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Comparison of alterations in
local field potentials and
neuronal firing in mouse M1 and
CA1 associated with central
fatigue induced by high-intensity
interval training and
moderate-intensity continuous
training

Yuncheng Liu†‡, Weiyi Lao‡, Haojie Mao, Yaoyao Zhong,

Jihui Wang and Wei Ouyang*

College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China

Background: The mechanisms underlying central fatigue (CF) induced by high-

intensity interval training (HIIT) and moderate-intensity continuous training

(MICT) are still not fully understood.

Methods: In order to explore the e�ects of these exercises on the functioning

of cortical and subcortical neural networks, this study investigated the e�ects of

HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse

primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were

performed on C57BL/6 mice, and simultaneous multichannel recordings were

conducted in the M1 motor cortex and CA1 hippocampal region.

Results: A range of responses were elicited, including a decrease in coherence

values of LFP rhythms in both areas, and an increase in slow and a decrease in

fast power spectral density (PSD, n= 7–9) respectively. HIIT/MICT also decreased

the gravity frequency (GF, n = 7–9) in M1 and CA1. Both exercises decreased

overall firing rates, increased time lag of firing, declined burst firing rates and the

number of spikes in burst, and reduced burst duration (BD) in M1 and CA1 (n

= 7–9). While several neuronal firing properties showed a recovery tendency,

the alterations of LFP parameters were more sustained during the 10-min post-

HIIT/MICT period. MICT appeared to be more e�ective than HIIT in a�ecting LFP

parameters, neuronal firing rate, and burst firing properties, particularly in CA1.

Both exercises significantly a�ected neural network activities and local neuronal

firing inM1 andCA1, withMICT associatedwith amore substantial and consistent

suppression of functional integration between M1 and CA1.

Conclusion: Our study provides valuable insights into the neural mechanisms

involved in exercise-induced central fatigue by examining the changes in

functional connectivity and coordination between the M1 and CA1 regions.

These findings may assist individuals engaged in exercise in optimizing their

exercise intensity and timing to enhance performance and prevent excessive
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fatigue. Additionally, the findings may have clinical implications for the

development of interventions aimed at managing conditions related to exercise-

induced fatigue.

KEYWORDS

exhausting exercise, primary motor cortex, hippocampal CA1, local field potentials,

neuronal firing

Introduction

Human exercise fatigue is a multifaceted physiological state

associated with decreased physical performance, and can arise from

a combination of CF and peripheral fatigue (PF) (Weavil and

Amann, 2019; Tornero-Aguilera et al., 2022). CF is characterized

by complex interactions between cortical and subcortical neural

networks and deficient motor cortical output, whereas PF causes

impaired neuromuscular junction and/or muscle function (Weavil

and Amann, 2019; Tornero-Aguilera et al., 2022). However, it is

conceivable that human CF and PF may occur asynchronously,

and the underlying mechanisms, especially those governing CF,

remain elusive and incompletely elucidated (Carroll et al., 2017;

Burnley and Jones, 2018). The relative contributions of CF and PF

to exercise fatigue may vary depending on factors such as exercise

intensity and duration, gender, sport type, as well as emotional and

psychological factors (Burnley and Jones, 2018; Tornero-Aguilera

et al., 2022). However, the precise mechanisms underlying exercise

fatigue in both HIIT and MICT remain incompletely understood.

The outcomes derived from both animal models (Khodagholy

et al., 2017; Nitzan et al., 2020) and human (Kunz et al., 2024)

studies reveal a functional connectivity between the hippocampus

and the cortex, mediated by the entorhinal region and the

default mode network, via analogous ripple oscillations. This

interconnection underscores the intricate interplay among diverse

brain regions and networks during cognitive, psychological, and

physiological functions. Despite this, there remains a paucity of

knowledge regarding the precise flow of information between the

human hippocampus and the cortex (Smallwood et al., 2021).

Extensive human research has delineated the pivotal role of the

hippocampus in the consolidation of motor sequence memory

(Albouy et al., 2008; Jacobacci et al., 2020). This consolidation

process is further correlated with a notable augmentation in blood

perfusion within the hippocampus, indicating its involvement in

sequence memory formation and retention (Fernández-Seara et al.,

2009).

Long-term aerobic exercise (Voss et al., 2010) and MICT

(Weng et al., 2017) could enhance human hippocampal-cortical

Abbreviations: BD, burst duration; CA1, hippocampal CA1 subregion; CF,

central fatigue; EEG, electroencephalography; GF, gravity frequency; HIIT,

high-intensity interval training; ISI, inter-spike interval; LFP, local field

potential; M1, primary motor cortex; MICT, moderate-intensity continuous

training; PF, peripheral fatigue; PSD, power spectral density; PSE, power

spectral entropy.

connectivity. Although various modalities of moderate-to-high-

intensity exercise have exhibited beneficial effects on human

brain health, encompassing improvements in mental wellbeing,

augmentation of hippocampal volume, and enhancements

in spatial and verbal learning capabilities (Gorham et al.,

2019; Rodriguez-Ayllon et al., 2019; Prathap et al., 2021),

excessive exercise-induced fatigue can negatively impact cognitive

performance. Notably, human studies have revealed that high-

intensity exercise leading to the onset of CF significantly prolongs

the response time of individuals during memory-demanding

vigilance tests (Moore et al., 2012) and adversely affects their

performance in complex cognitive tasks (Anders et al., 2021).

Severe and/or prolonged CF has been associated with an array

of negative effects, including depression, pain, sensations of

exhaustion, challenges in maintaining cognitive vigilance, and

difficulties in sustaining mental attention (Leavitt and DeLuca,

2010). However, CF has also been proposed to serve as a protective

mechanism for human body during maximal or endurance

exercise, guarding against potential damage (Noakes, 2012).

Additionally, the structural and neural circuit alterations that have

been described previously may contribute to human cognitive

deficits, such as reduced cognitive flexibility to external stimuli,

difficulties in goal-directed cognition, and impairments in memory

function (Price and Duman, 2020).

Despite the substantial evidence from both human and

animal research highlighting the positive effects of exercise

on neuroplasticity, cognition, mood, and prevention of

neurodegenerative disorders, mediated by the upregulation

of neurotrophic factors (De Sousa Fernandes et al., 2020),

attenuation of inflammation and protein misfolding, as well as the

preservation of synaptic integrity (Sujkowski et al., 2022), a notable

gap in knowledge persists regarding the intricate mechanisms

linking excessive exercise-induced fatigue to alterations in brain

neural network function. This deficiency is primarily due to a

scarcity of animal model studies that explore this relationship

(Yan et al., 2022), necessitating further research to enhance our

comprehensive understanding of this critical field.

The intracerebral LFP in humans or animals serves as a

metric for neural activity, recorded at the aggregated level of

bioelectrical signals. Notably, the vast majority of LFP activity

originates from non-local, remote sources, thereby reflecting

the dynamic information flow across intricate neural networks

(Herreras, 2016). LFP is intricately linked to diverse behavioral

and cognitive processes, each associated with specific brain

regions and oscillatory dynamics. Consequently, LFP has garnered

substantial attention in both scientific research and clinical

diagnosis (Ibarra-Lecue et al., 2022). By scrutinizing neuronal firing
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patterns, we can elucidate the localized impact of oscillations on

the temporal synchronization of neuronal spikes. Furthermore,

analyzing the correlation between firing rates and oscillations

in long-range neural circuits offers compelling insights into the

genesis of oscillatory rhythms, particularly by identifying neuronal

populations that exhibit spontaneous firing at distinct frequencies

and generating oscillations under diverse conditions.

Characterizing neural dynamics and neuronal firing patterns

can aid in elucidating the mechanisms underlying exercise-

induced CF. To this end, we designed an experimental protocol

involving exhaustive HIIT and MICT in a mouse model. We will

subsequently assess the alterations in LFP and neuronal firing in

M1 and CA1 following HIIT/MICT. Our findings aim to provide

novel insights into the neural compensatory and self-protective

mechanisms activated during CF, thereby contributing to the

optimization of exercise performance, minimization of excessive

fatigue, and the development of targeted therapeutic interventions

for clinical conditions associated with exercise-induced fatigue.

Materials and methods

Animals

Male C57BL/6J mice (18–20 g, 8–10-week old, Experimental

Animal Center, Zhejiang Academy of Medical Science) were

housed under 12-h light-dark cycles and had free access to

food and water throughout the study. All procedures involved

in this study were performed under the Institutional (Zhejiang

Normal University, the ethical approval number: ZSDW2022032)

Animal Care and Use Committee approval. All methods were

performed also in accordance with the ARRIVE guidelines and

the NIH Guide for the Care and Use of Laboratory Animals (2011

edition). Mice were randomly divided into three groups: Control

(CON, n = 9), HIIT (n = 7), and MICT (n = 9). The mice

were habituated for 5 days in the laboratory environment before

electrode implantation surgery.

Intra-motor cortex and CA1 recording and
analysis

In the pre- and post-exercise stages of this study, spontaneous

neuronal firing and LFP were recorded simultaneously in

both the M1 and CA1 regions. After administering anesthesia

(sodium pentobarbital, 45 mg/kg i.p), two Teflon-coated bipolar

microelectrodes (0.002-inch nichrome wire, spaced 300µm apart;

A-M Systems, Carlsborg, WA) were inserted into the right

hemisphere of the mouse brain based on the mouse brain atlas

(The Mouse Brain in Stereotaxic Coordinates, Paxinos G, Franklin

KBJ, fifth edition), targeting the M1 region (AP + 1.8mm, ML

+ 1.6mm, DV – 1.0mm from skull surface) and the CA1 region

(AP – 2.0mm, ML + 1.4mm, DV – 1.9mm from skull surface)

through a 1.5–2mm diameter hole. Ground electrodes were placed

on the skull near the Lambda suture. A small amount of a

mixture of mineral oil and bone wax was packed around all the

electrode penetration zones. One support screw was placed over

the frontal part of the skull, and the whole ensemble was secured

with dental cement. Mice were transferred to an independent

cage after surgery. For acclimation purpose, mice were connected

with a flexible tethered cable to the signal acquisition system (BL-

420 Biological Function Experimental System, Chengdu Taimeng

Company, Chengdu, China). Mice were carefully watched for any

adverse reactions and allowed 3 days recovery before initiating

adaptive treadmill training.

Simultaneous extracellular recordings were made from the M1

and CA1 for 10min pre- and post- HIIT/MICT (Figure 1) while

the mice move freely in the open bucket (diameter: 20 cm; height:

40 cm). The recorded raw neural signals are composed of two main

components: LFP and spikes (neuronal firings). The recorded raw

signals from the electrode were amplified and band-pass filtered

from 0.16–3 kHz, and the sampling frequency was set at 10K Hz.

The notch filter of the amplifiers was kept on to eliminate 50Hz

interference. The firing data was output as a txt file and analyzed

using Spike2 (CED, Cambridge, UK). LFP measures the compound

synaptic activity-generated by a large pool of neurons, which is

especially helpful for the study of long-range interactions. The

LFP data were obtained by down-sampling the raw data with a

sampling rate of 500Hz and 2nd order Butterworth band filter of

1.3–80Hz (Ahmadi et al., 2021; Orellana et al., 2024), in contrast

to the typical 300Hz low-pass cut-off frequency. This protocol was

implemented to eliminate potential contamination from nearby

multiunit spiking activity within higher LFP band (100–300Hz)

(Ahmadi et al., 2021) and animal slow movement (Orellana et al.,

2024).

To prevent Spike2 software from struggling when analyzing

large chunks of raw data, only the last 2min recording data during

pre-exercise recording was adopted as pre-HIIT/MICT baseline,

and post-HIIT/MICT 10min data was evenly divided into five

subgroups (0–2, 2–4, 4–6, 6–8, 8–10min) for a more detailed

analysis of the transition in LFP and neuronal firing properties.

The power values within specified frequency bands (delta 1.5–4Hz,

theta 4–10Hz, alpha 10–13Hz, beta 13–30Hz, gamma 30–80Hz)

(Einevoll et al., 2013; Crouch et al., 2018; Jonak et al., 2018) were

averaged from every 2min epoch of the 10min LFP raw data with

0.39Hz frequency resolution (Figure 1). Since it took ∼2–3min

to transfer the mouse from the recording bucket to the treadmill,

and vice versa, a 5-min interval was introduced between the pre-

exercise recording and the HIIT/MICT, as well as between the

HIIT/MICT and post-exercise recording. This 5-min buffer period

was also useful for minimizing the potential effects of stress and fear

induced by the exercise on electrophysiological recording.

Every raw data was visually examined for abnormal

electrographic activity, possibly due to movement, ECG, etc.

As high-frequency components of LFPs can be generated up to

∼500Hz (Einevoll et al., 2013), overall neuronal firing data were

extracted from raw neural signal by implementing a 2nd order

Butterworth high-pass filter with a 500Hz cut-off frequency and

down-sampled to 2 kHz using Spike 2 software (Singh et al., 2023).

The baseline drift was adjusted by running HUM REMOVE script

in Spike 2. Moreover, we also run channel processing function

to remove direct current component and rectify the large slopes.

Spike sorting was carried out by first selecting a threshold baseline

and running the Spike 2 spike sorting function. This produced a
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FIGURE 1

Experimental design. (A) Electrophysiological recording setup. (B) Electrode location in M1 and CA1. (C) Sample of raw electrophysiological data. (D)

Experimental timeline.

full wave template that was then used to discriminate multi-unit

spikes using principal component analysis (PCA) clustering. The

neuronal firing frequency in a recorded channel of M1 or CA1 was

analyzed by running IF HIST script in Spike2.

In this study, to evaluate the alterations of synchronization

in M1 and CA1 among different group mice, the general

coherence of extracellular firing patterns in M1 and CA1

were calculated by running COHERENCE script [coh (f ) =
∣

∣

∑

csdab
(

f
)
∣

∣

2
/
∑

psda
(

f
)
∑

psdb
(

f
)

, csd, current source density;

psd, power spectral density] in Spike2 software.

Legendy and Salcman assumed that the frequency of spike

trains had a Poisson distribution, and defined bursts of spikes by the

value of the “Poisson surprise” parameter (Legendy and Salcman,

1985). A surprise value (negative logarithmic transform of the

probability), measures how unlikely a cluster of spikes within a time

interval. A burst is defined as at least three consecutive spikes with

two sequential ISI (inter-spike interval) less than one-half of the

mean ISI of all spikes. Bursts with Surprise values >10 were used

to analyze the burst per 2min, the normalized burst rate relative to

the overall firing rate, spikes in burst and BD. CROSS CHANNEL

CORRELATION script in Spike 2 software was used to analysis

the temporal and/or spatial relationships between M1 and CA1

spike trains.

GF reflects the density distribution of high-frequency

components and power spectral entropy (PSE) in the spectrum.

GF alteration describes the migration of the gravity center in the

power spectrum (Li H. et al., 2019). PSE represents the irregularity

in a signal’s power spectrum (Frohlich et al., 2021). GF has a

strong correlation with mental fatigue (Li H. et al., 2019), while

PSE is positively correlated with consciousness level (Frohlich

et al., 2021). Acute and prolonged exercise also cause physical

and mental fatigue in mice (Xu et al., 2017; Lee et al., 2022). To

analyze the alteration of GF, the 1.3–80Hz LFP data obtained

using Spike2 were exported as txt files; subsequently, the last 2min

of pre-exercise and every 2min of the 10min post -HIIT/MICT

LFP data were imported into Matlab (v2016, Mathworks, Natick,

MA). The GF analysis was done by running a home-made gravity-

frequency script [fg =
∑f2

f = f1

(

psd
(

f
)

× f
)

/
∑f2

f = f1
psd

(

f
)

, f g is

the GF; f 1 to f 2, the lower limit and higher limit on the total band;

psd, power spectral density] in MATLAB. The schematic diagram

of electrophysiological recording is shown in Figure 1A. The

implantation locations of electrodes in M1 and CA1, and sample of

raw data are shown in Figures 1B, C respectively. The experimental

timeline is shown in Figure 1D. To confirm the accuracy of

electrode placement, the immunohistochemical staining method,

as previously described in our prior work (Ouyang et al., 2017),

was utilized to visualize the electrode path in mouse brains 1–2

days after electrophysiological recording.

HIIT and MICT

The HIIT/MICT group mice were allowed adaptive treadmill

(ZH-PT/5S Rodent Treadmill, Anhui Zhenghua Biological

Apparatus Company, Huaibei, China) training for 5 days before

formal HIIT and MICT training. The active time of C57 mice

was 6–12 pm daily, and their daily running distance was mostly
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completed during this period (Taylor et al., 2015). The peak activity

period was between 6–8 pm and the average running speed of C57

mice was ∼11 m/min (Taylor et al., 2015). According to a previous

study, this running speed was approximately the exercise intensity

of ∼50% VO2max (Baker and Gleeson, 1999). This amount of

exercise is equivalent to human low-intermediate intensity aerobic

exercise. Accordingly, we chose to perform mouse treadmill HIIT

or MICT and extracellular recording between 6 and 8 pm.

During adaptive treadmill training, all mice underwent the

same training protocol. Specifically, mice run on a treadmill at 5

m/min, 20min on day 1; 8 m/min, 20min on day 2; 11 m/min,

30min on day 3; 16 m/min, 5min on day 4; 21 m/min, 1min on

day 5. HIIT and MICT procedure was adapted from previously

published training protocol in which the same strain mouse was

used (Li B. et al., 2019). C57 mice can run at a maximum speed of

24.30± 0.87 m/min (Li B. et al., 2019). The HIIT includes 10 cycles,

each cycle includes 21 m/min, 1.2min high-speed running and 11

m/min, 2min low-speed running, while the MICT comprises 15

m/min running at a constant speed for 32min (Figure 1D). Mice

were motivated to run on the treadmill until they were incompetent

or unwilling to continue, in an effort to escape further electric

shocks delivered in a pulsatile-mode lasting 200ms at a frequency

of 2Hz and amplitude of 1.22mA (Dougherty et al., 2016). These

electric shocks were comparable to a mild tingling sensation

when touched by an ungloved finger and did not produce severe

discomfort. To confirm the mice had reached a state of physiologic

exhaustion, the criterion for exhaustion was defined as remaining

on the shock grid for at least five consecutive seconds and failing

to resume running despite repeated aversive stimuli (Dougherty

et al., 2016). To avoid environmental bias among sedentary control

mice not undergoing the exercise protocol, mice were transferred

and housed in a separate room during exercise sessions. Sedentary

control mice were confined to lanes on a stationary treadmill for

10min (Seldeen et al., 2019).

Statistical analysis

The parameters of electrophysiological data are expressed

as the mean ± standard deviation (SD). All data were tested

for normal distribution using Kolmogorov and Smirnov test

(GraphPad Prism 9, San Diego, CA). Normally distributed data

were analyzed using one-way ANOVA followed by Bonferroni

multiple post hoc comparisons or Brown-Forsythe and Welch

ANOVA followed by Dunnett multiple post hoc comparisons

using Prism 9. Statistically significant differences were denoted

by p values, such as ∗p < 0.05; ∗∗p < 0.01 and ∗∗∗p <

0.001 vs. control values; †p < 0.05; ††p < 0.01 vs. MICT

values. ##p < 0.01 vs. pre-exercise values; &p < 0.05; &&p

< 0.01 compare to the values among other different time

slots post-exercise.

FIGURE 2

The coherence values between LFP in M1 and CA1 post-HIIT/MICT. (A) Coherence alterations of slow and fast LFP rhythms in M1 and CA1 post

HIIT/MICT. (B) The coherence changes in each slow and fast LFP rhythm in M1 and CA1 post-HIIT/MICT were statistically summarized. The data in

the figure is represented by mean ± SD, n = 7–9. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control values; †p < 0.05, ††p < 0.01 vs. MICT values by

Brown-Forsythe and Welch ANOVA followed by Dunnett multiple post hoc comparisons.
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Results

Mice underwent HIIT and MICT showed
fatigue features

In the early stage of the exercise, the mice ran in a good

cadence, and could complete the predetermined intensity running.

When HIIT is carried out to the 5th cycle or MICT to 23min,

the mice started to show signs of weariness (running speed

occasionally falling behind the predefined treadmill speed, and

sometimes pause on the running belt), but could still maintain

the predetermined intensity running by poking, or touching them

with a hand (Dougherty et al., 2016). After HIIT proceeded into

the 8–9th cycle or MICT to 30–32min, the mice kept running

behind the predefined speed. When the mouse showed above

mentioned fatigue-like behavior and exhaustion criterion, the

treadmill exercise ended. At the end of the HIIT or MICT protocol,

all mice meet the criterion for exhaustion.

The e�ects of HIIT/MICT on LFP correlation
in M1 and CA1

To understand the temporal correlation between activities at

M1 and CA regions, we simultaneously recorded LFP at the two

sites. During pre-exercise phase, the LFP rhythm in M1 and CA1

showed a consistently increasing trend of temporal correlation

from slow to fast oscillation, manifested by increasing coherence

values (delta:0.44 ± 0.15; theta: 0.58 ± 0.13; alpha:0.65 ± 0.17;

beta: 0.72 ± 0.17; gamma: 0.65 ± 0.15, n = 16). Beta activity in

M1 and CA1 displayed the highest correlation. To demonstrate the

temporal correlation of activities between M1 and CA1, coherence

values were averaged across each 2-min slot during the pre-exercise

and 10-min post-HIIT/MICT period. These values are presented in

Figure 2A.

The coherence values of theta (0–2min, p < 0.05; 2–4min,

p < 0.01; 4–6min, p < 0.05), alpha (0–2, 2–4, and 4–6min,

p < 0.05), beta (0–2, 2–4, 4–6, and 6–8min, p < 0.05), and

gamma (0–2, 2–4, and 4–6min, p < 0.05) rhythms in both M1

and CA1 consistently decreased post-HIIT, as compared to pre-

exercise values, and were statistically analyzed by Brown-Forsythe

and Welch ANOVA (Figure 2B). Notably, the coherence values of

delta (0–2min, p < 0.05), theta (0–2, 2–4, 6–8 and 8–10min, p <

0.001), alpha (0–2, 2–4, 6–8 and 8–10min, p < 0.001), beta (0–2,

2–4, 6–8 and 8–10min, p < 0.001), gamma (0–2, 2–4, 6–8 and 8–

10min, p < 0.001) rhythms in M1 and CA1 consistently but more

significantly decreased post-MICT, as compared to pre-exercise

values, and statistically analyzed by same method (Figure 2B).

Compared with the counterpart control values, MICT also

displayed more potent effects of suppressing the coherency cross

slow and fast rhythms during 10min post exercise (Figure 2),

while the coherence values of all slow and fast rhythms post-HIIT

showed clear recovery tendency (Figure 2). These results indicate

that both HIIT and MICT can hamper the temporal correlations

of activities between M1 and CA1, thus the functional integration

of neural circuits was altered. Compared to HIIT fatigue, MICT

fatigue is associated with more substantial and steadier suppression

of functional integration between M1 and CA1, and typically on

theta, alpha, beta and gamma rhythms (Figure 2). These results

may help to explain the more profound CF induced by MICT

vs. HIIT.

The e�ects of HIIT/MICT on slow LFP
rhythms

In order to eliminate the effects of the individual variation, the

band powers (delta, theta, alpha, beta, gamma, the represent traces

are shown on the top panel of Figure 3) were normalized to the

total power. The predominant alterations of PSD occurred in a

slow frequency range (delta, theta and alpha, Figure 3). Compared

to the pre-exercise values, the PSDs of delta (Figures 3A, B), theta

(Figures 3C, D) and alpha (Figures 3E, F) consistently increased

in M1 (theta: 0–2min, p < 0.01; 2–4, 4–6, 6–8 and 8–10min, p

< 0.05 by Brown-Forsythe and Welch ANOVA, Figure 3C) and

CA1 (delta: 6–8 and 8–10min, p < 0.05; theta: 0–2, 2–4 and 4–

6min, p < 0.05; alpha: 4–6min, p < 0.05; 6–8min, p < 0.01 by

Brown-Forsythe andWelch ANOVA, Figures 3B, D, F) during each

2-min time slot following HIIT. Similarly, consistently increased

in M1 (theta: 0–2min, p < 0.001, 2–4min, p < 0.01, 4–6min, p

< 0.05, 6–8min, p < 0.01, and 8–10min, p < 0.05 by Brown-

Forsythe and Welch ANOVA, Figure 3C) and CA1 (delta: 8–

10min, p < 0.01 by one-way ANOVA; theta: 0–2min, p < 0.05,

2–4 and 4–6min, p < 0.01, 6–8min, p < 0.05, and 8–10min,

p < 0.01; alpha: 2–4min, p < 0.05, 4–6 and 6–8min, p < 0.01

by Brown-Forsythe and Welch ANOVA, Figures 3B, D, F) during

each 2-min time slot post-MICT. When compared with the control

values, all slow rhythms, typically delta and theta PSDs steadily

increased in both M1 and CA1 during each 2min slots following

HIIT/MICT. Notably, greater increases in delta (8–10min, p <

0.05 vs. HIIT value, Figure 3B) and theta (Figure 3D) PSDs were

observed in CA1 post-MICT compared to the corresponding values

following HIIT.

Pearson’s correlation analysis showed that the increased PSD

of delta (r = 0.779, p = 0.039), theta (r = 0.958, p < 0.001)

and alpha (r = 0.861, p = 0.013) in M1 significantly correlated

with the parallel values in CA1 after HIIT. Similarly, the increased

PSD of delta (r = 0.889, p = 0.002), theta (r = 0.857, p =

0.003) and alpha (r = 0.854, p = 0.002) in M1 significantly

correlated with the matching values in CA1 after MICT. Thus,

both M1 and CA1 displayed synchronically increased PSD of

slow LFP oscillation after HIIT/MICT. Therefore, both HIIT

and MICT can slow down the local neural network function

and/or neural circuit activity between M1 and CA1. These results

parallel previous coherence results and suggest the inhibition

of the functional integration of neural circuits between M1

and CA1.

Pearson’s correlation analysis showed that delta (r = 0.777,

p = 0.039), theta (r = 0.914, p = 0.004) and alpha (r =

0.962, p < 0.001) PSD increasing trend in M1 are significantly

correlated post HIIT/MICT. Similarly, delta (r = 0.882, p =

0.009), theta (r = 0.913, p = 0.004) and alpha (r = 0.988,

p < 0.001) PSD increasing trend in CA1 are also significantly

correlated post HIIT/MICT. Accordingly, slow LFP rhythms
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FIGURE 3

The normalized LFP slow rhythmic PSD alterations post-HIIT/MICT. The represent traces of delta, theta, alpha, beta and gamma are shown on the

top panel. (A, B) Delta power changes in M1 and CA1 post-HIIT/MICT; (C, D) Theta power changes in M1 and CA1 post-HIIT/MICT; (E, F) Alpha power

changes in M1 and CA1 post-HIIT/MICT. The data is represented by mean ± SD, n = 7–9. *p < 0.05, **p < 0.01 vs. control values; †p < 0.05 vs. MICT

values by Brown-Forsythe and Welch ANOVA followed by Dunnett multiple post hoc comparisons. ***p < 0.001 vs. control values.

showed similar increasing patterns inM1 or CA1 after HIIT/MICT.

Compared to the potent effects of HIIT and MICT on PSD of

slow LFP, MICT fatigue is associated with a clearer increase of

delta PSD and an increasing trend of theta PSD in CA1. Delta

and theta were more prominently associated with MICT fatigue

(Figure 3).
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FIGURE 4

The normalized LFP fast rhythmic power spectrum alterations post-HIIT/MICT. (A, B) Beta power changes in M1 and CA1 post- HIIT/MICT; (C, D)

Gamma power changes in M1 and CA1 post- HIIT/MICT. The data is represented by mean ± SD, n = 7–9. *p < 0.05 vs. control values by

Brown-Forsythe and Welch ANOVA followed by Dunnett multiple post hoc comparisons. **p < 0.01, ***p < 0.001 vs. control values.

The e�ects of HIIT/MICT on fast LFP
rhythms

Beta and gamma are typical rhythms associated with active

behaviors (Zheng and Colgin, 2015). When compared to the

pre-exercise or control values, the PSDs of beta (Figures 4A, B)

and gamma (Figures 4C, D) consistently decreased in M1 and

CA1 during each 2-min time slot post HIIT. Similarly, the beta

(Figures 4A, B) and gamma (Figures 4C, D) PSDs consistently

decreased in M1 and CA1 (beta: 0–2min, p < 0.05; Gamma: 2–

4, 4–6 and 6–8min, p < 0.05 vs. pre-MICT values by Brown-

Forsythe and Welch ANOVA, Figures 4B, D) during post MICT.

Notably, CA1 exhibited a more consistent decrease in beta PSD

and a stronger tendency toward decreased gamma PSD compared

to M1, particularly after MICT (Figure 4).

Pearson’s correlation analysis showed that the decreasing

trend of beta (r = 0.951, p < 0.001) and gamma (r =

0.827, p = 0.022) in M1 significantly correlated with the

parallel values in CA1 after HIIT. Similarly, the reduced PSD

of beta (r = 0.941, p < 0.001) and gamma (r = 0.802,

p = 0.009) in M1 significantly correlated with the matching

values in CA1 after MICT. Thus, besides the aforementioned

enhanced slow rhythm activity post-HIIT/MICT, the results

further indicate the inhibition of the functional neural circuit

activities between M1 and CA1, and suppressed fast rhythms

such as beta and gamma both in M1 and CA1 are linked to

HIIT/MICT fatigue.

Pearson’s correlation analysis showed that beta (r = 0.904, p =

0.005) and gamma (r = 0.856, p = 0.014) PSD decreasing trend

in M1 are significantly correlated post-HIIT/MICT. Similarly, beta

(r = 0.939, p = 0.002) and gamma (r = 0.947, p = 0.001) PSD

decreasing trend in CA1 are also significantly correlated post

HIIT/MICT. Thus, contrary to the similar increasing patterns of

slow LFP rhythms, fast LFP rhythms, such as beta and gamma

showed comparable decreasing tendencies in M1 or CA1 after

HIIT/MICT. Moreover, HIIT and MICT showed similar potencies

in decreasing the beta and gamma PSD. Summary of HIIT/MICT

on slow and fast rhythm in M1 and CA1: MICT led to a more

significant, more evident and prolonged increase of slow LFP

rhythms, and a decrease of fast LFP rhythms, typically in CA1.

Additionally, compared with fast rhythms, slow rhythm alterations

are better biomarkers for CF post-HIIT/MICT.
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FIGURE 5

The GF of power spectrum alterations post-HIIT/MICT. (A) A represents LFP power spectrum alteration in CA1 post MICT in one mouse; (B) GF

changes in M1 after HIIT/MICT; (C) GF changes in CA1 post HIIT/MICT. The data is represented by mean ± SD, n = 7–9. *p < 0.05, **p < 0.01 vs.

control values; †p < 0.05 vs. MICT values by Brown-Forsythe and Welch ANOVA followed by Dunnett multiple post hoc comparisons. ***p < 0.001

vs. control values.

FIGURE 6

The general neuronal firing rate changes post-HIIT/MICT. (A) General firing rate changes in M1 after HIIT/MICT; (B) General firing rate changes in CA1

following HIIT/MICT. The data is represented by mean ± SD, n = 7–9. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control values; †p < 0.05, ††p < 0.01 vs.

MICT values by Brown-Forsythe and Welch ANOVA followed by Dunnett multiple post hoc comparisons.

The e�ects of HIIT/MICT on GF in LFP

Figure 5A depicts a represents LFP power spectrum alteration

in CA1 in a mouse following MICT. In the present study, the

pre-exercise value of GF in LFP is around 40Hz in both M1

(39.94 ± 2.43Hz, n = 25) and CA1 (40.05 ± 2.40Hz, n = 25).

Compared to the pre-exercise or control values, GF in both M1

and CA1 consistently decreased post HIIT/MICT, and greater

decrease tendency in GF values were observed (Figures 5B, C),

typically in CA1, following MICT (GF in CA1: 0–2min, p < 0.05,

2–4, 4–6, 6–8 and 8–10min, p < 0.05 vs. pre-exercise value by

Brown-Forsythe and Welch ANOVA, Figures 5B, C). The results

demonstrated a solid transition of the center of gravity components

from fast to slow frequency band in both M1 and CA1, thus the

cortical and subcortical dynamics were decreased and chaos level

of multi-frequency components increased post-HIIT/MICT. The

GF results indicate that CF induced by HIIT/MICT can partially

be manifested by mental fatigue and a drop in attention level.
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Moreover, MICT fatigue is associated with the most significant GF

reduction in CA1 (0–2 and 6–8min, p< 0.05 vs. the GF values post-

HIIT, Figure 5C). The finding parallels previous LFP coherence

and PSD results. MICT fatigue is linked to more evident increased

slow LFP rhythms, typically in CA1, and indicate more substantial

and steadier suppression of functional integration between M1

and CA1.

The e�ects of HIIT/MICT on neuronal firing
rate

Neurons exchange and transmit information mostly through

spikes, and neural spike trains in a variety of brain regions can

be highly correlated. Therefore, besides LFP, we also checked the

changes of neuronal firing characteristics post HIIT/MICT. In this

study, a total of 418, 411, 396, 395, 397, and 393 M1 units, as well as

413, 392, 388, 386, 393, and 391 CA1 units, were identified during

pre-immobile and at 0–2, 2–4, 4–6, 6–8, and 8–10min respectively

following 10min of restriction on a stationary treadmill in nine

control mice, and were used for analyses. We identified a total of

318, 293, 292, 285, 289, and 307 M1 units, and 315, 284, 273, 272,

256, and 281 CA1 units respectively during pre-exercise, 0–2, 2–4,

4–6, 6–8, and 8–10min post-HIIT in seven mice, and these units

were used for subsequent analyses. Similarly, a total of 406, 331,

276, 315, 232, and 203 M1 units, and 411, 344, 339, 314, 301, and

258 CA1 units were identified respectively during pre-exercise, 0–2,

2–4, 4–6, 6–8, and 8–10min post-MICT in 9 mice, and these units

were used for subsequent analyses. The units in pre-exercise phase

inHIIT andMICTmice were recruited to obtain the overall average

neuronal firing rate is 29.86 ± 10.65Hz in M1 (1,142 units in 25

mice) and 25.84± 9.54Hz in CA1 (1,139 units in 25 mice).

Compared to the pre-exercise or control values, the overall

firing rates in both M1 (HIIT: 2–4min, p < 0.05 vs. pre-exercise

value by one-way ANOVA; MICT: 0–2, 2–4, 4–6, 6–8 and 8–

10min, p < 0.01 vs. pre-exercise value by Brown-Forsythe and

Welch ANOVA, Figure 6A) and CA1 (MICT: 0–2, 2–4, 4–6, 6–

8 and 8–10min, p < 0.01 vs. pre-exercise value by Brown-

Forsythe and Welch ANOVA, Figure 6B) consistently decreased

post HIIT/MICT. Both M1 and CA1 firing rates exhibited a

tendency toward recovery during the 10min following HIIT.

However, MICT-induced fatigue was associated with a more

pronounced suppression of firing rates inM1 and CA1, particularly

during the 4–10min interval post-exercise, compared to HIIT-

induced fatigue (Figures 6A, B). The results agree with the previous

result that MICT fatigue is more profoundly linked to several

LFP parameters.

The e�ects of HIIT/MICT on
cross-correlation of neuronal firing

Correlated neuronal firing closely linked to attention, stimulus

discrimination, and motor function. Therefore, in this study,

besides the LFP correlation, we also investigated the cross-

correlation of neuronal firing inM1 andCA1.M1 andCA1 neurons

fire simultaneously, and the high cross-correlation of neuronal

firing was indicated by the evident single peak in the represent

correlation histogram before MICT (CA1 spikes relative to M1

spikes, spike number = 18,207, Figure 7A). Neurons in M1 and

CA1 tend to fire independently with least synchrony, as shown the

represent flat the cross-correlogram (Salinas and Sejnowski, 2001)

at 0–2min post MICT (spike number = 280, Figure 7B). The peak

in the correlation histograms 4–10min post MICT (spike number

= 626, 5,834, 8,742, 19,530 in Figures 7C–F respectively) gradually

increases, indicating the synchrony of neuronal firings in M1 and

CA1 progressively recovered, the overall spike densities gradually

increase as shown in the raster plots (Figures 7B–F) compare to the

pre-exercise value (Figure 7A).

Figures 7G, H illustrate representative waveforms of sorted

neuronal firing activity in the M1 and CA1 regions, respectively.

Furthermore, Figures 7I–K present the time lag variations of spikes

in the M1 and CA1 regions of control, HIIT, and MICT mice,

respectively. Before exercise, the meantime lag of CA1 neuron

firing relative to M1 is 3.5 ± 2ms (n = 16). The result indicates

a temporal relationship between spikes from M1 and CA1, while

normally CA1 neurons fire with 3.5ms delay to M1 neurons.

The time lag between M1 and CA1 spikes consistently increased

post HIIT/MICT, and showed a clear tendency of recovery during

10min post exercise. Thus, the synchrony of spike firing in M1 and

CA1 largely recovered. However, there is no significant difference

between the potency of HIIT and MICT on lag time increasing.

Besides, it should be aware that the increasing degrees of synchrony

not only shaped by signal propagating and synaptic processing

along the neural network betweenM1 and CA1, but also influenced

by common inputs.

The e�ects of HIIT/MICT on burst firing
properties

Neuronal burst firing is critical in specific coding and

information transmission. For example, burst firing can enhance

neural oscillations, increases neural output correlation and induce

neural plasticity (Chan et al., 2016). Atypical burst firing is

implicated in a series ofmental dysfunction and neural neurological

disorders, including anxiety, depression, and epilepsy (Shao et al.,

2021). Therefore, in the present study, we also assessed alternation

of burst firing features post HIIT/MICT. Applying the criteria and

identify approaches mentioned in the method, the burst units were

identified in pre and every 2min post HIIT/MICT. In this study,

a total of 62, 59, 57, 54, 56 and 53 M1 burst units, and a total of

64, 61, 66, 52, 53 and 58 CA1 burst units were identified during

pre-immobile and at 0–2, 2–4, 4–6, 6–8, and 8–10min respectively

following 10min of restriction on a stationary treadmill in 9 control

mice, and were used for analyses. Moreover, we identified a total of

41, 29, 28, 32, 34, and 35 M1 burst units, and 43, 31, 33, 34, 36,

and 38 CA1 burst units during pre-exercise, 0–2, 2–4, 4–6, 6–8,

and 8–10min post-HIIT in seven mice, and used them for analysis.

Similarly, in nine MICT mice, a total of 53, 42, 44, 46, 50, and

53 M1 burst units, and 62, 48, 50, 53, 56, and 59 CA1 burst units

respectively were identified during pre-exercise, 0–2, 2–4, 4–6, 6–8,

and 8–10min post-MICT and used for subsequent analyses.
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FIGURE 7

The cross-correlation alterations of spikes in M1 and CA1 post-HIIT/MICT. (A–F) Represent raster plots and cross-correlation histograms showing

the alterations of spike synchrony pre- and post MICT in one mouse. (G, H) Typical waveforms of sorted neuronal firing in M1 and CA1 respectively;

(I–K) Time lag changes of spikes in M1 and CA1 in control, HIIT and MICT mice respectively. The data is represented by mean ± SD, n = 7–9. ##p <

0.01 vs. pre-exercise value; &p < 0.05, &&p < 0.01 by one-way ANOVA followed by Bonferroni multiple comparisons.

Normalized to the overall neuronal units, the ratio of M1 burst

units are 0.13 and 0.11, and the ratio of CA1 burst units are 0.14

and 0.13 in seven mice during pre-exercise and 8–10min post HIIT

respectively; while the ratio of M1 burst units are 0.13 and 0.26, and

the ratio of CA1 burst units are 0.15 and 0.23 in nine mice during

pre-exercise and 8–10min post HIIT respectively. The normalized

burst rates relative to overall all firing frequencies were calculated

(Figure 8A). Before exercise, the normalizedmean burst rates inM1

and CA1 are 0.34 ± 0.13 (156 burst units in 25 mice) and 0.34 ±

0.14 (169 burst units in 25 mice) respectively. Concomitantly, the

mean spike number in burst is 71.81 ± 30.19 in M1 and 78.16 ±

41.71 in CA1.

Consistent with the changes observed in overall firing

frequency, the burst features in both M1 and CA1 also exhibited

a consistent inhibition post-HIIT/MICT, as compared to pre-

exercise or control values, as reflected by the reduced burst rates

(Figures 8A, B), number of spikes in burst (Figures 8C, D) and

burst duration (Figures 8E, F). Significant decreases in the number

of spikes in burst were observed in MICT mice during 0–2, 2–

4, 4–6, 6–8 and 8–10min post-exercise (p < 0.05 for M1 vs.

pre-exercise values by Brown-Forsythe and Welch ANOVA and

p < 0.01 for CA1 vs. pre-exercise values by one-way ANOVA,

Figures 8C, D).

Before exercise, the mean BD in M1 and CA1 are 6.06 ± 2.07 s

(n = 25) and 5.38 ± 2.16 s (n = 25) respectively. The BD in both

M1 and CA1 (MICT: 4–6min, p < 0.05 vs. pre-exercise value by

Brown-Forsythe and Welch ANOVA) reduced after HIIT/MICT.

Consistent with the alterations in normalized burst rate, spikes

in burst, the decrease in BD was steadier after MICT compared

with the counterpart values after HIIT (Figures 8E, F). Combined

with the burst ratio data, the overall alterations in burst features

indicated that a large portion of burst units transited from long

burst with more dense spikes to short burst with fewer spikes,

and this conversion is steadier in MICT mice. Thus, compared

with HIIT, MICT appears to be similarly effective in altering

burst characteristics.
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FIGURE 8

The normalized burst firing rate, spikes in burst and BD changes after HIIT/MICT. (A, B) Normalized burst firing rate (relative to total firing rate)

changes in M1 and CA1 after HIIT/MICT; (C, D) The alternation of spikes in burst in M1 and CA1 following HIIT/MICT; (E, F) BD changes in M1 and

CA1 after HIIT/MICT. The data is represented by mean ± SD, n = 7–9. *p < 0.05, **p < 0.01; ***p < 0.001 vs. control values; †p < 0.05 vs. MICT

values by Brown-Forsythe and Welch ANOVA followed by Dunnett multiple post hoc comparisons.
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Discussion

The mechanism for CF during strenuous exercise, such as

HIIT and MICT remains elusive, with limited research in this

field. Recent studies suggest that the inception of CF lies within

the brain (Tornero-Aguilera et al., 2022). While diminished

executive processing in the motor cortex has been implicated,

it is plausible that circuit-level changes across motor cortex and

hippocampal regions may contribute to the depression, feeling

of fatigue, and cognitive decline observed in exercise fatigue.

Here, we employed an adapted mouse model of HIIT/MICT and

concurrent extracellular recordings in the M1 and CA1 regions to

systematically examine alterations in LFP and spike activities within

10min post-exercise. Our findings indicate that both HIIT and

MICT consistently reduced LFP coherence in M1 and CA1 across

slow (delta, theta, alpha) and fast (beta, gamma) frequency bands.

Furthermore, we observed consistent increases in delta, theta, and

alpha power, along with reductions in beta and gamma power

in both regions. Notably, GF steadily decreased in both M1 and

CA1 following HIIT/MICT. The altered LFP and spike activities

in the M1 and CA1 regions following HIIT/MICT may reflect

compensatory neural adaptations, analogous to those reported in

adult cognitive fatigue studies (Wang et al., 2016; Babu Henry

Samuel et al., 2019), and may serve a protective role during

maximal or endurance exercise (Noakes, 2012).

EEG/LFP is associated with different behavioral and cognitive

processes with certain brain regions and oscillatory dynamics.

For instance, cortical delta rhythm (1–4Hz) is prevalent during

drowsiness and sleep (Davis et al., 2011). Hippocampal theta

rhythm is associated with episodic memory and navigation

(Buzsáki and Moser, 2013). However, fatigue is characterized by an

increase in cortical delta and theta, accompanied by a decrease in

beta activity (Lal and Craig, 2001; Zinn et al., 2018). Furthermore,

chronic pain is associated with elevated theta and alpha power at

rest, as well as a reduced amplitude of evoked potentials following

sensory stimulation and cognitive tasks, indicating its complex

neurophysiological underpinnings (Pinheiro et al., 2016). Alpha

rhythm (8–14Hz), being the dominant pattern in the awake brain,

is associated with sensory processing and attention (Zhou et al.,

2021), likely modulating the excitability level of the brain’s internal

state through functional inhibition (Jensen and Mazaheri, 2010).

Alpha oscillations have been shown to exhibit a negative correlation

with level of alertness, attention and fatigue (Gharagozlou et al.,

2015). Cortical beta rhythm (15–30Hz) reflects processes related

to working memory and somatosensory decision-making (Haegens

et al., 2011, 2017; Lundqvist et al., 2018). Gamma rhythm (30–

90Hz) is associated with sensory processing, cognition, memory,

and attention across various brain regions (Lundqvist et al., 2018).

The somatosensory regions showed a stimulus-evoked response,

reflected in a power increase in the beta (Haegens et al., 2011,

2017) and gamma range (Haegens et al., 2011). The fluctuations

observed in delta, theta, alpha, beta, and gamma rhythms in our

study likely reflect changes in emotional, memorial, cognitive, and

sensory process in HIIT/MICT induced fatigue.

The temporal correlation in LFP between two brain regions is

typically quantified by coherence, reflecting the phase consistency

of neural excitability across sites (Srinath and Ray, 2014). Our

findings of reduced LFP coherence post-HIIT/MICT indicate that

both exercise modalities impact local neural circuit activities and

functional integration between M1 and CA1. Mental fatigue, a

psychobiological state resulting from prolonged exertion, impairs

cognitive abilities and exercise performance (Meeusen et al.,

2021). This state hinders psychomotor vigilance (Angius et al.,

2022), diminishes exercise pleasure, and negatively impacts implicit

attitudes toward future exercise (Pessoa et al., 2022). The reduction

in GF strongly correlates with mental fatigue (Li H. et al., 2019),

while PSE (chaos level) positively correlated with attention level

(Frohlich et al., 2021). Our GF analysis revealed a shift in the

spectral center of gravity from faster to slower frequency bands,

accompanied by an elevated PSE after HIIT/MICT, suggesting

mental fatigue and decreased attention. These results align with

the notion that fatigue can stem from diverse origins, not solely

physiological factors (Tornero-Aguilera et al., 2022). Therefore, the

alterations in LFP oscillations, LFP coherence, and GF collectively

depict a dynamic, distributed neuronal network in the M1 and

CA1, contributing to the diverse fatigue manifestations induced

by HIIT/MICT.

This study reveals that MICT, in contrast to HIIT, exhibits

greater efficacy in disrupting temporal correlations of LFP activities

between M1 and CA1, augmenting slow LFP rhythms, inhibiting

fast LFP oscillations, and reducing GF in CA1. Notably, alterations

in slow rhythms, compared to fast rhythms, emerge as superior

biomarkers for cognitive function following HIIT/MICT. Our

findings align with prior research indicating the hippocampus’s

involvement in theta wave generation, which facilitates motor

performance (Huang et al., 2005; Bohbot et al., 2017). Given the

substantial similarities in EEG/LFP activity between human and

rodent hippocampi (Bohbot et al., 2017), the current findings

hold significant implications for exploring LFP and CF alterations

in humans. Exercise fatigue exerts multifaceted impacts on

psychological and physiological functions (Tornero-Aguilera et al.,

2022). CF, in particular, deteriorates cognitive functions and mood.

The differential impact of HIIT and MICT on LFP activity may

elucidate the more pronounced CF induced by MICT compared

to HIIT. Our findings align with previous studies indicating that

MICT elicits more CF components than HIIT in human (Burnley

and Jones, 2018; Tornero-Aguilera et al., 2022). The synchronized

and significant post-exercise alterations in LFP activity in M1 and

CA1 observed in our study are consistent with CA1’s involvement

in motor alterations associated with fatigue in forced swimming

rats (Chen et al., 2009).

The hippocampus plays a crucial role in consolidating motor

sequence memory (Albouy et al., 2008; Jacobacci et al., 2020), and is

functionally connected to the sensorimotor cortex during volitional

movements (Burman, 2019). In this study, both HIIT and MICT

influenced the cross-correlation of neuronal firing between the M1

and CA1, with MICT exhibiting a more potent effect. The effects of

HIIT/MICT on neuronal firing are characterized by delayed time

lags, reduced overall firing rates, burst rates and spikes in burst, as

well as decreased BD.Notably,MICT ismore effective in decreasing

general firing rates in both the M1 and CA1.While common inputs

or synaptic interactions can influence neuronal cross-correlation,

these correlations still offer crucial insights into neural network

functional architecture (Salinas and Sejnowski, 2001; Cohen and
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Kohn, 2011). Our cross-correlation data aligns with previous LFP

coherence findings, indicating a consistent decrease in neural

activity synchronization between M1 and CA1, and reflecting a

downregulation of functional integration across these regions.

Neuronal burst firing plays a pivotal role in specific coding

and information transmission. It can enhance neural oscillations,

increase neural output correlation, and induce neural plasticity

(Chan et al., 2016). Aberrant burst firing patterns have been

implicated in a range of mental dysfunctions and neurological

disorders, such as anxiety, depression, and epilepsy (Shao et al.,

2021). In the current study, we evaluated the alterations in

burst firing characteristics following HIIT and MICT. Notably,

MICT showed greater effectiveness in modifying burst firing

rate, spikes in burst and BD in M1 and CA1. Further, all burst

parameters except BD displayed a significant recovery trend within

10min post-exercise. These results indicate that both HIIT and

MICT can impact neural information coding and transmission

by modulating burst firing in distinct brain regions, potentially

contributing to the negative mental perceptions associated with

these exercise modalities.

Rodent studies have implicated the involvement of

neurotransmitters such as dopamine, serotonin, and noradrenaline

in exercise-induced CF across multiple brain regions (Meeusen

and Roelands, 2018; Meeusen et al., 2021; Tornero-Aguilera

et al., 2022). However, the results of animal and human studies

are not fully consistent in the relationship between dopamine,

serotonin, and exercise fatigue (Cordeiro et al., 2017; Yan et al.,

2022). Thus, the precise mechanism underlying the occurrence

of CF still remains elusive (Meeusen and Roelands, 2018). Our

research also has limitations. Specifically, the modifications of

neural network and neuronal firing observed in this study were

obtained from strenuous mouse exercise models, potentially

limiting the direct extrapolation to human brain neural network

changes associated with CF. Nevertheless, compelling evidence

suggests functional similarities between human (Kunz et al.,

2024) and rodent (Khodagholy et al., 2017; Nitzan et al., 2020)

brains, particularly in the connectivity between the hippocampus

and cortex, mediated by the entorhinal region and default mode

network, as reflected in comparable EEG/LFP activity (Bohbot

et al., 2017). Hence, the alterations in neural network connectivity

between M1 and CA1 regions identified in this study offer a

valuable perspective for interpreting exercise-induced CF in

humans. Furthermore, our findings align with recent research

demonstrating ultrastructural changes in asymmetric synapses

within the rat striatum along cortical-striatal pathways, associated

with repeated exercise-induced fatigue (Wang et al., 2019).

Conclusions

This study provides novel evidence that both HIIT and MICT

significantly modulate neural activities in M1 and CA1 regions.

The alterations observed in LFP and neuronal firing patterns

could potentially serve as biomarkers for motor disturbances and

fatigue-related brain signals. Our findings indicate that MICT

demonstrates a stronger correlation with changes in LFP and

neuronal firing parameters. Additionally, MICT-induced fatigue

seems to be accompanied by a more pronounced disturbance

in the functional integration between M1 and CA1. These

observations align with previous studies suggesting that MICT

leads to higher levels of CF compared to HIIT (Burnley and

Jones, 2018; Tornero-Aguilera et al., 2022). Our study sheds

light on the neurophysiological mechanisms underlying exercise-

induced CF within cortical and subcortical networks. Notably, our

findings reveal compensatory and self-protective brainmechanisms

activated during exhaustive exercise. These insights have the

potential to guide exercise programming to optimize performance

while minimizing excessive fatigue. Additionally, our research may

contribute to the development of targeted therapeutic interventions

for clinical conditions associated with exercise-induced fatigue.
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