering the numbers 
and t-values of the connections with significant intergroup differences 
in Figure 5 and Table 2, CER, TEM, and RFP may be regarded as the 
biomarker brain networks for identifying schizophrenia (Su et al., 
2013; Nenadic et al., 2014; Watanabe et al., 2014; Oestreich et al., 2016; 
Zhuo et al., 2018; Rashidi et al., 2021; Sklar et al., 2021).

Figure 6 shows the SVM classification accuracy. The features are 
the unique or common connections obtained by CTE, sCTE, and 
STE. CTE exhibits the highest accuracy (92.8%) using unique 
connections relative to sCTE, followed by STE. As these unique 
connections of CTE are mainly related to RFP and CER shown in 
Table 2, it suggests that RFP- and CER-related connections helps to 
classify HCs and SZs. After verifying CTE unique connections are 
helpful in classification, exploiting all the significant connections 
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Causality accuracy for simulated signals with linear and non-linear causality under different SNRs.
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including common and unique connections for classification is 
evaluated in Table 3.

For all the connections with significant intergroup differences, 
Table  3 shows the SVM performance measures (ACC, SEN, and 
SPEC) from five causality algorithms. As expected, the proposed 
complex-valued transfer entropy methods (CTE and sCTE) achieve 
better performance than real-valued directed analysis methods. CTE 
shows the best classification performance among all the five directed 
analysis methods; e.g., it improves higher ACC with 10.2% (95.5% vs. 
85.3%) to sCTE, 13.6% (95.5% vs. 81.9%) to STE, 18.7% (95.5% vs. 
76.8%) to HTE, and 20.9% (95.5% vs. 74.6%) to Granger, respectively. 
The proposed CTE obtains all the highest values of the three 
classification measures, especially for SEN reaching to 96.3%. This 

suggests that CTE captures meaningful and discriminative features to 
identify HCs and SZ.

Several studies have employed SVM for classifying HCs and SZs, 
especially using FC as features. In terms of using SVM for HCs and SZs 
classification, we select the previous studies with similar data sizes of the 
dataset in the paper (40 HCs and 40 SZs) for comparison. Su et al. (2013) 
performed SVM to FC quantified by an extended maximal information 
coefficient and obtained 82.8% clustering accuracy (32 HCs and 32 SZs). 
By analyzing the coherence regional homogeneity value, Liu et al. (2018) 
demonstrated that the abnormal connections related to TEM, insula, 
precentral gyrus, and precuneus can be used as psychosis biomarker of 
schizophrenia and achieved 89.9% accuracy (31 HCs and 48 SZs). 
Following this, Bae et al. (2018) pointed to decreased connections in the 
global and local network connectivity in SZs compared with HCs, 
especially in DMN, left parietal region, and TEM with an accuracy of 
92.1% (31 HCs and 48 SZs). Instead of using FC of magnitude data for 
classification, Li et al. (2024) utilized dynamic connectivity features of 
phase maps as features for classification and obtained 87.5% accuracy (24 
HCs and 24 SZs). As mentioned above, the existing studies of real-valued 
connections achieved 82.8–92.1% SVM accuracy for classifying HCs and 
SZs. Due to making full use of both magnitude and phase fMRI data, 
directed FC quantified by CTE shows higher classifying accuracy 
(95.5%) than the previous studies with similar data sizes.

5 Discussion

To our knowledge, few studies have explored directed FC based 
on complex-valued fMRI data, although directed FC has been 

TABLE 2 Common and unique connections with the top five HCs-SZs significance.

Top five significant connections (AAL) Networks p-values (CTE)

Common (CTE and sCTE) (1) No.64-No.100 RFP, CER 5.50 × 10−5

(2) No.30-No.80 TEM 6.42 × 10−5

(3) No.52-No.100 MV, CER 1.76 × 10−4

(4) No.3-No.20 ADMN, SEM 4.59 × 10−4

(5) No.92-No.111 CER 4.98 × 10−4

Common (CTE and STE) (1) No.64-No.100 RFP, CER 5.50 × 10−5

(2) No.52-No.100 MV, CER 1.76 × 10−4

(3) No.80-No.100 TEM, CER 2.73 × 10−4

(4) No.67-No.92 DMN, CER 5.59 × 10−4

(5) No.18-No.92 TEM, CER 6.33 × 10−4

Unique (CTE vs. sCTE) (1) No.14-No.28 RFP, LFP 0.0147

(2) No.56-No.86 CER, LV 0.0167

(3) No.37-No.64 MV, RFP 0.0173

(4) No.20-No.102 SEM, CER 0.0178

(5) No.66-No.78 RFP, OPV 0.0178

Unique (CTE vs. STE) (1) No.25-No.29 DMN, TEM 0.0022

(2) No.27-No.109 DMN, CER 0.0027

(3) No.16-No.103 RFP, CER 0.0033

(4) No.108-No.113 CER 0.0033

(5) No.20-No.100 SEM, CER 0.0036
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CTE achieve higher accuracy than others.
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increasingly studied using magnitude-only fMRI data. In this study, 
we propose a non-linear complex-valued directed analysis method 
based on transfer entropy to make full use of complex-valued fMRI 
data in highlighting differences between HCs and SZs. Simulated 
results show that our method has the highest accuracy and noisy 
robustness, especially for the non-linear model with complete 
complex-valued causality containing magnitude–magnitude, phase–
phase, and magnitude–phase relationship. Experimental results show 
that CTE detects more unique connections with higher significant 
intergroup differences, thus leading to better performance in 
classifying HCs and SZs.

Instead of directly quantifying magnitude–phase causality, 
we  propose to introduce partial transfer entropy to exploit the 
complementary phase/magnitude effects on magnitude–phase and 
phase–magnitude causality. This is because partial CTE can 
simultaneously utilize both magnitude and phase to assess causality in 
Eqs. (4) and (5), while transfer entropy only considers magnitude–
phase or phase–magnitude dependence without the complementary 
phase/magnitude effects in Eqs. (32) and (33) as follows:
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As such, we use transfer entropy b���  and a���  to replace partial 
entropy a b� ��  and �� ��� a  for comparison when calculating the 
proposed CTE.

Figure 7 shows directed accuracy for the simulated signals with 
linear and non-linear complete complex-valued causality (type L1 and 
N1). It presents that using partial transfer entropy (shorted as partial 
TE) to measure the complementary phase and magnitude effects on 
magnitude–phase causality shows better performance than those 
directly quantifying magnitude–phase causality using transfer entropy 
(TE), especially for quantifying the linear causality. When measuring 
the causality between magnitude and phase, partial TE considers more 
information, thus partial TE enhancing CTE noise robustness. It 
verifies the effectiveness of introducing partial TE in the proposed 
CTE definition.

To evaluate the data length effects on CTE, we  change the 
simulated data length from 100 to 1,000 time points. CTE can keep 
high causality inference accuracy, especially for the signals with 
complete complex-valued causality (type L1 and N1). Because CTE 
keeps high causality inference accuracy to different data lengths, 

we can combine CTE and a sliding window approach for dynamic 
analysis. By performing causality analysis on the segmented time 
series, directed FC from different windows can be obtained. As such, 
dynamic statistical analysis can be exploited to analyze dynamics from 
the directed FC.

Figure  8 shows the average Pearson correlation coefficients 
between magnitude and phase from two different ROI signals across 
all the subjects in each group. The magnitude–phase correlation 
coefficients range from −0.2 to 0.2. This supports the magnitude–
phase causality considered in the proposed method. Specifically, 
CER-related connections are marked with black boxes and locally 
magnified. There are polarity and strength differences between HCs 
and SZs in both magnitude–phase and phase–magnitude correlation 
coefficients. This suggests that the proposed complex-valued transfer 
entropy considering causality between magnitude–phase and phase–
magnitude is essential and can capture more intergroup differences.

CER-related connections show more and higher significant 
intergroup differences obtained by the proposed CTE. Although the 
cerebellum has been reported to be associated with the motor system, 
a growing number of studies have found that the cerebellum is critical 
to processing complex functions, e.g., attention, cognition, and 
language (Lungu et al., 2013). Lungu et al. reviewed 234 fMRI studies 
published from 1997 to 2010 related to SZs and pointed out that 
41.02% of the articles reported cerebellar activity related to cognitive, 
emotional, and executive processes in schizophrenia. In conclusion, 
the results of their analyses suggest that the cerebellum plays an 
essential functional role in schizophrenia, especially in the cognitive 
and executive domains. Following this, we performed searches in the 
abstracts of articles indexed in Scopus from 2011 to 2023 and found 
218 articles that reported abnormal cerebellum-related connections 
in schizophrenia. These studies proved that the cerebellum is a 
functional hub involved in cognition, language, and emotional 
processing with regions, including TEM, DMN, and visual areas. For 
instance, Table  2 highlights Cerebelum_6_R (AAL No.100) has 
connections with significant HC-SZ difference, which is also 
consistent with previous studies. Su et al. (2013) quantified non-linear 
undirected connections and pointed out that cerebellum-related ROIs, 
especially CRBL6.R, were important in identifying schizophrenia. 
Zhuo et  al. (2018) calculated FC density to investigate cerebellar 
connectivity changes of SZs and found abnormal connectivity strength 
of Cerebelum_6_R with visual areas (Zhuo et al., 2018).

TABLE 3 SVM classification is performed by combining unique 
connections and common connections.

ACC (%) SEN (%) SPEC (%)

CTE 95.5 ± 2.8 96.3 ± 1.4 94.7 ± 5.1

sCTE 85.3 ± 7.2 90.5 ± 11.9 80.1 ± 9.6

STE 81.9 ± 10.1 85.0 ± 13.4 78.8 ± 12.3

HTE 76.8 ± 9.7 83.2 ± 11.2 70.4 ± 8.7

Granger 74.6 ± 8.6 77.1 ± 15.7 72.1 ± 10.9
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FIGURE 7

Causal inference accuracy comparison for CTE that using partial 
transfer entropy (shorted as partial TE) and TE, respectively. The 
proposed CTE using partial TE shows higher accuracy than the CTE 
that uses TE to directly quantify magnitude–phase causality.
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Apart from CER, CTE also detects common connections related to 
visual areas (MV and LV), and temporal lobe (TEM) in Table 2. These 
two nodes have brain functions of vision and auditory, respectively. As 
hallucinations are a frequent symptom of schizophrenia including visual 
and auditory hallucinations occupying 70% of patients with 
schizophrenia (Demirci et al., 2008), it is expected that MV and TEM are 
schizophrenia-related in terms of pathology mechanisms (Fogelson et al., 
2014; Dietz et al., 2020). For unique connections detected by CTE in 
Table 3, abnormal connectivity mainly related to RFP is verified by 
previous studies. Frontal parietal regions have been shown involved in 
the cognitive and perceptive process (Smith et al., 2009) and are highly 
related to the impaired cognitive function of SZs (Roiser et al., 2013). 
Roiser et  al. pointed out that connective abnormality related to the 
frontal–parietal areas may link to cognitive impairment for SZs (Roiser 
et  al., 2013), given that the unique abnormal connectivity patterns 
obtained by CTE may provide additional evidence for the cognitive and 
perceptive impairments of schizophrenia.

In addition to FC between ROI, CTE can also measure the FNC 
of brain networks. We use CTE to quantify the FNC of brain networks. 
Table 4 shows the SVM performance of the five directed analysis 
methods. Similar to FC results, CTE also shows the best performance 
among these methods. Compared with other directed analysis 
methods, CTE shows better classification performance, e.g., improves 
higher accuracy with 5.1% (88.2% vs. 83.1%) to sCTE, 9.9% (88.2% vs. 
78.3%) to STE, 17.5% (88.2% vs. 70.7%) to HTE, and 16.9% (88.2% vs. 
71.3%) to HTE, respectively.

In future, our CTE approach can be extended to analyzing causal 
FNC of time courses extracted by blind source separation, e.g., ICA, 
sparse representation, and tensor decomposition. Second, 

dynamic-directed FC/FNC can be  performed to further improve 
classification performance. Finally, CTE can be exploited for other 
mental disorders such as depressive disorder or further extended to 
other applications for evaluating complex-valued causality.
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