
TYPE Original Research

PUBLISHED 06 August 2024

DOI 10.3389/fnins.2024.1425861

OPEN ACCESS

EDITED BY

Majid Ahmadi,

University of Windsor, Canada

REVIEWED BY

Adarsha Balaji,

Argonne National Laboratory (DOE),

United States

Shuangming Yang,

Tianjin University, China

Saeed Moza�ari,

University of Windsor, Canada

Moslem Heidarpur,

University of Windsor, Canada

*CORRESPONDENCE

Bernardo Vallejo-Mancero

bernardo.javier.vallejo@upc.edu

RECEIVED 30 April 2024

ACCEPTED 22 July 2024

PUBLISHED 06 August 2024

CITATION

Vallejo-Mancero B, Madrenas J and Zapata M

(2024) Real-time execution of SNN models

with synaptic plasticity for handwritten digit

recognition on SIMD hardware.

Front. Neurosci. 18:1425861.

doi: 10.3389/fnins.2024.1425861

COPYRIGHT

© 2024 Vallejo-Mancero, Madrenas and

Zapata. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Real-time execution of SNN
models with synaptic plasticity
for handwritten digit recognition
on SIMD hardware

Bernardo Vallejo-Mancero1*, Jordi Madrenas1 and

Mireya Zapata2

1Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain,
2Centro de Investigación en Mecatrónica y Sistemas Interactivos—MIST, Universidad Indoamérica,

Quito, Ecuador

Recent advancements in neuromorphic computing have led to the development

of hardware architectures inspired by Spiking Neural Networks (SNNs) to emulate

the e�ciency and parallel processing capabilities of the human brain. This work

focuses on testing the HEENS architecture, specifically designed for high parallel

processing and biological realism in SNN emulation, implemented on a ZYNQ

family FPGA. The study applies this architecture to the classification of digits

using the well-known MNIST database. The image resolutions were adjusted to

match HEENS’ processing capacity. Results were compared with existing work,

demonstrating HEENS’ performance comparable to other solutions. This study

highlights the importance of balancing accuracy and e�ciency in the execution

of applications. HEENS o�ers a flexible solution for SNN emulation, allowing for

the implementation of programmable neural and synaptic models. It encourages

the exploration of novel algorithms and network architectures, providing an

alternative for real-time processing with e�cient energy consumption.

KEYWORDS

HEENS, neuromorphic hardware, spiking neural network, LIF model, Spike Timing

Dependent Plasticity, MNIST dataset, homeostasis, FPGA

1 Introduction

In recent years, the field of neuromorphic computing has witnessed significant

advancements, driven by the quest to emulate the remarkable efficiency and parallel

processing capabilities of the human brain. Opposite to mainstream Artificial Neural

Networks (ANNs), Spiking Neural Networks (SNNs) provide a biologically close

framework for information processing (Maass, 1997), attempting to integrate more

biological mechanisms (Schmidgall et al., 2023). SNNs communicate through spikes,

a strategy that mimics the neural activity observed in biological neurons. This

spike-based communication enables SNNs to exhibit temporal dynamics and local

adaptation, characteristics that closely resemble those found in biological neural

networks (Malcolm and Casco-Rodriguez, 2023). This approach aims to simplify the

power- and resource-consuming training demanded by ANNs because of two factors.

Based on events, SNNs can theoretically execute with reduced power consumption

compared to a continuous execution. Furthermore, the local plasticity algorithms,

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1425861
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1425861&domain=pdf&date_stamp=2024-08-06
mailto:bernardo.javier.vallejo@upc.edu
https://doi.org/10.3389/fnins.2024.1425861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1425861/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

which refer to the ability of a neural network to adapt and

change its structure or parameters in response to new information

or experiences (Jordan et al., 2021), reduce the computation

load compared to global gradient-descent methods. Despite living

beings demonstrate that it is possible to achieve excellent results in

recognition and classification tasks, ANNs are today still superior

to SNNs in most of those tasks. Therefore, more research is needed

in unraveling biological keys and proposing SNN topologies and

algorithms (Diehl and Cook, 2015; Yang et al., 2024b).

In order to improve the knowledge and understanding of

SNNs, the availability of specific hardware allows their fast

prototyping and real-time execution. In order to make progress in

demonstrating their suitability for solving real-world problems, it is

necessary to map applications and benchmark them. Two possible

reasons may explain why the results generally do not achieve the

same performance as classic ANNs. First, the attempt to reproduce

the same topology and configuration of ANNs by encoding values

on spike streams may lead to sub-optimal solutions. Second, the

development of efficient local adaptation algorithms is still an

open research field, where advancements continue to be made in

enhancing robustness and energy efficiency through innovative

learning techniques (Yang and Chen, 2023; Yang et al., 2023).

So far, many neural and synaptic plasticity models have been

proposed (Sanaullah et al., 2023), but often it remains unclear what

is the best usage of them and the most suitable spike encoding.

However, the fact that biological networks are able to perform

excellent recognition tasks is a motivation to search and a hint that

good performance can be achieved with current SNNs models or

their evolutions.

In order to accelerate the production of results and reduce

the resources demanded by large-scale networks, a promising

avenue in this domain is the development of custom hardware

architectures that combine low power consumption and high

computational efficiency with real-time execution. For proof

of concept demonstration, architectures implemented on Field

Programmable Gate Arrays (FPGAs), excel in fast prototyping

(Akbarzadeh-Sherbaf et al., 2018; He et al., 2022; Yang et al., 2024a),

at the cost of resource count and power dissipation compared to

ASICs.

Application-Specific Integrated Circuits (ASICs) allow to

obtain the maximum performance from a given chip technology,

at a much higher development cost. Among the most significant

proposed ASIC architectures supporting SNNs, the following

stand out: IBM TrueNorth (DeBole et al., 2019), a real-time

neurosynaptic processor that features a non-von Neumann, low-

power, highly-parallel architecture, with a new version called

PoleNorth (Cassidy et al., 2024) ; SpiNNaker (Mayr et al., 2019),

composed of multiple ARM processors that support a general-

purpose architecture with multiple instructions and multiple data;

and finally, the Intel Loihi 2 chip (Orchard et al., 2021), one

of the most advanced chips with asynchronous operation. As

an important added asset, SNN-specific hardware also offers the

possibility of interfacing with sensors to interact with algorithms

in real time using the data produced.

Contributing to the neuromorphic field, the Hardware

Emulator of Evolving Neural Systems (HEENS) is being developed

as a digital synchronous architecture designed to emulate SNN

with high levels of parallel processing, reduced resource and

power requirements, keeping the synchronous digital flexibility,

and focusing on real-time neural emulation with biological realism

and user-friendly prototyping environment.

The development of HEENS is based on significant previous

research. For instance, originally Madrenas and Moreno (2009)

introduced a scalable multiprocessor architecture employing SIMD

configurations that is flexible for emulating various neural models.

Additionally, the implementation of the AER communication

protocol, detailed by Moreno et al. (2009) and Zapata (2016), has

been crucial in enabling compact emulation of interconnections

in large-scale neural network models. Also notable is the Spiking

Neural Networks for Versatile Applications (SNAVA) simulation

platform (Sripad et al., 2018), a scalable and programmable

parallel architecture implemented on modern FPGA devices. The

integration of these technologies and other advances implemented

over time have allowed the current development of HEENS, which

incorporates features of these previous works while introducing

new capabilities that are described in the following sections.

This article provides a brief overview of HEENS, delving

into its architectural characteristics features and focusing on its

remarkable flexibility in prototyping SNNs, designed to adapt

and emulate a wide variety of neural configurations, and its

programmability, allowing researchers and developers to customize

and adjust the emulator’s behavior according to the specifications

of their neural applications. In this context, the central objective

of this work is to present the detailed methodology for modeling

and implementing applications of SNN. The work starts with an

exploration of its fundamental components, described in Section

2.1 namely a summary of the HEENS hardware architecture,

followed by an in-depth analysis of neural and synaptic models,

including the Leaky Integrate and Fire (LIF) neuron model and

Spike Timing Dependent Plasticity (STDP) mechanisms (Bliss and

Gardner-Medwin, 1973). In addition, we will assess the concept

of homeostasis (Ding et al., 2023) and its impact on network

behavior. These concepts will be demonstrated by implementing

a handwritten digit recognition application in HEENS, using data

sets such as MNIST (LeCun et al., 1998) to train and test neural

networks. Through a series of experiments, we evaluate HEENS’

effectiveness in achieving precision and robustness in pattern

recognition tasks, comparing its performance with alternative

solutions and identifying potential limitations.

This article aims to provide valuable insights into the

capabilities and potential of HEENS bymeans of the demonstration

of a character recognition application with local learning to advance

the frontier of neuromorphic computing for researchers and

professionals. With its blend of biological realism, scalability, and

computational efficiency, HEENS emerges as a promising platform

for exploring the intricacies of neural information processing and

accelerating the development of intelligent systems.

Following this introduction, in Section 2, the methodology

used is detailed, including architectural description, network

architecture, neural and synaptic modeling, culminating in the

implementation of the neural application, as well as the proposed

input encoding and the stages of training and evaluation. Section

3 presents the execution experiments and results, while Section 4

offers a discussion of the results and the comparison with other

alternatives or solutions, ending with future work and directions.

Finally, the conclusion is reported in Section 5.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

2 Methods

2.1 Summary of the HEENS hardware
architecture

HEENS is a Single Instruction Multiple Data (SIMD), scalable,

and multichip hardware architecture implemented on several

devices of the Xilinx’s Zynq family of Field Programmable

Gate Arrays (FPGAs), designed to emulate multi-model SNNs

with high parallelism (Figure 1), using basic Processing Elements

(PE) adapted to SNN requirements. PE arrays allow for the

implementation of clustered networks inspired by the structural

organization of the brain. The main goal of HEENS is to emulate

large-scale SNNs in real time with a high degree of biological

realism while also providing users with a friendly and flexible

prototyping environment.

The basic system unit (PE, Figure 1A) contains the necessary

logic to emulate one or more biological neurons and their synapses.

It is composed of the fundamental units of a processor datapath:

an Arithmetic and Logic Unit (ALU), a register bank, and routing

resources, as well as two local Static RandomAccess (SRAMs). Each

PE’s ALU performs hardware addition, subtraction, multiplication,

and logical operations, interacting with a 16-bit general-purpose

register bank and an additional shadow register bank for extended

register space. The Interconnection Memory stores the synaptic

connection map. It is used to decode the incoming spike address

identifier, detecting those that match the PE, while the Synaptic

and Neural RAM (SNRAM) contains the neuron parameters

required for the execution of the synaptic and neural models.

A 64-bit Linear Feedback Shift Register (LFSR) is also included

in each PE to generate uncorrelated noise, essential for various

neural applications.

Each PE can be time-multiplexed without the need for

additional hardware, at the cost of increasing execution time. This

process is referred to as virtualization, which allows emulating (i.e.,

executing in real time) a maximum of eight virtual neurons per PE.

A 2D PE array together with the control unit, consisting of a

Sequencer and an Instruction Memory, form the multiprocessor

(Figure 1B). HEENS has its own custom Instruction Set

Architecture (ISA), especially designed for the implementation

of arbitrary spiking neural and synaptic models. The neural and

synaptic programs are stored in the Instruction Memory. The

sequencer performs instruction fetch and decoding, executes the

control instructions, and broadcasts the ones related with data

processing to the PE array. Finally, a synchronous Address Event

Representation (AER) interface is in charge of internally and

externally convey the spikes produced by the PE array neurons.

The architecture supports a maximum array of 16 × 16 PEs,

which allows emulating up to 16 × 16 × 8 (2k) neurons with

256 synapses per PE distributed among its virtual layers. However,

the total number of PEs that can be implemented depends on

the hardware resources available in the FPGA. In the case of the

Zynq706 (the model used in this work), an array of 16× 10 PEs has

been successfully mapped operating at a frequency of 125 MHz.

In Figure 1C, the main blocks that make up a master chip

(node) can be observed. The master node includes communication

with the user. This node consists of two parts, associated with

the Programmable Logic (PL) and the Processing System (PS)

of the programmable device. The PL contains the multiprocessor

along with dedicated communication blocks for user interaction

and the transmission of local and global spikes. On the other

hand, the PS, which in the case of Zynq family chips embeds two

ARM family processors, acts as a bridge between the user and the

multiprocessor implemented in the PL, allowing the transmission

of configuration packets and network control, monitoring and

debugging information.

To support working with more complex networks and a larger

number of neurons, the architecture can be extended by connecting

slave nodes, creating a master-slave ring topology (Figure 1D),

where a Master Chip is used along with Neuromorphic Chips

(NC) as slaves. The latter contain multiprocessor instances, but

lack the PS. The addressing space of the architecture supports

up to 127 NCs. The communication between the chips is done

using the Address Event Representation over Synchronous Serial

Ring Topology (AER-SRT) protocol due to its high performance

in applications focused on event transmission through GTX high-

speed serial transceivers (Dorta et al., 2016). This communication

is used not only to transmit spikes, but also to send configuration

packets to each of the chips. Besides the monitoring through the

master node, it is also possible for any node to support real-time

monitoring via HDMI (Vallejo-Mancero et al., 2022).

Among the main features of HEENS, the following can be

highlighted.

• Real-time operation. Time slots of 1 ms are considered real-

time for each execution cycle of neural applications. This time

slot can be tuned.

• High scalability: Achieved through an extendable and compact

communication system, and low-resource, low-power design.

Notice that each node requires only an input and an output

serial port for all the operations.

• Unified data flow: The same communication ring supports all

tasks: System configuration, spike transmission, and system

execution monitoring.

• Multimodel Algorithm Support: Virtually any spiking neural

algorithm can be programmed, including LIF (Abbott, 1999),

Izhikevich (Izhikevich, 2003) , Quadratic LIF (Alvarez-Lacalle

and Moses, 2009), and others, using dedicated software tools.

• Flexible Synaptic Algorithms: Same as neural ones, local

synaptic algorithms are customizable via software, including

Spike-Timing Dependent Plasticity (STDP) (Bliss and

Gardner-Medwin, 1973), as a relevant example.

• Efficient Memory Usage: The neural, synaptic, and

connection parameters are stored in local memory

for optimized performance. This solves the processor-

memory bottleneck issue by applying the in-memory

computing paradigm.

• Comprehensive Computer-Aided Engineering (CAE) Toolset:

Tools that fully automate the configuration and real-time

monitoring of SNNs, making the mapping of a neural network

a simple task of specifying in textfiles the network topology,

the initial neural and synaptic parameters and selecting from a

library the neural and synaptic algorithm to be executed (Oltra

et al., 2021; Zapata et al., 2021).

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

FIGURE 1

HEENS architecture overview. (A) Processing Element (PE) scheme. (B) Multiprocessor. (C) Master chip: Processing System (PS) and Programmable

Logic (PL). (D) Ring topology in a master-slave connection scheme: master chip/node (MC) and neuromorphic chips/nodes (NC).

2.1.1 External input module
As observed in Figure 2, the original HEENS architecture was

adapted to directly support access to the PE by multiplexing

the output signal of the neuron. The PE array organization

makes straightforward the direct access of external data to

individual neurons. By default, the first virtual layer is accessed,

although other layers could be equally accessed. This adaptation

allows for the definition of a group of neurons that can be

activated externally, managed by a hardware block responsible for

converting the received signals into spikes directly injected to those

specific neurons.

The conversion and injection of spikes into the system must

consider the real-time processing performed by the architecture. To

achieve this, a First-Input First-Output (FIFO) memory is utilized

to store data until the corresponding execution cycle requires it,

every time step (typically 1 ms). Data is transmitted from an

external hardware block and, for the sake of increasing speed, each

8-bit data is encoded into two 4-bit packs transmitted in parallel

and processed in the architecture by a decoder block. Each bit

is directly connected to a destination register bit, reducing the

number of clock cycles required for each data and allowing for

faster data transmission to ensure the real-time operation.

Data can come from various sources, typically attached sensors,

but for this work the MNIST dataset (LeCun et al., 1998) is utilized

and externally generated, where each event has been encoded in an

8-bit word. An explanation of the dataset management is provided

in Section 2.3.

2.2 Spiking neural and synaptic model

2.2.1 SNN model
As mentioned before, arbitrary spiking neural models can

be implemented in HEENS. The choice depends mainly on two

factors: the degree of biological realism and the computational

efficiency for the application. Considering the second factor, the LIF

model (Abbott, 1999) has been selected. This model is recognized

for its simplicity and low computational cost. This well-known

model is described with Equations 1, 2.

τm
dV

dt
= −(V(t)− Vres)+ R · I(t) (1)

If: V(t) ≥ Vth then: V(t)← Vres (2)

Where V(t) is the membrane potential, Vrest is the

resting membrane potential, τm is the membrane time

constant, R is the membrane resistance, I(t) is the synaptic

input current and Vth is the threshold voltage. When the

membrane potential crosses this threshold value, the neuron

fires, and the membrane potential is reset to Vrest . The

calculation of the synaptic input current is represented by

Equations 3–5.

I(t) = k.gex(t)+ k.gih(t) (3)

τex
dgex

dt
= −gex, τih

dgih
dt
= −gih (4)

gex =

Nex
∑

i=1

wi · δ(t − ti), gih =

Nih
∑

i=1

wi · δ(t − ti) (5)

Where I(t) represents the total input current received

by the neuron at time t, which is computed as the sum

of excitatory and inhibitory synaptic currents. The constant

k is the synaptic potential difference, scaling the impact of

excitatory and inhibitory synaptic conductances on the membrane

potential of the neuron. The excitatory synaptic conductance

dynamics, gex(t), decays exponentially with τex time constant, while

gih(t) represents the inhibitory synaptic conductance dynamics,

following a similar exponential decay with τih time constant.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

FIGURE 2

Schematic of the external spike input module hardware, detailing its individual blocks and connection with other modules.

The weights wi denote the strength of individual synapses,

where Nex and Nih representing the total number of excitatory

and inhibitory synapses, respectively. Finally, ti represents the

activation time of each synapse, indicating when a synaptic

event occurs. These variables describe the complex dynamics of

synaptic inputs and their collective influence on the neuron’s total

input current.

2.2.2 Plasticity mechanism
In artificial neural networks (ANNs), learning techniques

typically employ static algorithms to adjust connection

weights based on specific training data, without dynamically

incorporating the timing observed in biological neural network

synapses (Abdolrasol et al., 2021). In contrast, synaptic plasticity

mechanisms are dynamic processes through which connections

between neurons can modify their strength and efficacy in response

to neuronal activity, crucial for neural system functionality,

particularly in learning and memory processes (Citri and Malenka,

2008). Several mechanisms contribute to synaptic plasticity

dynamics, including Long-Term Potentiation (LTP), which

strengthens synapses through repeated activation of presynaptic

neurons, and Long-Term Depression (LTD), which weakens

synapses during periods of reduced synaptic activity (Barco

et al., 2008). Another form is Spike-Timing-Dependent Plasticity

(STDP), which adjusts synaptic strength based on the precise

timing of spikes between presynaptic and postsynaptic neurons.

The plasticity mechanism implemented in this work is STDP,

described by Equation 6. It is a hardware-friendly version of

the original Bliss and Gardner-Medwin (1973), that uses two

new variables, apre and apost , known as pre and postsynaptic

activity “traces” (Stimberg et al., 2019). These “traces” track the

temporal activity patterns of presynaptic and postsynaptic neurons,

respectively, where τpre and τpost are their time constants that

determine their rate at which these traces change over time. Due to

the fact that the HEENS architecture processes spikes individually,

it is important to highlight that the traces apply to individual spikes,

not to spike rate averages.

τpre
dapre

dt
= −apre, τpost

dapost

dt
= −apost (6)

The weight or strength of the connection, denoted by w,

adjusts dynamically with each presynaptic or postsynaptic

spike, as shown in Equations 7, 8, in response to the temporal

activity of the neurons. The Equation 9 ensure that the

synaptic weight w remains within a biologically plausible

range, without exceeding a maximum value wmax and without

becoming negative.

apre ←− apre +1apre, w←− w+ apost (7)

apost ←− apost +1apost , w←− w+ apre (8)

w←

{

wmax if w ≥ wmax,

0 if w ≤ 0.
(9)

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

Where 1apre and 1apost represent the increment

and decrement amounts for synaptic plasticity

variables, respectively.

Considering that a competitive learning method is

employed, with the aim of each neuron or group of neurons

to specialize in recognizing specific features, it is important

to introduce a method to control and restrict the unlimited

growth of weights between neurons, as mentioned in the work

of Goodhill and Barrow (1994). To achieve this, a rule of

synaptic scaling plasticity based on subtraction was implemented

to generate competition among synapses. This mechanism

normalizes synaptic strength after each training digit and follows

Equations 10, 11.

facw =
Wnorm −

∑Nstdp

i=1 wi

Nstdp
(10)

wi ←− wi + facw (11)

Where facw is the normalization factor of synaptic

weight, Wnorm represents the target value of normalization,

wi indicates the synaptic weight of the i -th synapse and

Nstdp represents the total number of synapses subject to the

STDP plasticity rule. These normalization techniques are

already present in various image processing works, such as

Krizhevsky et al. (2012).

2.2.3 Homeostasis
The homeostasis involves biological systems maintaining

stability by autonomously adapting to fluctuations in external

conditions (Billman, 2020). In the context of neural networks,

homeostasis ensures that neurons maintain balanced firing

rates and receptive fields, preventing individual neurons from

dominating neural responses. The homeostasis mechanism used

here follows the same approach as Diehl and Cook (2015). The goal

is to ensure that all neurons have similar firing rates but different

receptive fields. To prevent a single neuron in the excitatory layer

from dominating the response, the firing threshold (Vth) was

adapted in Equations 12, 13:

Vth−ad = Vth + θe−t/τhom (12)

If :V(t) ≥ Vth−ad then: θ ←− θ +1θ (13)

In the homeostasis equation, Vth−ad represents the adaptive

threshold, Vth denotes the original threshold, and θ indicates

the magnitude of the adaptation, which increases 1θ with each

spike and decays exponentially according to the time constant

τhom. Consequently, as a neuron fires more frequently, its

threshold progressively rises, needing greater input for subsequent

firing. This iterative process persists until θ decreases to a

satisfactory level.

2.3 Handwritten digit recognition

2.3.1 MNIST dataset
The set of images used for the application corresponds

to the MNIST dataset, which consists of grayscale images of

handwritten digits from 0 to 9. It contains 60,000 training

examples and 10,000 test examples. MNIST is widely used in the

field of Optical Character Recognition (OCR), where applications

for recognizing, various alphabets and languages such as the

Latin alphabet (Singh and Amin, 1999; Darapaneni et al., 2020),

Farsi-Arabic (Mozaffari and Bahar, 2012; Tavoli et al., 2018),

Japanese (Matsumoto et al., 2001), besides numeric digits, are

also notable. The MNIST dataset was chosen not only for its

simplicity and clarity in digit recognition tasks but also because

it serves as a standard benchmark dataset in the field of machine

learning and neuromorphic computing (Guo et al., 2022; Liu

et al., 2022; Tao et al., 2023). This selection allows for a direct

comparison of the performance of the HEENS architecture with

existing methodologies and provides a baseline for evaluating

its capabilities.

Although each image has a size of 28 × 28 pixels, due

to limitations regarding the maximum number of synapses

and implementable neurons in the HEENS architecture, as

explained in Section 2.1, the size of the images is reduced

using the .resize((height, width)) function from

the PIL (Python Imaging Library). This function resizes the

image to the specified values assigned to the height and

width variables using the nearest-neighbor interpolation

technique (GeeksforGeeks, 2022). For this application,

considering that the maximum number of neurons that

can be implemented per node in HEENS is 16 × 10, the

dimensions of each image are configured to be 12 × 12 pixels,

resulting in a total of 144 pixels per input image. Each pixel

corresponds to a neuron in the input layer, as illustrated in

Figure 3A.

2.3.2 Input encoding
The network receives input for 350 ms in the form of

Poisson-distributed spike trains, with firing rates corresponding

to the pixel intensity of MNIST images. Here, the maximum

intensity, denoted as 255 for white and 0 for black, enables

an accurate representation of luminosity levels within the

images. Moreover, a 150 ms pause separates each data set

digit presentation presentation, aiding in the clear differentiation

of inputs.

In the training process, a supervised learning approach is

adopted. A 200 Hz constant spike rate transmits the teacher

signal, synchronized with the spikes generated by input images.

This signal is conveyed through a designated input neuron,

chosen based on the current class label being trained. This

strategy is activated exclusively during the learning phase and is

deactivated during testing. It facilitates the gradual enhancement

of the network’s performance in classifying various image classes,

even in the absence of explicit error correction. Furthermore,

it is worth noting that the teaching signal follows the same

cycle duration of 350 ms with a 150 ms pause as the input

presentation cycle.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

2.4 Network architecture

The proposed network architecture consists of 4 layers, as

illustrated in Figure 3B: the input layer, the excitatory neuron

layer, the inhibitory neuron layer, and the output layer. It takes as

reference the network architectures from Diehl and Cook (2015),

Hao et al. (2020), and Lee and Sim (2023), with some variations.

Each pixel in the input image is connected one-to-one to 144

neurons of the input layer (in green color). These neurons are fully

connected to the excitatory layer, being all connections excitatory

with a synaptic plasticity mechanism enabled during the learning

stage. The main function of these 144 neurons is to transmit

encoded pulse trains from each image to the next layer.

In addition, the input layer contains 10 neurons (in green)

driven by external input, used as teacher signals for supervised

learning. Each of these neurons is excitatorily connected to a

unique 10-neuron group of the excitatory layer. These reference

signals have no configured plasticity mechanism and serve only

to provide external information to guide the learning of the

network without adjusting their own synaptic weights. The value

of these connections is the maximum STDP weight defined in the

constant wmax.

The excitatory layer (in blue) consists of 100 LIF-type neurons

with homeostasis enabled during the learning phase. In addition

to the mentioned connections from the input layer, it also

interacts with the inhibitory layer and the output layer. Each

excitatory neuron establishes a direct excitatory connection with

a corresponding inhibitory neuron characterized by a strong

connection strength. In contrast, each inhibitory neuron forms

inhibitory connections with all excitatory neurons in the layer,

except the one to which it is directly connected. This setup aims to

utilize the “winner take all” technique, where the first firing neuron

inhibits the rest, aiding in classifying and selectively focusing

the network toward the desired input. In the output layer, each

column of 10 neurons is connected to an output neuron associated

with a specific class (see Figure 3B inset). Thus, the first neurons

are associated with 0, the following ones with 1, and so on up

to 9. The weight value used is 8 times wmax, a value utilized

in Hao et al. (2020) to increase the activity of the layer upon

receiving spikes.

The inhibitory layer (in red), which consists of 100 LIF-type

neurons with disabled homeostasis, plays a crucial role in regulating

the activity of neurons within the excitatory layer. Each neuron

within this layer receives input from an excitatory neuron. The

synaptic weights of these connections must be carefully adjusted to

prompt the activation of inhibitory neurons quickly upon receiving

an excitatory pulse, ensuring timely inhibition and contributing to

the network’s ability to regulate and control its activity dynamics.

At the same time, the weights of the inhibitory connections

must be adjusted to achieve a balance that prevents the complete

suppression of the participation of neighboring neurons in the

computation of the network.

Finally, the output layer consists of 10 LIF neurons with

disabled both homeostasis and STDP. This layer serves as

the final processing stage in the neural network, with each

neuron dedicated to representing one of the ten possible

classified digits.

2.5 Neural and synaptic model
implementation on HEENS

The implementation process of a neural application in HEENS

involves several stages as shown in Figure 4. Every application

requires two files, the assembler model, that contains the neural

and synaptic algorithms and the netlist. Both files are compiled,

and with the use of custom-made Python tools, a configuration

file is generated. This file is then transmitted from the PC to the

HEENS hardware through the Ethernet interface during an initial

configuration phase.

2.5.1 Assembler model
The neural and synaptic model algorithms are encoded in

a text file in assembly language based on the HEENS custom

Instruction Set Architecture (ISA). The ISA has 64 defined

instructions, optimized for working with spiking neural networks.

HEENS operates with 16-bit precision integer arithmetic, which

proves to be a good trade-off between accuracy and resources

due to its programmability and multi-model capability. Lower-

precision solutions are often limited to specific applications or

need to be combined with higher resolution formats to achieve

desired outcomes (Yun et al., 2023). On the other hand, using

higher resolutions significantly increases resource usage, which

may compromise the scalability and power efficiency of the solution

(Das et al., 2018; Narang et al., 2018). It was experimentally found

that the best suited resolution to operate is 10 µV per Least

Significant Bit (LSB).

For the implementation of the model, Equations 1–13 were

used, which describe soma dynamics, synaptic plasticity, and

homeostasis. However, in order to support the long time constants

required by homeostasis, a modification was made in Equation 12.

Undersampling was implemented for its decay calculation, which

involves calculating the exponential term only at certain number of

steps instead of at every time step. Because of the very slow decay,

the variation over short time intervals is so small that it cannot be

detected by the architecture resolution. The constant used to define

these time intervals between each decay is tspa−samp with a value

of 10 s.

The flowchart depicted in Figure 5 describes the model

implementation considering the network structure. As described in

Section 2.1, HEENS has the capability to time-multiplex each PE

into different levels, called virtual layers. This allows the neurons

between each layer to behave differently.

For the first layer (green), designated for input only, no action

is taken other than increasing the layer counter. In the second layer

(blue), excitatory and output neurons are implemented. Note that

in addition to the LIF model algorithm, there are dedicated blocks

to calculate plasticity and homeostasis; this layer is where training

takes place.

The main algorithm consists of a loop of virtual layers. Blue

boxes in Figure 5 correspond to the operations for the excitatory

and output layers. Notice the synaptic loop and the and the neural

operations for the current virtual layer. The last layer (red) is

utilized for lateral inhibition, representing a condensed version of

the preceding layer, focusing only on the implementation of the LIF

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

FIGURE 3

Image processing. (A) Input image encoding. (B) Network architecture.

FIGURE 4

Workflow: neural modeling to configuration file generation.

model algorithm. It also calculates the synaptic loop and current

virtual layer neuron.

This algorithm is also used during the testing stage, once

the network has been trained. In Algorithm 1, the structure

and format used to describe the model in pseudocode are

shown. It is divided into three main parts: the definition

of parameters and constants (see values in Table 1), the

procedures outlined in Figure 5, and the main block that

details the neuron and synapse execution and the spike

distribution loop.

2.5.2 Netlist
The netlist provides a detailed description of the connections

and parameters of the neural network, identifying both the source

and the destination neuron, together with the associated neural and

synaptic parameters (Algorithm 2).

As indicated in Section 2.1, each PE in HEENS contains

two local memories shared among all its virtual layers. The

Interconnection Memory is used to store the pre-synaptic

connections of the PE neurons, while the SNRAM stores the neural

and synaptic parameters.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

FIGURE 5

Workflow: assembler model.

Each connection defined in the netlist represents a synapse and

it is stored in the InterconnectionMemory according to the address

of the pre-synaptic (source) neuron. In addition, depending on

the synaptic model, multiple synaptic parameters can be associated

with each synapse in the netlist file, the most important being

the weight. These parameters are stored in the SNRAM, and

the maximum number of definable parameters is limited by the

memory size and the maximum number of synapses per neuron.

For this specific application, five memory spaces have been

allocated, distributed among connection weights, parameters

related to synaptic plasticity, and the exponential decay of

synaptic current. The values for each synapse are initialized in

the @Netlist section shown in Algorithm 2, where the first two

values represent the identifiers of the source (pre-synaptic) and

destination (post-synaptic) neurons of the synapse, followed by the

synaptic parameters.

In addition to synaptic parameters that influence synaptic

dynamics, neural parameters associated with the soma are also

considered, being the most relevant the membrane potential. Other

relevant parameters may vary depending on the model used. These

parameters are defined and initialized at the end of the netlist file

in the @Params section in Algorithm 2. Similarly to synapses, the

number of neural parameters that can be defined is limited by the

memory size.

For this particular case, eight memory locations per neuron

have been allocated. These spaces are distributed among neural

membrane potential storage, parameters required for weight

and plasticity normalization, and those needed for homeostasis

computation. In Algorithm 2, it can be observed that for each

neural parameter, an initial memory address is established, along

with default values depending on whether the neuron is mapped or

not, as well as specific values as required by the model.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

Parameter Definitions:

VTHRES = −5,200; -52 mV = −5,200 in tens of uV.

VREST = −6,500; -65 mV = −6,500 in tens of uV.

...

Procedures:

LOAD_NORM_PAR:; Calculate normalization factor.

LOAD_NEURON:; Load neural parameters.

SYNAPSE_CALC:; Load presynaptic spike.

...

Main Program:

EXEC_LOOP:

INPUT_LAYER:

...

EXCITATORY_LAYER:

GOTO LOAD_NORM_PAR

...

LOOPV; synaptic loop

GOTO SYNAPSE_CALC

...

ENDL

...

INHIBITORY_LAYER:

GOTO LOAD_NEURON:

...

LOOPV; synaptic loop

GOTO SYNAPSE_CALC

...

ENDL

...

SPKDIS; Spike distribution

GOTO EXEC_LOOP

Algorithm 1. Pseudocode assembler Model MNIST application.

...

@Netlist

#From, to, Apre, Spk-STDP, Apost, w, _, I-decay

1, 160, 0, 7, 0, 450, 0, 0

2, 160, 0, 7, 0, 500, 0, 0

...

@Params

Addr/Size/Name/Entries/default

.0x3E0/16/NEUR_VTH/$NVL/-6500, 0

UNMAPPED, −7,000, 0

.0x3E9/16/CYCNT_CLCNT/$NVL/0,0

UNMAPPED, 0, 0

.0x3F2/16/HCD_HEN/$NVL/0, 0

160, 0,1

...

UNMAPPED, 0, 0

#Noise

.0x3FC/32/SEED/2/

UNMAPPED, 0, 0

Algorithm 2. Netlist MNIST application.

TABLE 1 LIF with STDP and homesotasis model parameters.

Parameter Value Units

Soma parameters

Threshold voltage (Vth) −52 mV

Resting potential (Vrest) −65 mV

Synaptic potential difference (k) −58 mV

Membrane decay time (τm) 100 ms

Synapse parameters

Current decay time (τex , τih) 1 ms

Synapse decay time (τpre , τpost) 20 ms

Increment factor presynapse (1pre) 0.01

Increment factor postynapse

(1post)

−0.01

Target value excitatory layer

(Wnorm)

20

Maximum weigh excitatory

synapse (wmax)

1

Homeostasis parameters

Increment homesotasis (1θ) 0.01 mV

Homeostasis decay time (τhom) 1e6 ms

Spaced sampling time (tspa−samp) 10,000 ms

Emulation parameters

Approach method Euler

Total Emulated neurons (N) 364

LSB 10 µV

Time step (dt) 1 ms

Taking into account these synaptic and neural parameters, the

memory map of an excitatory neuron is presented in Figure 6.

The size of the SNRAM is 1024 × 32 bits. As seen in the

Figure 6, each memory location consists of 32 bits, which are

divided into two parts. The least significant 16 bits are associated

with register R0, and the most significant 16 bits are associated

with register R1. These two registers belong to the PE register

bank, being both used within the assembler model algorithm

described. In total, about 75% of the memory capacity is used for

this application.

In the next section, the values listed in Table 1 are used

to conduct the experiments. These values were chosen

based on parameters used in previous research, such as the

investigation reported by Diehl and Cook (2015). In addition,

some parameters were adjusted through experimentation,

testing, and tuning to better align the employed model with

the specific characteristics of the experiments, and with the

HEENS architecture. This approach ensured a parameter

configuration tailored to the experiments, balancing consistency

with previous work and adaptation to the specific needs of

the study.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

FIGURE 6

SNRAM memory mapping for an excitatory neuron in the second layer. Each synapse is allocated five memory spaces for synaptic parameters, while

each neuron has eight memory spaces reserved for neural parameters.

3 Experiments and results

3.1 Setup and real-time application
execution

This section outlines the hardware and software requirements

for preparing and executing the application in real-time. It

involves the use of a PC, running a suite of Python-developed

tools responsible for generating a configuration file, monitoring,

and external input data transmission. The Xilinx Zynq ZC706

development board, which serves as the hardware’s Master

Chip, hosts the architecture implementation. To facilitate the

transmission of external spikes without affecting HEENS operation,

an Arduino Due was employed as a bridge between the PC and the

Zynq. Lastly, the interface standards utilized include Ethernet for

configuration and spike storage, HDMI for real-time monitoring,

and USB for external input data transmission.

In Figure 7, two images obtained from the HEENS HDMI

monitoring tool can be observed, one during the training phase

and the other one in the testing stage. They depict the raster plot

of neural activity within a 1,000 ms window. For didactic purposes,

color bands have been included to group neurons according to

their corresponding layers: green for the input layer, blue for the

excitatory and output layer, and red for the inhibitory layer. The

bottom part illustrates the membrane potential evolution of four

selected output neurons. The differences between the two stages are

as follows: in the first stage, the teaching signal is activated, leading

to higher activity in the neuron corresponding to the trained class,

while in the testing stage, the activity is lower but only reflects the

network’s response to the evaluated input. The same input data has

been selected to clearly discern their differences.

3.2 Experimental results

In this section, the results of two experiments selected based

on works reported by Iyer and Basu (2017) are presented. The

approach follows the strategy of first evaluating a smaller dataset

to explore and fine-tune the parameters used, as it involves less

time and hardware resources. Once the values are determined, the

second experiment is carried out to evaluate the complete dataset.

3.2.1 5-class dataset experiment
The digits chosen for the experiment were those that exhibited

the greatest dissimilarity from each other (0, 1, 2, 3, and 4). The

network configuration is identical to that outlined in Figure 3, with

the only difference being that the groups of neurons per class

in the excitatory layer consist of 20, as opposed to the original

10. For training, 15,000 different patterns were used, presented

randomly over 2 epochs. For the evaluation stage, two sets of

5,000 different patterns each were used: the first set consisted of

the training patterns themselves, and the second set corresponds

to the test patterns. Figure 8, displays the confusion matrix of

the conducted tests and the summary of the results are shown in

Table 2.

In Figure 8, the percentage of accuracy for each digit is

shown for the training and test data scenarios, with 0 being

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

FIGURE 7

Real-time execution, comparison between training and testing stages, using the same input classes and the HEENS HDMI tool. The red X character is

used to emphasize that during the testing phase, teaching inputs are disabled.

FIGURE 8

Confusion matrix of 10,000 MNIST digits: training vs. test data.

classified with the highest precision and 2 with the lowest

precision. Comparing the results shown in Table 2, it can

be observed that the test data had a higher, but similar,

accuracy percentage compared to the data used for training.

This suggests an effective generalization of the model, indicating

that it has learned representative patterns from the training

data and is capable of applying them accurately to new

unseen data.

3.2.2 10-class dataset experiment
In this experiment, the classification of the 10 digits

is evaluated. We chose to train with 15,000 classes out

of the available 60,000 for 4 epochs. This decision was

based on tests that determined that this range yielded

the best results without overfitting the system, while also

allowing for efficient management of execution time by

reducing training times. Similarly to the previous case,

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

for evaluation, two datasets are used: 10,000 patterns

are selected from the training data and 10,000 from

the test data. The classification results are summarized

in Table 3.

Figure 9 provides a detailed view of the confusion matrix

generated during the experiment. It clearly illustrates how

the recognition model has responded to each of the digits

in the dataset. In particular, the precision of recognizing

digits 0, 1, 2, 3, 5, 6 and 7 is particularly high, exceeding

80%, suggesting a remarkable ability to distinguish and

classify these digits correctly. However, it should be noted

that digits 4 and 9 exhibit lower precision, below 75%, as

evidenced by the results shown in the confusion matrix.

This lower precision may be attributed to the inherent

challenges in distinguishing these digits, particularly when

working with lower resolutions where their differences are

less perceptible. Furthermore, digit 8 also shows a lower

precision, as it is often confused with digit 5. These results

highlight potential areas for improvement in the model

and suggest specific challenges in accurately classifying

certain digits.

TABLE 2 Classification accuracy 5-class experiment.

Experiment Dataset Performance

5-class Training 94.62%

5-class Test 95.08%

TABLE 3 Classification accuracy 10-class experiment.

Experiment Dataset Performance

10-class Training 82.85%

10-class Test 82.22%

4 Discussion

4.1 Comparison with previous research

In current research, significant progress is being made

in spiking neural networks and their applications in image

classification, standing out for their low power consumption

and high efficiency (Sadovsky et al., 2021). These advantages

are particularly evident in neuromorphic architectures specifically

designed for their implementation. However, challenges remain

in terms of precision and development, preventing them from

reaching the level of other alternatives, such as artificial neural

networks (ANN). However, the ongoing exploration of novel

models and network architectures is gradually narrowing this gap

(Niu et al., 2023).

This section presents a comparison of the classification

performance among different works based on the neural network

architecture proposed by Diehl and Cook (2015), employing

Spiking Neural Networks (SNNs) in the MNIST digit recognition

task. The performance of each application is detailed in Table 4. It is

worth noting that in all implementations, the results were evaluated

considering the use of 100 neurons exclusively in the excitatory

layer of the network, in accordance with the number of neurons

implementable in a single-node HEENS prototype for practical

reasons. The results of this comparison provide insight into how

the proposed system compares to other existing applications.

When comparing the results of this study with others in terms

of accuracy, we observe that while we surpass the results obtained

by Diehl and Cook (2015), there are works that have superior

results. However, it is important to note that each image has been

down-scaled to 18% of its original size, resulting in a reduction of

640 neurons. Moreover, in contrast to all other studies, with the

exception of Guo et al. (2020), who also used an FPGA but only

implemented 25 physical neurons, the design tested in this study

operates on a real-time architecture.

As indicated by the power consumption analyzer in Vivado

(the Xilinx FPGA synthesis and implementation tool), the total

FIGURE 9

Confusion matrix of 20,000 MNIST digits: training vs. test data.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

TABLE 4 Comparison of classification performance.

Network model Input neurons Resource Supervision Performance

Diehl and Cook (2015) 28× 28 Python & BRIAN Unsupervised 82.00%

Querlioz et al. (2018) 28× 28 C++ (Xnet) Unsupervised 86.00%

Hao et al. (2020) 28× 28 GENN Supervised 83.67%

Guo et al. (2020) 28× 28 Python & FPGA Unsupervised 85.78%

Lee and Sim (2023) 28× 28 Python S1-U2 88.56%

This work 12 × 12 HEENS Supervised 82.22%

Unsupervised: after training, each neuron is assigned a class “labeling”.

Supervised: labels are transmitted simultaneously with the training data.

S1-U2: indicates that the ratio of supervised and unsupervised learning used is 1:2.

GENN, GPU-enhanced neural networks.

On-Chip Power consumption is 4.39 W, derived from the sum of

dynamic and static power components. It is important to highlight

that the power estimation tool gives very approximate results,

although it provides some first-order estimation. The dynamic

power consumption is calculated at 4.13 W, which represents

the power consumed by active components during operation.

Additionally, there is a static power consumption of 0.25 W,

representing the baseline power consumption of the FPGA even

when no significant activity is occurring. This estimation of

consumption is significantly less than the power consumption of

a processor used in other solutions presented in Table 4, which

typically ranges from 60 to 300 W (Prieto et al., 2022).

Table 5 compares several digital SNN hardware architectures

with HEENS. While HEENS offers significant flexibility and

programmability due to its multimodal and adaptable design,

its power consumption is higher compared to other ASIC-

based architectures. It is important to note that HEENS uses

a Zynq platform instead of an ASIC, which typically results

in higher power consumption but provides greater flexibility

and reconfigurability, representing a significant advantage in the

current stage of development. In contrast, the other architectures

utilize ASIC technology, which is specifically optimized for low

power consumption and high performance, albeit at the expense

of flexibility.

4.2 Implications and limitations

The HEENS architecture represents a promising alternative

for modeling SNNs and their applications, due to its flexibility

in implementing programmable neural and synaptic models

with low resource and power overhead. This flexibility

stands out in the realm of neuromorphic architectures,

where many of them are designed around specific models,

requiring a complete restructuring for any modification

(Benjamin et al., 2021).

The use of dedicated memory per PE, capable of mapping

different parameter types, facilitates the development of models

with many levels of complexity. However, it is important to

acknowledge that increased algorithm complexity implies higher

hardware resource consumption, especially in the specific case of

the FPGA. This poses a current limitation when implementing the

application with the amount of original neurons presented in works

such as Diehl and Cook (2015), which hover around 1,000 neurons

in total with about 900 synapses per neuron in the case of the

neuron with maximum interconnection.

Therefore, based on the number of available PEs and synapses,

the reduction of the input image size was considered, at the cost

of a loss in classification precision. Consequently, the implemented

application uses 364 neurons with 245 synapses in the case of

the neuron with the highest interconnectivity. It is important to

note that while working with lower-resolution images has the

advantage of lower computational cost, the loss of detail impacts

precision and complicates the extraction of important features

for classification.

In addition, it should be noted that the architecture uses 16-

bit integer arithmetic, which may potentially impact the calculation

precision. Tests have been conducted using MATLAB to simulate

the model’s behavior and its response to different precisions (8,

16, and 32 bits) applied to the membrane potential variable and

the synaptic input current. It was found that using other variables

at 8 bits did not provide sufficient resolution. The results are

shown in Figure 10, where it can be observed that the 16-bit

resolution achieves higher performance compared to the 8-bit

resolution and matches the 32-bit resolution performance for

long training. However, using higher resolutions, such as 32-

bit, significantly increases resource usage, including memory and

power consumption, which may compromise the solution and

its scalability. For instance, increasing the resolution of neuronal

and synaptic parameters from 16 to 32 bits implies a substantial

increase in the size of the SNRAM memory (Figure 6). The FPGA

used consists of 545 BRAM blocks of 36 kb, of which 60.55% are

currently used. After the change to 32 bits, the utilization would

increase to 89.9%. This increase represents a significant impact

on resource usage and also affects power consumption, as BRAM

blocks are among the highest consumers, accounting for 32% of

the total power consumption (data obtained from the VIVADO

Synthesis tool).

To maximize the performance of the numeric formats, as

indicated before, a Least Significant Bit (LSB) of 10 µV is

adopted, and all values are scaled accordingly. This meticulous

approach ensures that the systemmaintains accuracy and reliability

despite inherent hardware resource limitations and numerical

representation challenges.

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

TABLE 5 Digital SNN hardware architectures comparison.

Hardware Technology Neurons—synapses
core

Weight
storage

On-chip
learning

Time
resolution

Neural
model

Power
consumption

TrueNorth ASIC

28 nm

256–64 k 1-bit No 1ms LIF 100 mW

(per chip)

Spinnaker ASIC

130 nm

1,000–1 M 16-bit Yes 1 ms Programmable 1 W (per chip)

Loihi2 ASIC

7 nm

8,192–937 k 8-bit Yes Variable† Programmable ∼1 W

(per chip)

HEENS Zynq FPGA

28 nm

1,280–41 k 16-bit Yes Variable⋄ Multimodel &

Programmable

4.4 W∗

†The time resolution corresponds to the algorithmic time and is unrelated to real-time. ♦HEENS can be configured with time steps from 2.5 µs to 16 ms (application-dependent). Default: 1

ms. ∗From Vivado Integrated Design Environment power consumption report.

FIGURE 10

Performance vs. number of training data for di�erent resolutions.

4.3 Future directions

Although the current HEENS implementation exhibits

limitations in terms of hardware resources, it is important to

note that efforts are being made to overcome these constraints.

Currently, work is underway on implementing a hierarchical

system and developing an Application-Specific Integrated Circuit

(ASIC), that promises to maximize performance. In this regard, a

prototype is being developed using a cost-effective 28 nm CMOS

process. According to the PE physical layout obtained in the 28

nm TSMC technology, it is estimated that a ring of 10 nodes of

16 × 16 PE multiprocessors can be integrated in a 1 cm2 chip.

Using a much more aggressive technology scaling, using a 3 nm

technology, it would become feasible to integrate 640 nodes in a

hierarchy of six rings of about 100 nodes each. This would be a

network of 1.3 million neurons in a single chip.

To support the increase of PEs beyond the previously described

ring limitation of 127 nodes, it is crucial to improve their level

of interconnection. To address this aspect, a hierarchical structure

inspired by the modularity of the brain and its hierarchical

configuration of densely connected nodes is being developed

(Friston, 2008; Akiki and Abdallah, 2019). Efforts are underway

to extend this solution to higher hierarchical levels of rings,

which combined with the ASIC will provide a comprehensive

solution for the development and evaluation of the system in

large-scale applications. This includes evaluating the system’s

performance using larger datasets such as CIFAR-10 and CIFAR-

100 (Krizhevsky, 2009) to ensure robust and scalable results. This

strategic approach to improving the implementation demonstrates

a continued commitment to optimizing its performance and

adaptability to the demands of specific applications in the field of

spiking neural networks.

The HEENS architecture offers promising insights for future

research and development in the field of neuromorphic computing

providing a platform for exploring novel algorithms and network

architectures. Specifically, in the field of neuroscience thanks to

its bioinspired organization. Currently, efforts are underway to

replicate the behaviors observed in in vitro neuronal cultures,

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

as documented in the works of Orlandi et al. (2013) and Faci-

Lázaro et al. (2019). This opens up opportunities to detect and to

address existing hardware limitations, such as the trade-off between

algorithm complexity and hardware resource consumption.

Furthermore, as researchers continue to push the

boundaries of SNNs, HEENS could serve as a valuable tool

for studying the principles of neural computation and for

developing more efficient and adaptable systems. Using its

capabilities, future advancements in HEENS could lead to

breakthroughs in areas ranging from pattern recognition to

cognitive computing, ultimately advancing the frontier of

neuromorphic computation.

5 Conclusion

In the broader context of SNNs and their application

in image classification, our study contributes to the ongoing

discourse surrounding the balance between accuracy and efficiency.

Our achieved accuracy of 82.22% is not far from other

published SNN results and it is crucial to emphasize the

trade-offs inherent in our approach. Using a scaled down

input size and leveraging a real-time architecture, we prioritize

efficiency without sacrificing significantly on performance. This

approach aligns with the growing emphasis on low-power

computing and edge computing applications, where energy

efficiency is paramount. Furthermore, our findings highlight the

adaptability of SNNs in real-world scenarios, particularly in

tasks where real-time processing and low power consumption

are critical considerations. Moving forward, further research

could focus on refining our methodology to improve accuracy

while maintaining efficiency, ultimately advancing the practical

applications of neuromorphic computing in various domains.

Furthermore, the proposed approach can be very helpful in

pushing forward the development of sustainable and efficient

machine learning.

Summarizing, the proposed neuromorphic hardware provides

a sweet tradeoff between flexibility, performance (resources and

power) and scalability. In this work, the theoretical idea from the

hardware architecture proposal has been demonstrated by proving

the execution capability of HEENS implemented on an FPGA

platform with the MNIST dataset.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: http://yann.lecun.com/exdb/mnist/.

Author contributions

BV-M: Writing – original draft, Writing – review & editing,

Conceptualization, Formal analysis, Investigation, Methodology,

Supervision, Data curation, Software. JM: Conceptualization,

Formal analysis, Investigation, Methodology, Supervision,

Writing – review & editing, Writing – original draft, Funding

acquisition, Project administration. MZ: Conceptualization,

Formal analysis, Investigation, Methodology, Supervision,

Writing – review & editing, Writing – original draft.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by Grant PID2021-123535OB-I00 funded

by MCIN/AEI/10.13039/501100011033 and by ERDF A way

of making Europe. BV-M holds a PhD FI 2020 fellowship

from AGAUR.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abbott, L. (1999). Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain Res. Bull. 50, 303–304. doi: 10.1016/S0361-9230(99)00161-6

Abdolrasol, M. G., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A.,
Mohamed, R., et al. (2021). Artificial neural networks based optimization techniques: a
review. Electronics 10:2689. doi: 10.3390/electronics10212689

Akbarzadeh-Sherbaf, K., Abdoli, B., Safari, S., and Vahabie, A. H. (2018). A scalable
FPGA architecture for randomly connected networks of hodgkin-huxley neurons.
Front. Neurosci. 12:698. doi: 10.3389/fnins.2018.00698

Akiki, T. J., and Abdallah, C. G. (2019). Determining the hierarchical architecture
of the human brain using subject-level clustering of functional networks. Sci. Rep.
9:19290. doi: 10.1038/s41598-019-55738-y

Alvarez-Lacalle, E., and Moses, E. (2009). Slow and fast pulses in 1-D cultures of
excitatory neurons. J. Comput. Neurosci. 26, 475–493. doi: 10.1007/s10827-008-0123-5

Barco, A., de Armentia, M. L., and Alarcon, J. M. (2008). Synapse-
specific stabilization of plasticity processes: the synaptic tagging and capture
hypothesis revisited 10 years later. Neurosci. Biobehav. Rev. 32, 831–851.
doi: 10.1016/j.neubiorev.2008.01.002

Benjamin, B. V., Steinmetz, N. A., Oza, N. N., Aguayo, J. J., and Boahen, K. (2021).
Neurogrid simulates cortical cell-types, active dendrites, and top-down attention.
Neuromorp. Comp. Eng. 1:013001. doi: 10.1088/2634-4386/ac0a5a

Billman, G. E. (2020). Homeostasis: the underappreciated and far too often
ignored central organizing principle of physiology. Front. Physiol. 11:200.
doi: 10.3389/fphys.2020.00200

Bliss, T. V., and Gardner-Medwin, A. R. (1973). Long-lasting potentiation
of synaptic transmission in the dentate area of the unanaesthetized rabbit
following stimulation of the perforant path. J. Physiol. 232, 357–374.
doi: 10.1113/jphysiol.1973.sp010274

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.3390/electronics10212689
https://doi.org/10.3389/fnins.2018.00698
https://doi.org/10.1038/s41598-019-55738-y
https://doi.org/10.1007/s10827-008-0123-5
https://doi.org/10.1016/j.neubiorev.2008.01.002
https://doi.org/10.1088/2634-4386/ac0a5a
https://doi.org/10.3389/fphys.2020.00200
https://doi.org/10.1113/jphysiol.1973.sp010274
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

Cassidy, A. S., Arthur, J. V., Akopyan, F., Andreopoulos, A., Appuswamy, R., Datta,
P., et al. (2024). “11.4 IBM NorthPole: an architecture for neural network inference
with a 12nm chip,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC)
(San Francisco, CA), 67, 214–215.

Citri, A., and Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions,
and mechanisms. Neuropsychopharmacology. 33, 18–41. doi: 10.1038/sj.npp.1301559

Darapaneni, N., Subramaniyan, M., Mariam, A., Venkateshwaran, S., Ravi, N.,
Paduri, A. R., et al. (2020). “Handwritten form recognition using artificial neural
network,” in 2020 IEEE 15th International Conference on Industrial and Information
Systems, ICIIS 2020—Proceedings (Rupnagar), 420–424.

Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D., Avancha, S., Banerjee,
K., et al. (2018). “Mixed precision training of convolutional neural networks using
integer operations,” in 6th International Conference on Learning Representations, ICLR
2018–=Conference Track Proceedings, 1–11.

DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk, W. P., et al.
(2019). Truenorth: accelerating from zero to 64 million neurons in 10 years. Computer
52, 20–29. doi: 10.1109/MC.2019.2903009

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Ding, J., Dong, B., Heide, F., Ding, Y., Zhou, Y., Yin, B., et al. (2023). Biologically
Inspired Dynamic Thresholds for Spiking Neural Networks. New Orleans, LA: Curran
Associates, Inc.

Dorta, T., Zapata, M., Madrenas, J., and Sánchez, G. (2016). AER-SRT: scalable
spike distribution by means of synchronous serial ring topology address event
representation. Neurocomputing 171, 1684–1690. doi: 10.1016/j.neucom.2015.07.080

Faci-Lázaro, S., Soriano, J., and Gómez-Gardeñes, J. (2019). Impact of targeted
attack on the spontaneous activity in spatial and biologically-inspired neuronal
networks. Chaos 29:083126. doi: 10.1063/1.5099038

Friston, K. (2008). Hierarchical models in the brain. PLoS Comput. Biol. 4:211.
doi: 10.1371/journal.pcbi.1000211

GeeksforGeeks (2022). Python pil | image.resize() method. Noida.

Goodhill, G. J., and Barrow, H. G. (1994). The role of weight normalization in
competitive learning. Neural Comput. 6, 255–269. doi: 10.1162/neco.1994.6.2.255

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2022).
Efficient neuromorphic hardware through spiking temporal online local
learning. IEEE Transact. Very Large Scale Integr. Syst. 30, 1642–1653.
doi: 10.1109/TVLSI.2022.3208191

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama,
K. N. (2020). Towards efficient neuromorphic hardware: unsupervised
adaptive neuron pruning. Electronics 9, 1–15. doi: 10.3390/electronics90
71059

Hao, Y., Huang, X., Dong, M., and Xu, B. (2020). A biologically plausible supervised
learning method for spiking neural networks using the symmetric STDP rule. Neur.
Netw. 121, 387–395. doi: 10.1016/j.neunet.2019.09.007

He, Z., Shi, C., Wang, T., Wang, Y., Tian, M., Zhou, X., et al. (2022). A low-cost
FPGA implementation of spiking extreme learning machine with on-chip reward-
modulated STDP learning. IEEE Transact. Circ. Syst. II Exp. Briefs 69, 1657–1661.
doi: 10.1109/TCSII.2021.3117699

Iyer, L. R., and Basu, A. (2017). “Unsupervised learning of event-based image
recordings using spike-timing-dependent plasticity,” in Proceedings of the International
Joint Conference on Neural Networks (Anchorage, AK), 1840–1846.

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transact. Neur. Netw.
14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jordan, J., Schmidt, M., Senn, W., and Petrovici, M. A. (2021). Evolving
interpretable plasticity for spiking networks. Elife 10, 1–33. doi: 10.7554/eLife.
66273

Krizhevsky, A. (2009). Learning Multiple Layers of Features From Tiny Images.
Technical Report TR-2009. Toronto, ON: University of Toronto.

Krizhevsky, A., Sutskever, I., andHinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems, Volume 25, eds. F. Pereira, C. J. Burges, L. Bottou, and K. Q.Weinberger (Lake
Tahoe, NV: Curran Associates, Inc.).

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2323. doi: 10.1109/5.726791

Lee, J., and Sim, D. (2023). Semi-supervised learning for spiking neural
networks based on spike-timing-dependent plasticity. IEEE Access 11, 35140–35149.
doi: 10.1109/ACCESS.2023.3264435

Liu, Y., Chen, Y., Ye, W., and Gui, Y. (2022). FPGA-NHAP: a general fpga-based
neuromorphic hardware acceleration platform with high speed and low power. IEEE
Transact. Circ. Syst. I 69, 2553–2566. doi: 10.1109/TCSI.2022.3160693

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neur. Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Madrenas, J., and Moreno, J. M. (2009). Strategies in SIMD Computing for Complex
Neural Bioinspired Applications. San Francisco, CA: IEEE. 376–381.

Malcolm, K., and Casco-Rodriguez, J. (2023). A Comprehensive Review of Spiking
Neural Networks: Interpretation, Optimization, Efficiency, and Best Practices.

Matsumoto, K., Fukushima, T., and Nakagawa, M. (2001). “Collection and analysis
of on-line handwritten Japanese character patterns,” in Proceedings of the International
Conference on Document Analysis and Recognition, ICDAR, 2001-January (February
2001) (Seattle, WA), 496–500.

Mayr, C., Hoeppner, S., and Furber, S. (2019). Spinnaker 2: A 10 Million Core
Processor System for Brain Simulation and Machine Learning. Dresden: IOS Press.

Moreno, J. M., Madrenas, J., and Kotynia, L. (2009). Synchronous Digital
Implementation of the AER Communication Scheme for Emulating Large-Scale Spiking
Neural Networks Models. San Francisco, CA: IEEE. 189–196.

Mozaffari, S., and Bahar, P. (2012). “Farsi/arabic handwritten from machine-
printed words discrimination,” in Proceedings - International Workshop on Frontiers
in Handwriting Recognition, IWFHR (Bari), 698–703.

Narang, S., Diamos, G., Elsen, E., Micikevicius, P., Alben, J., Garcia, D., et al.
(2018). “Mixed precision training,” in 6th International Conference on Learning
Representations, ICLR 2018 - Conference Track Proceedings (Vancouver, BC), 1–12.

Niu, L. Y., Wei, Y., Liu, W. B., Long, J. Y., and Xue, T. (2023). Research Progress of
spiking neural network in image classification: a review. Appl. Intell. 53, 19466–19490.
doi: 10.1007/s10489-023-04553-0

Oltra, J. A., Madrenas, J., Zapata, M., Vallejo, B., Mata-Hernandez, D., and Sato,
S. (2021). “Hardware-software co-design for efficient and scalable real-time emulation
of SNNs on the edge,” in 2021 IEEE International Symposium on Circuits and Systems
(Daegu: ISCAS), 1–5.

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer,
F. T., et al. (2021). Efficient neuromorphic signal processing with Loihi 2. arXiv.
doi: 10.1109/SiPS52927.2021.00053

Orlandi, J. G., Soriano, J., Alvarez-Lacalle, E., Teller, S., and Casademunt, J. (2013).
Noise focusing and the emergence of coherent activity in neuronal cultures. Nat. Phys.
9, 582–590. doi: 10.1038/nphys2686

Prieto, B., Escobar, J. J., Gómez-López, J. C., Díaz, A. F., and Lampert, T.
(2022). Energy efficiency of personal computers: a comparative analysis. Sustainability
14:12829. doi: 10.3390/su141912829

Querlioz, D., Bichler, O., Dollfus, P., Gamrat, C., Querlioz, D., Bichler,
O., et al. (2018). Network With Memristive Nanodevices to Cite This
Version: Immunity to Device Variations in a Spiking Neural Network With
Memristive Nanodevices. Lyon: Centre pour la Communication Scientifique Directe
(CCSD).

Sadovsky, E., Jarina, R., and Orjesek, R. (2021). “Image recognition using
spiking neural networks,” in 2021 31st International Conference Radioelektronika,
RADIOELEKTRONIKA 2021 (Brno), 3–7.

Sanaullah, Koravuna, S., Rückert, U., and Jungeblut, T. (2023). Exploring spiking
neural networks: a comprehensive analysis of mathematical models and applications.
Front. Comput. Neurosci. 17:1215824. doi: 10.3389/fncom.2023.1215824

Schmidgall, S., Achterberg, J., Miconi, T., Kirsch, L., Ziaei, R., Hajiseyedrazi, S. P.,
et al. (2023). Brain-inspired learning in artificial neural networks: a review. arXiv 1–13.
doi: 10.1063/5.0186054

Singh, S., and Amin, A. (1999). Neural network recognition of hand-printed
characters. Neur. Comp. Appl. 8, 67–76. doi: 10.1007/s005210050008

Sripad, A., Sanchez, G., Zapata, M., Pirrone, V., Dorta, T., Cambria, S., et al. (2018).
SNAVA—A real-time multi-FPGA multi-model spiking neural network simulation
architecture. Neur. Netw. 97, 28–45. doi: 10.1016/j.neunet.2017.09.011

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Tao, T., Li, D., Ma, H., Li, Y., Tan, S., Liu, E., et al. (2023). A new pre-
conditioned stdp rule and its hardware implementation in neuromorphic crossbar
array. Neurocomputing 557:126682. doi: 10.1016/j.neucom.2023.126682

Tavoli, R., Keyvanpour, M., and Mozaffari, S. (2018). Statistical geometric
components of straight lines (SGCSL) feature extraction method for offline
Arabic/Persian handwritten words recognition. IET Image Process. 12, 1606–1616.
doi: 10.1049/iet-ipr.2017.0839

Vallejo-Mancero, B., Nader, C., Madrenas, J., and Zapata, M. (2022). “Real-time
display of spiking neural activity of SIMD hardware using an HDMI interface,” in
Artificial Neural Networks and Machine Learning-ICANN 2022, eds. E. Pimenidis,
P. Angelov, C. Jayne, A. Papaleonidas, and M. Aydin (Cham: Springer Nature
Switzerland), 728–739.

Yang, S., and Chen, B. (2023). SNIB: improving spike-based machine learning using
nonlinear information bottleneck. IEEE Transact. Syst. Man Cybernet. 53, 7852–7863.
doi: 10.1109/TSMC.2023.3300318

Yang, S., Wang, H., and Chen, B. (2023). “SIBoLS: robust and energy-
efficient learning for spike-based machine intelligence in information bottleneck
framework,” in IEEE Transactions on Cognitive and Developmental Systems, 1–13.
doi: 10.1109/TCDS.2023.3329532

Yang, S., Wang, H., Pang, Y., Azghadi, M. R., and Linares-Barranco, B. (2024a).
NADOL: neuromorphic architecture for spike-driven online learning by dendrites.
IEEE Trans. Biomed. Circuits Syst. 18, 186–199. doi: 10.1109/TBCAS.2023.3316968

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://doi.org/10.1038/sj.npp.1301559
https://doi.org/10.1109/MC.2019.2903009
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1016/j.neucom.2015.07.080
https://doi.org/10.1063/1.5099038
https://doi.org/10.1371/journal.pcbi.1000211
https://doi.org/10.1162/neco.1994.6.2.255
https://doi.org/10.1109/TVLSI.2022.3208191
https://doi.org/10.3390/electronics9071059
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1109/TCSII.2021.3117699
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.7554/eLife.66273
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ACCESS.2023.3264435
https://doi.org/10.1109/TCSI.2022.3160693
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1007/s10489-023-04553-0
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1038/nphys2686
https://doi.org/10.3390/su141912829
https://doi.org/10.3389/fncom.2023.1215824
https://doi.org/10.1063/5.0186054
https://doi.org/10.1007/s005210050008
https://doi.org/10.1016/j.neunet.2017.09.011
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1016/j.neucom.2023.126682
https://doi.org/10.1049/iet-ipr.2017.0839
https://doi.org/10.1109/TSMC.2023.3300318
https://doi.org/10.1109/TCDS.2023.3329532
https://doi.org/10.1109/TBCAS.2023.3316968
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Vallejo-Mancero et al. 10.3389/fnins.2024.1425861

Yang, S., Wang, H., Pang, Y., Jin, Y., and Linares-Barranco, B. (2024b).
Integrating visual perception with decision making in neuromorphic
fault-tolerant quadruplet-spike learning framework. IEEE Transact.
Syst. Man Cybernet. Syst. 54, 1502–1514. doi: 10.1109/TSMC.2023.
3327142

Yun, J., Kang, B., Rameau, F., and Fu, Z. (2023). Comparative Study: Standalone
IEEE 16-bit Floating-Point for Image Classification. Ithaca, NY: arXiv.

Zapata, J. M. (2016). “Compact associative memory for AER spike decoding
in FPGA-based evolvable SNN emulation,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), ICANN 2016 8681 (Barcelona), 222–229.

Zapata, M., Vallejo-Mancero, B., Remache-Vinueza, B., and Madrenas, J. (2021).
Monitoring Implementation for Spiking Neural Networks Architecture on Zynq-7000 All
Programmable SoCs, Volume 1. Palermo: Springer International Publishing.

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2024.1425861
https://doi.org/10.1109/TSMC.2023.3327142
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Real-time execution of SNN models with synaptic plasticity for handwritten digit recognition on SIMD hardware
	1 Introduction
	2 Methods
	2.1 Summary of the HEENS hardware architecture
	2.1.1 External input module

	2.2 Spiking neural and synaptic model
	2.2.1 SNN model
	2.2.2 Plasticity mechanism
	2.2.3 Homeostasis

	2.3 Handwritten digit recognition
	2.3.1 MNIST dataset
	2.3.2 Input encoding

	2.4 Network architecture
	2.5 Neural and synaptic model implementation on HEENS
	2.5.1 Assembler model
	2.5.2 Netlist

	3 Experiments and results
	3.1 Setup and real-time application execution
	3.2 Experimental results
	3.2.1 5-class dataset experiment
	3.2.2 10-class dataset experiment

	4 Discussion
	4.1 Comparison with previous research
	4.2 Implications and limitations
	4.3 Future directions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

