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Specific static and dynamic
functional network connectivity
changes in thyroid-associated
ophthalmopathy and it predictive
values using machine learning
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1School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang,
Jiangxi, China, ?Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated
Hospital of Nanchang Medical College, Nanchang, Jiangxi, China

Background: Thyroid-associated ophthalmopathy (TAO) is a prevalent
autoimmune disease characterized by ocular symptoms like eyelid retraction
and exophthalmos. Prior neuroimaging studies have revealed structural and
functional brain abnormalities in TAO patients, along with central nervous
system symptoms such as cognitive deficits. Nonetheless, the changes in
the static and dynamic functional network connectivity of the brain in TAO
patients are currently unknown. This study delved into the modifications in
static functional network connectivity (sSFNC) and dynamic functional network
connectivity (dFNC) among thyroid-associated ophthalmopathy patients using
independent component analysis (ICA).

Methods:  Thirty-two  patients  diagnosed  with  thyroid-associated
ophthalmopathy and 30 healthy controls (HCs) underwent resting-state
functional magnetic resonance imaging (rs-fMRI) scanning. ICA method was
utilized to extract the sFNC and dFNC changes of both groups.

Results: In comparison to the HC group, the TAO group exhibited significantly
increased intra-network functional connectivity (FC) in the right inferior
temporal gyrus of the executive control network (ECN) and the visual
network (VN), along with significantly decreased intra-network FC in the dorsal
attentional network (DAN), the default mode network (DMN), and the left middle
cingulum of the ECN. On the other hand, FNC analysis revealed substantially
reduced connectivity intra- VN and inter- cerebellum network (CN) and high-
level cognitive networks (DAN, DMN, and ECN) in the TAO group compared to
the HC group. Regarding dFNC, TAO patients displayed abnormal connectivity
across all five states, characterized by notably reduced intra-VN connectivity
and CN connectivity with high-level cognitive networks (DAN, DMN, and ECN),
alongside compensatory increased connectivity between DMN and low-level
perceptual networks (VN and basal ganglia network). No significant differences
were observed between the two groups for the three dynamic temporal metrics.
Furthermore, excluding the classification outcomes of FC within VN (with
an accuracy of 51.61% and area under the curve of 0.35208), the FC-based
support vector machine (SVM) model demonstrated improved performance in
distinguishing between TAO and HC, achieving accuracies ranging from 69.35
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to 7742% and areas under the curve from 0.68229 to 0.81667. The FNC-
based SVM classification yielded an accuracy of 61.29% and an area under the

curve of 0.57292.

Conclusion: In summary, our study revealed that significant alterations in the
visual network and high-level cognitive networks. These discoveries contribute
to our understanding of the neural mechanisms in individuals with TAO, offering
a valuable target for exploring future central nervous system changes in thyroid-
associated eye diseases.

KEYWORDS

thyroid-associated ophthalmopathy, independent component analysis, resting-state
network, functional network connectivity, functional connectivity

1 Introduction

Thyroid-associated ophthalmopathy (TAO), also recognized
as Graves’ ophthalmopathy, stands as the prevailing autoimmune
orbital condition in adults. Individuals afflicted with TAO typically
exhibit periorbital edema, upper eyelid retraction, diplopia,
exophthalmos, and compromised visual acuity as primary clinical
features (Bahn, 2010; Maheshwari and Weis, 2012; McAlinden,
2014). The etiology of TAO remains uncertain, yet it is commonly
associated with the breakdown of immune tolerance toward the
thyrotropin receptor (TSHR) and irregular levels of thyrotropin
receptor antibodies (TRAbs) (McLachlan and Rapoport, 2014;
Diana et al., 20215 Nicoli et al., 2021). Several studies have indicated
the potential involvement of the insulin-like growth factor 1 (IGF-
1) receptor in the pathogenesis of TAO (Smith et al., 2017; Smith
and Janssen, 2019). Risk factors for TAO include smoking, thyroid
dysfunction, radioactive iodine therapy, and selenium deficiency
(Bartalena et al., 2020; Cao et al., 2022; Yu et al., 2022). The
natural progression of TAO can be categorized into an active phase
marked by acute inflammatory reactions and distinctive ocular
symptoms, and an inactive phase characterized by fibrosis (Weiler,
2017). With an enhanced comprehension of TAO, it has become
evident that beyond ocular manifestations, TAO can potentially
induce alterations in the brain and is closely linked to central
nervous system symptoms, including cognitive impairment (Stern
et al., 1996; Bunevicius and Prange, 2006; Vogel et al., 2007; Silkiss
and Wade, 2016; Bruscolini et al, 2018). Hence, investigating
the neural mechanisms underlying TAO is crucial for advancing
disease management and enhancing the quality of life for affected
individuals.

Previous neuroimaging investigations have consistently
revealed structural and functional brain changes in individuals
with TAO, believed to correlate with visual deficits and central
nervous system manifestations. Structural brain changes related
to vision and cognition are present in TAO patients. Some studies
have found altered gray matter thickness or volume in the occipital
and frontal lobes in patients with TAO (Silkiss and Wade, 2016;
Luo et al, 2022), and significantly increased iron deposition in
brain regions corresponding to visual and cognitive deficits (Hu
etal,, 2023). Diffusion tensor imaging has shown reduced fractional
anisotropy (FA) in the right superior occipital gyrus and middle
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occipital gyrus in patients with TAO, and FA values are positively
correlated with visual acuity (Wu et al., 2020). The topological
organization of the structural network of the brain is also disrupted
in TAO patients, which may be related to clinical psychiatric
dysfunction (Wu et al, 2021). In addition, patients with TAO
exhibit functional brain abnormalities. Wen et al. (2023) found
that abnormal dynamic amplitude of low-frequency fluctuation
(dALFF) was present in the visual cortex of TAO patients. Jiang
etal. (2022) reported altered functional connectivity density (FCD)
values in the prefrontal cortex of TAO patients. Local brain
functional connectivity as well as local temporal variability of brain
activity in brain regions associated with vision and cognition are
also altered in TAO patients (Wen et al., 2022; Jiang et al., 2023).
This series of studies found that TAO mainly leads to changes
in brain regions such as the superior occipital gyrus, middle
occipital gyrus, fusiform gyrus, and cuneus lobe, which are related
to visual function. At the same time, abnormalities were also
found in frontal and parietal regions such as the middle frontal
gyrus, precuneus, cingulate gyrus, post-central gyrus, and superior
parietal lobe, which are involved in cognition-related functions.
Previous research has concentrated on localized brain function
and structural irregularities in TAO patients. Our brain function is
governed by the coordinated activities of various brain networks.
However, how static and dynamic large-scale brain network
functional connectivity is altered in TAO patients remains unclear.
Thus, investigating the TAO brain network in our study can
enhance comprehension of the neural mechanisms underlying
TAO damage. The human brain is a sophisticated and dynamic
system that exhibits nonstationary neural activity and swiftly
changing neural interactions. Inherently dynamic, human brain
activity is characterized by temporal variability, which influences
the functional capabilities of neural networks. Fluctuations in
blood oxygen level-dependent (BOLD) signals during the resting
state reflect the baseline neuronal activity in the brain. These
low-frequency fluctuations correspond to functionally relevant
resting-state networks (RSNs) (Damoiseaux et al,, 2006; Smith
et al., 2009). ICA has been utilized as a powerful data-driven
method to identify RSNs, encompassing low-level perceptual
networks (visual, auditory, and sensorimotor) as well as high-
level cognitive networks (default mode, executive control, and
salience). This approach unveils various patterns of interactions
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within the human brain (van de Ven et al, 2004; Beckmann
et al., 2005; De Luca et al, 2006). ICA technology can extract
distinct functional brain networks from intricate brain imaging
data without requiring predetermined assumptions. It offers high
resolution and is adaptable for various brain research and data
analysis tasks, showcasing exceptional flexibility and versatility. It
has been previously applied to the study of several ophthalmic
diseases such as strabismus (Jin et al., 2022), diabetic retinopathy
(Huang et al., 2020), congenital blindness (Wang et al., 2014),
and neuromyelitis optica (Yang et al., 2022), but it has not yet
been used in the study of TAO. FNC can capture the temporal
correlations between RSN, but static FNC relies on the assumption
that functional interactions remain consistent throughout resting-
state scanning. An increasing body of research indicates that
brain functional connectivity is dynamic, exhibiting significant
time-varying characteristics (Hutchison et al., 2013a; Damaraju
et al, 2014; Liégeois et al, 2017). Dynamic FNC can reflect
transient and periodic whole-brain temporal coupling patterns
(Wens et al,, 2019), and offer a more comprehensive and profound
understanding of the neural mechanisms of disease by examining
data that is not accessible through sFNC. In addition, classification
based on neuroimaging features using machine learning has been
widely used in various fields and has shown good classification
performance (Davatzikos et al., 2005; Wang et al., 2007; Li et al,,
2022; Xu et al., 2022).

Therefore, this study utilized ICA to investigate both static
and dynamic alterations in functional network connectivity among
individuals with TAO. Initially, RSNs were identified through ICA,
followed by a comparison of intra-network functional connectivity
and differences in FNC between the TAO group and the control
group. Subsequently, a combination of sliding window and k-mean
cluster analysis was employed to examine dFNC changes in TAO
patients and to analyze differences in three dynamic temporal
metrics between the two cohorts. Lastly, an attempt was made to
classify TAO patients and HCs by utilizing SVM based on FC and
FNC data. It was hypothesized that TAO patients would exhibit
anomalous static and dynamic functional network connectivity.

2 Materials and methods

2.1 Participants

Thirty-two individuals with TAOand 30 HCs, matched for
sex, age, and education, were recruited from the Department of
Ophthalmology at Jiangxi Provincial People’s Hospital for this
study. The diagnosis of TAO in all patients was made by two
experienced ophthalmologists in accordance with the diagnostic
criteria set by the American Academy of Ophthalmology (Bartley
and Gorman, 1995). Furthermore, their visual acuity, visual fields,
color vision, and pupillary reflexes were assessed. The disease
activity of TAO was determined using the modified 7-point
Mourits’ Clinical Activity Score (CAS) (Bartalena et al., 2016).
Patients with CAS > 3 were included in the active TAO group;
otherwise, they were included in the inactive group.

The inclusion criteria for subjects were: (1) absence of
contraindications to Magnetic resonance imaging (MRI) scanning
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(such as no pacemakers or implanted metal devices); (2) no
claustrophobia; and (3) no history of heart or brain disease.

The exclusion criteria for all subjects were as follows: (1)
presence of other ocular diseases (such as vitreous hemorrhage,
high myopia, optic neuritis, retinal degeneration, amblyopia,
strabismus, glaucoma, cataracts, etc.); (2) a history of traumatic
eye injuries or ophthalmological surgeries; (3) a history of
neurological or psychiatric disorders (including craniocerebral
trauma, bi-directional affective disorders, schizophrenia, etc.); and
(4) alcohol or drug abuse.

The study protocol was in compliance with the Declaration
of Helsinki and obtained approval from the Research Ethics
Committee of Jiangxi Provincial People’s Hospital. Prior to their
participation in the study, all participants were briefed on the
study’s objectives, procedures, and potential risks, and they
provided written informed consent to take part.

2.2 MRI acquisition

MRI scans were conducted using a 3-Tesla scanner (Discovery
MR 750W system; GE Healthcare, Milwaukee, W1, United States)
equipped with an eight-channel head coil. Functional images
were acquired using a gradient-echo-planar imaging sequence.
Subjects were directed to remain in a resting state with their eyes
closed, stay relaxed without focusing on any specific thoughts,
and avoid falling asleep. Whole-brain T1-weighted images were
obtained using a three-dimensional brain volume imaging (3D-
BRAVO) MRI protocol. T1 following parameters: repetition
time (TR)/echo time (TE) = 8.5/3.3, thickness = 1.0 mm, no
256 x 256, field of
view = 240 mm? x 240 mm?, and flip angle = 12°. Functional

intersection gap, acquisition matrix =

images were obtained by using a gradient echoplanar imaging
sequence with the following parameters: TR/TE = 2,000 ms/25 ms,
thickness = 3.0 mm, gap = 1.2 mm, acquisition matrix = 64 x 64,

2

flip angle = 90°, field of view = 240 mm~ x 240 mm?, voxel

3 3 x 3.6 mm?>, and 35 axial slices.

size = 3.6 mm” X 3.6 mm
All the subjects were instructed to rest quietly with their eyes
closed and relaxed without thinking about anything in particular

or falling asleep.

2.3 Data preprocessing

All pre-processing was performed using the toolbox for
Data Processing and Analysis of Brain Imaging (DPABI)* (Yan
et al., 2016), which is based on Statistical Parametric Mapping
(SPM12)? implemented in MATLAB 2013a (MathWorks, Natick,
MA, United States) and briefly the following steps: (1) Remove
the first 10 volumes. (2) Slice timing effects, motion corrected.
For head motion parameters, more than 2 mm or for whom
rotation exceeded 1.5° during scanning were excluded (Van Dijk
et al, 2012). (3) Normalized data [in Montreal Neurological
Institute (MNI) 152 space] were re-sliced at a resolution of

1 http://www.rfmri.org/dpabi

2 http://www filion.ucl.ac.uk
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3mm X 3 mm x 3 mm. (4) Spatial smoothing by convolution with
an isotropic Gaussian kernel of 6 mm x 6 mm x 6 mm full width
at half maximum.

2.4 Group ICA analysis

Group ICA was conducted to decompose the data into
independent components (ICs) utilizing the Group ICA Of fMRI
Toolbox(GIFT)toolbox (version 3.0b).3 Initially, 29 IC maps were
estimated in this study by applying the minimum description
length criterion to account for spatial correlation. Subsequently,
the ICs for each subject were obtained through the group ICA
back-reconstruction step and then transformed into z-scores (Zuo
et al., 2010). Components retained for further analysis among
the 29 estimated ICs were selected based on the largest spatial
correlation with specific RSN templates (Shirer et al., 2012; Wang
etal, 2014). The IC time courses and spatial maps for each subject
were transformed to z-scores. Seventeen RSNs were identified in
this study. We identified 17 significant independent components
(ICs) based on the following criteria: (a) peak coordinates of spatial
maps predominantly located in gray matter, (b) absence of spatial
overlap with vascular, ventricular, or susceptibility artifacts, and ©
time courses characterized by predominantly low-frequency signals
(with a ratio of powers below 0.1 Hz to 0.15-0.25 Hz in the
frequency spectrum). The identified resting-state networks (RSNs)
included the dorsal attention network (DAN) represented by IC6
and IC15, the auditory network (AN) by IC7, the default mode
network (DMN) by IC9, IC14, IC18, IC27, and IC28, the salience
network (SN) by IC10, the executive control network (ECN) by
IC11 and IC17, the visual network (VN) by IC12, IC13, and IC25,
the sensorimotor network (SMN) by IC21, the cerebellum network
(CN) by IC24, and the basal ganglia network (BGN) by IC26.

2.5 Static functional network
connectivity analysis

2.5.1 Intra-network functional connectivity
analysis

The intra-network FC was expressed as the z-score of each
voxel, indicating the extent to which the time series of a
particular voxel correlates with the mean time series of its
associated component.

2.5.2 Inter-network functional connectivity
analysis

ENC analysis was conducted utilizing the MANCOVAN
toolbox within the GIFT software to investigate alterations in
the predefined 17 spatial independent component (IC) pairs of
functional connections. Initially, at the frequency range of 0.01-
0.1 Hz, the selected IC underwent de-trending, de-peaking, and
low-pass filtering procedures. Subsequently, the pair correlations
of these ICs were computed and then transformed using Fisher’s
Z-transform.

3 http://icatb.sourceforge.net/
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2.5.3 Dynamic functional network connectivity
analysis

The dFNC matrix was calculated using a sliding window
method. In this study, the window width was set to a TR of 30 (60s),
and the window was slide along the time axis in steps of 2 TR. The
window width of 30 TRs was chosen according to previous d-FNC
analyses using window sizes of 30 TRs (Abrol et al., 2017; Faghiri
et al., 2018). Some studies have shown that window sizes between
30 and 60 s can capture other changes in functional connectivity not
found in larger window sizes (Hutchison et al., 2013b; Allen et al.,
2014; Damaraju et al., 2014).

The dynamic functional network connectivity (dFNC) matrices
of all subjects underwent clustering via the k-means clustering
algorithm to evaluate the frequency and configuration of recurring
dFNC patterns. In this analysis, the Manhattan city distance was
utilized to gauge the similarity among various time windows.
To enhance the algorithm’s ability to escape local minima, the
maximum number of iterations was set to 500, with 150 repetitions.
The elbow rule was applied to determine the optimal number of
clusters, resulting in k = 5. Subsequently, the dFNC matrix of
all subjects was partitioned into five dFNC states, representing
recurrent instantaneous FC patterns across different windows and
subjects. The cluster centroid was termed as the dFNC matrix at the
center of each cluster.

Various temporal characteristics were computed as follows:
(i) the fraction of time, defined as the ratio of the number of
time windows in a state to the total number of time windows,
(ii) the mean dwell time, representing the average duration in a
specific state, and (iii) the number of transitions, indicating how
frequently the subject shifted from one state to another during the
scan duration. An outline of the analytical processes is illustrated
in Figure 1.

3 Statistical analysis

The ICs corresponding to seventeen RSNs were extracted
from all subjects, and one-sample t-tests were conducted for the
spatial maps of each RSN using SPM12 software. The statistical
significance thresholds were established at P < 0.001, corrected for
false discovery rate (FDR).

Two-sample t-tests were employed to examine the
discrepancies between the two groups in the intra-network FC
within RSN maps (a two-tailed approach, voxel-level significance
set at P < 0.01, Gaussian random field correction, and cluster-level
significance at P < 0.05). The Gaussian random field method was
utilized to address multiple comparisons and covariates of age and
sex were regressed using SPM12 software.

Inter-network functional connectivity analysis was conducted
to assess the temporal associations between RSNs. For the
significant correlation pairs, the average time lags were computed
for each group, reflecting the delay between the time courses of
the two correlated RSNs. Two-sample t-tests were performed to
compare the unique temporal relationships between RSNs across
the two groups (p < 0.05).

The disparities in dFNC between the TAO and HCs groups
were evaluated using two independent samples ¢-tests within the

Stats module of the GIFT software package. A significance level of
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An overview of the analytical procedures: (1) After a preprocessing step, group independent component analysis (ICA) was performed and
resting-state networks (RSNs) were identified. (2) Static functional connectivity differences within and between networks were calculated and
compared between the two groups. (3) Combine the sliding window method and k-mean cluster analysis to identify five stable repetitive states and
compare the differences in dFNC and three dynamic temporal metrics between the two groups. (4) Using FC and FNC as classification features, we
attempted to use support vector machine (SVM) to classify TAO patients and healthy controls (HCs).

p < 0.01 denoted a statistically significant distinction. Additionally,
a two-sample f-test was employed to assess the contrasts in the
fraction of time, mean dwell time, and number of transitions
for each state between the groups, with a significance threshold
of p < 0.05.

3.1 Support vector machine analysis

We performed machine learning analysis to explore whether
FC and FNC are potential neuroimaging metrics for the diagnosis
of TAO using SVM algorithms ( ). The SVM
classifier was then validated using leave-one-out cross-validation
(LOOCYV). Classification accuracy, sensitivity, and specificity were
calculated, then the receiver operating characteristic (ROC) curves
were generated and the corresponding area under the curve (AUC)
was obtained to assess classification performance.

Frontiers in
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4.1 Demographic and clinical
characteristics

Significant differences were observed in best-corrected visual
acuity (P < 0.001) between the two groups. However, there were
no significant differences in sex, age, education, or body mass index
between the two groups. Further details are provided in

4.2 Spatial pattern of RSNs in each group

The typical spatial patterns in each RSN of both TAO and HC
groups, as illustrated in . Seventeen of these components
coincided with RSNs included: dorsal attention network (DAN)
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TABLE 1 Demographics and visual measurements between two groups.

10.3389/fnins.2024.1429084

N/A N/A

Gender (male/female) 18/14 14/16

Age (years) 51.03 + 6.44 50.03 £ 5.61 0.638 0.53
Education 11.56 +2.75 11.47 +£2.29 0.149 0.88
BCVA-OD 0.65+0.13 1.03 +£0.14 —10.778 < 0.001*
BCVA-OS 0.64 £ 0.15 1.05+0.16 —10.055 < 0.001*
MoCA 25.26 +0.83 25.44 £0.77 —0.888 0.38

BCVA, best corrected visual acuity; OD, oculus dexter; OS, oculus sinister; MoCA, Montreal Cognitive Assessment; TAO, thyroid-associated ophthalmopathy; HC, health control. *Indicate

p<0.001.

(ICe6, IC15), auditory network (AN) (IC7), default mode network
(DMN) (IC9, IC14, IC18, IC27, 1C28), salience network (SN)
(IC10), executive control network (ECN) (IC11, IC17), Visual
network (VN) (IC12, IC13, IC25), SMN (IC21), cerebellum
network (CN) (IC24), and basal ganglia network (BGN) (IC26).

4.3 Altered RSNs in the TAO group

Significant increases in intra-network FC within RSNs were
detected in the TAO group compared to the HC group (refer
to Figure 3 and Table 2). Specifically, the TAO group exhibited
heightened intra-network FC in the right inferior temporal gyrus
of the ECN and the right middle occipital gyrus of the VN in
contrast to the HC group. Conversely, reduced intra-network
FC was observed in the TAO group, manifesting in the right
superior frontal gyrus of the DAN, the left precuneus, the left
medial superior frontal gyrus, and the left posterior cingulum of
the DMN, as well as the left middle cingulum of the ECN [two-
tailed test, voxel-level P < 0.01, corrected for multiple comparisons
using Gaussian random field (GRF) correction, with cluster-level
significance at P < 0.05].

4.4 Functional network connectivity
analysis

Significance and direction following two-sample ¢-tests (TAO-
HC) on each pairwise correlation are depicted as the -
sign(t)logl0(p-value) (Figure 4A). FNC analysis showed decreased
functional connectivity intra-VN and inter- CN and high-level
cognitive networks (DAN, DMN, and ECN) between two groups
(P < 0.05) (Figure 4B and Table 3).

4.5 Dynamic functional network
connectivity analysis

4.5.1 Cluster analysis

Five reoccurring states of dFNC matrixes were obtained
throughout scans based on k-means clustering algorithm. The
total percentages and visualization of the functional network
connectivity of these five states in all subjects: State 1 (2%)
(Figures 5A, F), State 2 (39%) (Figures 5B, G), State 3 (17%)
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(Figures 5C, H), State 4 (22%) (Figures 5D, I), and State 5 (20%)
(Figures 5E, ). Among them, state 1 is characterized by modular
connectivity and exhibits modular negative connectivity between
DMN, ECN and DAN, AN. State 2 has sparse connectivity, state 4
has strong connectivity, while states 3 and 5 exhibit increased or
weakened FC within and between certain networks.

4.6 Comparison of dFNC between
groups

Two independent sample ¢-tests were used to further compare
the dFNC matrix of each state between groups, and it was found
that the dFNC of TAO patients was significantly different in states
1-5 compared to that of HCs (p < 0.01). Compared to HC,
connectivity between DAN and BGN was reduced in the TAO
group within state 1 (Figure 5K); brain networks with reduced
dFNC in state 2 was intra-VN and CN-DMN (Figure 5L); brain
networks with reduced dFNC in state 3 was SN-DMN (IC10-IC14),
which also exhibited increased dFNC between SN-DMN (IC10-
IC18), VN-DMN, and BGN-DMN (Figure 5M); state 4 exhibited
decreased dFNC between DAN, ECN and CN (Figure 5N),
while state 5 exhibited decreased connectivity between DMN, VN
and CN as well as decreased intra-VN connectivity (Figure 50
and Table 4).

4.7 Comparison of dFNC temporal
metrics between groups

Compared to HCs, the three dFNC temporal metrics [fraction
of time (Figure 5P), mean dwell time (Figure 5Q), and number of
transitions (Figure 5R)] and probability of transitions (Figure 5S) of
TAO patients had no significantly difference in state 1-5 (Table 5).

4.8 Support vector machine results

The ROC curves generated by SVM for classifying TAO
patients and HC based on FC and FNC are shown in Figure 6.
Using FC as the classification feature, the area under the curve
was 0.81667 (DAN), 0.81042 (DMNT1), 0.68229 (DMN?2), 0.78438
(DMN3), 0.77187 (ECN1), 0.7312 (ECN2), and 0.35208 (VN), with
an accuracy of 75.81% (DAN), 77.42% (DMN1), 74.19% (DMN2),
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Dorsal attention network(DAN,2)

FIGURE 2

Auditory network(AN,1)

10.3389/fnins.2024.1429084

Default mode network(DMN,5)
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Z/)
@ ¢

The typical spatial patterns in each RSN of both TAO and HC groups, including DAN (IC6, IC15), AN (IC7), DMN (IC9, IC14, IC18, IC27, IC28), SN
(IC10), ECN (IC11, IC17), VN (IC12, IC13, IC25), SMN (IC21), CN (IC24), and BGN (IC26). Different colors pass spatial information. RSN, resting-state
network; TAO, thyroid-associated ophthalmopathy; HC, health control; IC, independent component; DAN, dorsal attention network; AN, auditory
network; DMN, default mode network; SN, salience network; ECN, executive control network; VN, visual hetwork; SMN, sensorimotor network; CN,

cerebellum network; BGN, basal ganglia network

75.81% (DMN3), 69.35% (ECN1), 70.97% (ECN2) and 51.61%
(VN). Using ENC as a classification feature, the area under the
curve was 0.57292 with an accuracy of 61.29% ( ).

The current study utilized ICA by integrating sFNC and
dFNC to explore the aberrant functional network connectivity
in individuals with TAO. The results indicated the following
key findings: (1) Enhanced intra-network FC within the ECN

Frontiers in

manifested in the right inferior temporal gyrus and the VN
in TAO patients compared to HC. Conversely, decreased intra-
network FC was observed in the DAN, DMN, and the left
middle cingulum of the ECN in TAO patients. (2) Analysis of
sFNC uncovered notable reductions in intra-VN connectivity and
connections from the CN to advanced cognitive networks (DAN,
DMN, and ECN) in the TAO group. (3) Cluster analysis identified
five recurrent states, each exhibiting significant alterations in
dFNC, notably decreased intra-VN connections and links from
CN to higher cognitive networks (DAN, DMN, and ECN),
with compensatory increased connectivity between higher-level
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FIGURE 3

Group functional network connectivity (FNC) differences within resting-state networks (two-tailed, voxel-level P < 0:01; GRF correction,
cluster-level P < 0:05). Compared with HC group, cool colors indicated the decreased functional connectivity and hot colors indicated the
increased functional connectivity in the TAO group. (A—D) Correspond to different resting-state networks. DAN, DMN, ECN and VN. *Indicate
voxel-level P < 0.01; GRF correction, cluster-level P < 0.05. RSNs, resting-state networks; TAO, thyroid-associated ophthalmopathy; HC, health
control; IC, independent component; DAN, dorsal attention network; DMN, default mode network; ECN, executive control network; VN, visual
network; Sup, superior; Post, posterior; Inf, inferior; Mid, middle;

R, right; L, left.

cognitive networks (DMN) and lower-level perceptual networks = The FC-based SVM model demonstrated superior performance
(VN and BGN). (4) Dynamic temporal metrics did not reveal in discriminating TAO patients from healthy controls. These

significant discrepancies between the TAO and HC groups. (5)  outcomes offer insights into the neural mechanisms underpinning
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TABLE 2 Brain regions with significantly different intra-network functional connectivity of RSNs between groups.

MNI coordinates

Brain regions

y

TAO > HC

17 Temporal_Inf R 60 -30
12 Occipital_Mid_R 27 —99
TAO < HC

6 Frontal_Sup_R 33 -9
27 Precuneus_L 0 —57
27 Frontal_Sup_Medial_L -3 36
28 Cingulum_Post_L —6 —51
17 Cingulum_Mid_L —6 -39

Peak
t-values

Cluster
size

Brain
networks

-21 ECN 4.3481 48
3 VN 11.1452 3,312
60 DAN —3.7815 43
18 DMN —3.9895 81
60 DMN —3.9781 66
30 DMN —3.9779 107
36 ECN —3.6501 55

RSN, resting-state networks; ICs, independent components; MNI, Montreal Neurologic Institute; TAO, thyroid-associated ophthalmopathy; HC, health control; ECN, executive control

network; VN, visual network; DAN, dorsal attention network; DMN, default mode network; R, right; L, left; Inf, inferior; Mid, middle; Sup, superior; Post, posterior.

FIGURE 4

Matrix shows differences of internetwork functional network connectivity between two groups (A). The CN-DAN, CN-DMN, ECN-DMN, CN-ECN
and VN-VN connections were found to be significantly altered between two groups (p < 0.05) (B). CN, cerebellum network; DAN, dorsal attention
network; DMN, default mode network; ECN, executive control network; VN, visual network

TABLE 3 Significantly altered static functional network connectivity in
TAO patients compared with HCs.

TAO < HC

DAN-CN 1C6-1C24 —2.113 0.0388
CN-DMN 1C24-1C27 —2.681 0.0095
ECN-DMN IC11-1C28 —2.020 0.0479
ECN-CN IC17-1C24 —2.028 0.0470
VN-VN IC12-1C25 —2.542 0.0136

TAO, thyroid-associated ophthalmopathy; HCs, health controls; ICs, independent
components; DAN, dorsal attention network; CN, cerebellum network; DMN, default mode
network; ECN, executive control network; VN, visual network.

central nervous system (CNS) symptoms, particularly cognitive
impairments, in individuals with TAO.

Analyzing alterations in brain FC within RSNs assists in
exploring the atypical intrinsic interactions within distinct spatial

Frontiers in Neuroscience

patterns in the brains of individuals with TAO (Beckmann et al.,
2005; De Luca et al, 2006). Our study revealed a decrease in
intra-network FC within the DAN, DMN, and ECN in individuals
with TAO. The DAN, encompassing areas like the intraparietal
sulcus, middle frontal gyrus, and frontal eye fields, plays a crucial
role in top-down attentional orienting and the allocation of
cognitive resources (Corbetta et al., 2008; Maidan et al., 2019).
Previously, alterations in the DAN have been found in a variety
of ophthalmic diseases such as early blindness (Ankeeta et al,
2021), neuromyelitis optica spectrum disorder (NMOSD) (Han
et al, 2020), and glaucoma (Frezzotti et al, 2014; Li et al,
2017). One study found significantly lower ReHo values in parietal
lobe and middle frontal gyrus in TAO patients (Jiang et al,
2021). An additional study identified disrupted brain function in
the attention network among individuals with TAO, indicating
a potential manifestation of underlying cognitive impairment
(Chen et al,, 2021). In line with these observations, our study
demonstrated diminished intra-network functional connectivity in
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Cluster centroids for each state. Their percentage of total occurrences are listed above them (A-E). Visualization of functional network connectivity
at every state (F-J). Significant differences in dFNC between TAO patients and HCs. The colored rectangles represent the dFNC between the two
corresponding ICs, with warm colors indicating increased connectivity and cool colors indicating decreased connectivity (K=0). Dynamic

connectivity feature analysis for the TAO and HC groups (P-S)

the DAN among individuals with TAO, which could be associated
with cognitive dysfunction in this patient group. The DMN
comprises the medial prefrontal cortex, posterior cingulate cortex,
inferior parietal cortex, and precuneus ( ), which play
important roles in working memory, cognition, and emotional
processing ( ;

; ). ( ) identified
anomalous spontaneous neuronal activity in the left posterior
cingulate gyrus (LPCC) within the DMN of patients with TAO,
suggesting a potential link to cognitive impairments. Quantitative
susceptibility mapping (QSM) revealed a notable elevation in iron
deposition within regions of the DMN in individuals with TAO
( ). Multiple studies have reported alterations in gray
matter thickness and volume among individuals with TAO, which
are correlated with cognitive changes ( H

). In addition to these altered intra-network connections,
there were abnormalities in the inter-network connections of the
DMN. We found that functional network connectivity between
the DMN and the ECN, CN was reduced in TAO patients. The
ECN belongs to the advanced cognitive network. The CN is not
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only involved in motor control, but also performs important
cognitive functions. Weakened functional connectivity between
them may be related to cognitive decline in TAO patients. Based
on these collective findings, our study revealed abnormal functional
connectivity intra- and inter-network in the DMN of TAO patients,
potentially impacting cognitive function in these patients. The
ECN encompasses various frontal regions such as the dorsolateral
prefrontal cortex, anterior cingulate, paracingulate in the medial
frontal lobe, and posterior parietal cortex ( ;
), and is involved in goal-directed stimulus

and response selection, as well as cognitive control (

; ; )

( ) found that the gray matter of the anterior
cingulate was thinned in TAO patients. ( ) reported a
significant decrease in the nodal properties of the anterior cingulate
gyrus in the TAO group. In a somatic proton magnetic resonance
spectroscopy (1H-MRS) investigation, a marked reduction in the
choline/creatine (Cho/Cr) ratio was observed in the prefrontal
cortex of individuals with TAO, suggesting that dysfunction in
this region aligns with cognitive impairment ( )-
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TABLE 4 Significantly different dFNC in states 1-5 between groups.

State 1

DAN-BGN 1C6-1C26 —243.8 0.0026
State 2

VN-VN IC12-1C25 —3.324 0.0016
CN-DMN 1C24-1C27 —2.792 0.0072
State 3

SN-DMN 1C10-1C14 —4.220 0.0002
SN-DMN IC10-IC18 2.959 0.0057
VN-DMN IC12-1C27 2919 0.0063
VN-DMN 1C25-1C27 2.899 0.0066
BGN-DMN IC18-1C26 2.845 0.0076
State 4

DAN-CN 1C6-1C24 —3.440 0.0015
ECN-CN IC11-1C24 —2.992 0.0050
State 5

VN-VN IC12-1C25 —3.061 0.0040
VN-CN IC12-1C24 —3.780 0.0005
CN-DMN 1C24-1C27 —3.102 0.0036
CN-DMN 1C24-1C28 —2.722 0.0097

dFNC, dynamic functional network connectivity; ICs, independent components; DAN,
dorsal attention network; BGN, basal ganglia network; VN, visual network; CN,
cerebellum network; DMN, default mode network; SN, salience network; ECN, executive
control network.

TABLE 5 Differences in temporal features of dFNC states between
TAO and HC groups.

Temporal features t-values

FT State 1 0.5497 0.5846
State 2 0.9265 0.3579
State 3 0.2470 0.8057
State 4 —1.374 0.1744
State 5 —0.2021 0.8405
MDT State 1 0.5497 0.5846
State 2 —0.3142 0.7544
State 3 —0.1267 0.8996
State 4 —1.1799 0.2427
State 5 —0.5835 0.5618
NT —0.8018 0.4259

TAO, thyroid-associated ophthalmopathy; HC, health control; FT, fraction time; MDT,
mean dwell time; NT, number of transitions.

There is also a weakening of inter-network connectivity between
the ECN and the DMN, CN, all of which are closely related to
cognitive function. Therefore, we identified decreased functional
connectivity within the ECN potentially indicating disturbances in
executive and cognitive control in individuals with TAO.
Furthermore, our study revealed heightened intra-network
functional connectivity in the VN and ECN, specifically the right
inferior temporal gyrus. The VN is situated in the occipital lobe and

Frontiers in Neuroscience

11

10.3389/fnins.2024.1429084

plays a key role in processing visual information (Wang et al., 2008).
A diffusion tensor imaging study showed increased FA values in the
left middle occipital gyrus in patients with monocular amblyopia,
which is thought to be a compensation of the healthy side for
impaired vision (Li et al., 2013). Chen et al. (2021) found that
the regional homogeneity (ReHo) values of the middle frontal
gyrus and superior frontal gyrus, which constitute the ECN, were
significantly higher, which was considered to indicate that TAO
patients invoke additional neural resources in the prefrontal lobes
to compensate for cognitive losses due to degenerative processes,
representing a compensatory process in the early stages of cognitive
impairment. Therefore, we speculate that the increase in FC
within the VN and ECN in TAO patients is also a compensatory
mechanism, i.e., coping with the decline in visual and cognitive
functions by enhancing the functional activity of the relevant brain
regions.

By static FNC analysis, we found that TAO patients had
significantly lower connectivity between VN-VN and between CN
and the high-level cognitive networks (DAN, DMN and ECN).
Increasing neuroimaging evidence suggests that TAO patients have
abnormal visual function. One study showed that the cerebral
blood flow (CBF) value of the fusiform gyrus as well as the
CBF/ALFF ratio were significantly decreased in TAO patients,
and the decreased CBF/ALFF ratio was positively correlated with
visual acuity (Chen et al., 2023). Another study showed that FA
values in the middle occipital gyrus were decreased and radial
diffusivity was increased in the TAO group (Wu et al., 2020).
A brain voxel resting-state fMRI study found that fALFF values
and ReHo values in the middle occipital gyrus were reduced in
TAO patients compared with the HC group, reflecting reduced
local brain activity in the occipital lobe and suggesting abnormal
VN function (Chen et al., 2021). Combining these findings,
we speculate that the reduced VN-VN connectivity in TAO
patients is related to their abnormal visual function, and this
abnormality may be caused by the reduced efficiency of functional
integration between visually relevant regions within the VN The
cerebellum was once thought to be involved only in motor control
and coordination, but nowadays there is increasing evidence
that the cerebellum also plays an important role in cognition,
and its impairment may lead to abnormalities in thinking and
emotions (Stoodley and Schmahmann, 2010; Schmahmann, 2019;
Schmahmann et al., 2019). The DAN, DMN and ECN all
belong to the high-level cognitive networks (Power et al., 2011;
Guldenmund et al., 2016), which are responsible for a wide
range of cognitively related brain functions. We found a general
weakening of connectivity between the CN and these three high-
level cognitive networks, implying an abnormal coordination and
integration of higher cognitive functions involving the cerebellum,
and thus a less efficient functional integration between higher
cognitive networks, which may lead to cognitive impairment in
TAO patients.

We identified five states that recurred over time through cluster
analysis and found significant changes in dFNC in each state.
Consistent with the results of the static FNC analysis, we found
again that TAO patients had significantly reduced VN-VN as well
as CN connectivity to the high-level cognitive networks (DAN,
DMN, and ECN) in state 2, state 4 and state 5, and this recurrent
result further confirms our speculation that visual and cognitive
dysfunction exists in TAO patients. Additionally, the high degree
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FIGURE 6

The ROC curves of SVM classifiers based on FC and FNC. ROC, receiver operating characteristic; SVM, support vector machine; FC, functional
connectivity; FNC, functional network connectivity; DAN, dorsal attention network; DMN, default mode network; ECN, executive control network;

VN, visual network

TABLE 6 Classification performance of SVM based on FC and FNC.

FC

DAN 1C6 FrontaLSupr 0.7581 0.81667
DMN1 1C27 Precuneus_L 0.7742 0.81042
DMN2 1C27 Frontal_Sup_Medial_L 0.7419 0.68229
DMN3 IC28 Cingulum_Post_L 0.7581 0.78438
ECN1 1C17 Temporal_Inf R 0.6935 0.77187
ECN2 1C17 Cingulum_Mid_L 0.7097 0.73125
VN IC12 Occipital_Mid_R 0.5161 0.35208
FNC - - 0.6129 0.57292

SVM, support vector machine; FC, functional connectivity; FNC, functional network connectivity; ICs, independent components; AUC, area under the curve; DAN, dorsal attention network;
DMN, default mode network; ECN, executive control network; VN, visual network; R, right; L, left; Inf, inferior; Mid, middle; Sup, superior; Post, posterior.

of overlap between static and dynamic results suggests stability of
functional network connectivity in TAO patients. Unlike the static
results, we also found reduced CN-VN connectivity in state 5. The
CN plays an important role in multimodal integration, containing
afferent fibers of the visual sensory system that convey rich
visual information and direct visual attention (Xiao and Scheiffele,
2018). Reduced CN-VN connectivity may suggest abnormal visual-
motor integration (Xing et al.,, 2021). In contrast to the general
decrease in inter-network connectivity in each of the other states,
we observed enhanced connectivity between the DMN and the
VN, BGN in the TAO group in state 3. The DMN belongs
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to the high-level cognitive network, whereas the VN and BGN
belong to the low-level perceptual network, which plays a role
in visual information processing and motor control, respectively
(Graybiel et al., 1994; Desmurget et al., 2003; Lehéricy et al,
2006). We speculate that functional network reorganization may
have occurred in the brains of TAO patients, allocating more
cognitive resources to compensate for the impairment of visual
and motor control functions by enhancing the interaction between
high-level cognitive networks and low-level perceptual networks.
In addition, we identified altered SN-DMN connectivity in TAO
patients. The SN, which consists of the anterior insula and anterior
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cingulate cortex, is responsible for identifying the most relevant
of internal versus external stimuli in order to guide behavior
(Menon and Uddin, 2010), and is also involved in switching
between the DMN and ECN (Sridharan et al., 2008). It has been
previously shown that abnormal connectivity of the SN with the
DMN and ECN is associated with cognitive impairment (Song
et al., 2021). We hypothesized that altered SN-DMN connectivity
in TAO patients may lead to abnormal switching between the DMN
and ECN, causing misallocation of cognitive resources and thus
cognitive impairment. We also examined three dynamic temporal
metrics (fraction of time: percentage of the total number of FC
windows in which a subject was in a given state; mean dwell
time: the average amount of time a subject was in a state without
switching to another state; number of transitions: the number of
times a subject changed states) in TAO patients and found no
significant differences between the TAO and HC groups. These
three dynamic time metrics indicate the subject’s preference for
the state and the stability of the state. No significant dynamic
time changes were found in TAO patients compared to controls,
suggesting that there may not be a decrease in state stability in TAO
patients.

SVM is a machine learning algorithm utilized for classification
tasks using neuroimaging data. A distinctive feature of SVM, unlike
conventional univariate analysis methods for neuroimaging data,
is its capability to be applied at the individual level, presenting
high clinical translational efficiency (Orru et al., 2012). In addition,
classification by SVM to find potential neuroimaging signatures of
disease is valuable for disease diagnosis. In this study, SVM was
employed to differentiate between TAO patients and HCs using
FC and FNC as classification features, respectively. The results
indicated that the FC-based machine learning model exhibited
superior performance in discriminating TAO patients from HCs,
with accuracies ranging from 69.35 to 77.42% and areas under the
curve spanning from 0.68229 to 0.81667. Notably, the FC within
the visual network (VN) demonstrated poor classification results
(accuracy 51.61%, area under the curve 0.35208). Conversely,
FNC showed lower efficacy in distinguishing TAO from HC,
with an accuracy of 61.29% and an area under the curve of
0.57292. Hence, we postulated that differences in FC within
resting-state networks (RSNs) could potentially serve as a valuable
neuroimaging indicator for distinguishing between TAO patients
and healthy controls. Furthermore, some methods may be able
to increase the accuracy of classification, such as increasing the
number of subjects participating in the experiment, the use of more
advanced classification models like deep learning models and the
application of multimodal techniques.

There are some limitations of this study. Firstly, the sample size
of our study was small, which is not conducive to the generalization
of the findings, and the sample size should be enlarged for more
in-depth studies in the future. Second, RSN values based on blood
oxygen level-dependent signals are still affected by physiological
noise such as heartbeat and respiratory activity. Third, the selection
of the sliding-window length remains a subject of debate. We
selected 30 TR as the window length based on the criterion that
the minimum length should be more than 1/fmin. Finally, The
varying disease stages among study participants could impact
result consistency.
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6 Conclusion

In summary, our research highlighted substantial alterations
in functional connectivity within RSNs, as well as in sFNC and
dFNC in individuals with TAO, potentially linked to visual and
cognitive deficits. Notably, the dynamic temporal metrics in the
TAO group did not significantly differ from those in the HC group.
Furthermore, distinctions in functional connectivity within RSNs
could potentially serve as a neural biomarker for discriminating
TAO patients from healthy controls. These findings provide
valuable insights into the underlying neural mechanisms associated
with visual and cognitive impairments in individuals with TAO.
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