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Introduction: During sleep periods, most mammals alternate multiple times

between rapid-eye-movement (REM) sleep and non-REM (NREM) sleep. A

common theory proposes that these transitions are governed by an “hourglass-

like” homeostatic need to enter REM sleep that accumulates during the inter-

REM interval and partially discharges during REM sleep. However, markers or

mechanisms for REM homeostatic pressure remain undetermined. Recently, an

analysis of sleep in mice demonstrated that the cumulative distribution function

(CDF) of the amount of NREM sleep between REM bouts correlates with REM

bout duration, suggesting that time in NREM sleep influences REM sleep need.

Here, we build on those results and construct a predictive measure for the

propensity to enter REM sleep as a function of time in NREM sleep since the

previous REM episode.

Methods: The REM propensity measure is precisely defined as the probability to

enter REM sleep before the accumulation of an additional pre-specified amount

of NREM sleep.

Results: Analyzing spontaneous sleep in mice, we find that, as NREM sleep

accumulates between REM bouts, the REM propensity exhibits a peak value and

then decays to zero with further NREM accumulation. We show that the REM

propensity at REM onset predicts features of the subsequent REM bout under

certain conditions. Specifically, during the light phase and for REM propensities

occurring before the peak in propensity, the REM propensity at REM onset is

correlated with REM bout duration, and with the probability of the occurrence

of a short REM cycle called a sequential REM cycle. Further, we also find that

proportionally more REM sleep occurs during sequential REM cycles, supporting

a correlation between high values of our REM propensity measure and high REM

sleep need.

Discussion: These results support the theory that a homeostatic need to enter

REM sleep accrues during NREM sleep, but only for a limited range of NREM sleep

accumulation.

KEYWORDS

sleep cycle, NREM-REM cycles, ultradian rhythms, sequential REM episodes, REM

pressure, hourglass process

1 Introduction

Rapid-eye-movement (REM) sleep in mammals alternates with non-REM (NREM)

sleep to create irregular cycles during sleep periods (Le Bon, 2021). Current theory

proposes that an “hourglass”-type homeostatic drive promotes transitions into REM sleep

(Benington et al., 1994; Vivaldi et al., 1994). That is, the drive for REM sleep builds up

between REM bouts, specifically during NREM sleep (Benington et al., 1994; Heller, 2021;

Park et al., 2021), and partially discharges during REM sleep. This theory then predicts
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correctly that NREM bouts have longer durations when they follow

longer REM bouts (Benington and Heller, 1994; Vivaldi et al.,

1994, 2005; Barbato and Wehr, 1998; Park et al., 2021; Cajochen

et al., 2023), presumably because more of the drive for REM sleep

is discharged during the REM episode. However, the length of a

NREM bout is not associated with the duration of the subsequent

REM bout (Benington and Heller, 1994; Park et al., 2021), so it is

unclear how the propensity for REM sleep builds up during NREM

sleep. Answering this requires a predictive measure for the need to

enter REM sleep, i.e., a measure of REM propensity.

Various measures of the propensity to enter REM sleep have

been proposed. One such measure is the total time in REM sleep

during a fixed interval of time [e.g., 30-min intervals within a longer

sleep episode (Chang et al., 2015) or a complete nighttime sleep

episode (Nielsen et al., 2010)]. Additionally, the density of NREM

to REM transitions during sleep has been proposed to reflect the

need to enter REM sleep (Benington and Heller, 1994; Bassi et al.,

2009). Sleep latency is a measure of general sleepiness (Dijk et al.,

2010), and an analogous measure for REM sleep propensity would

be latency to REM sleep from the end of the preceding REM bout.

However, these measures provide descriptors for the occurrence

of REM sleep rather than a prediction for the timing of REM

sleep onset.

Conceptually, the propensity for REM sleep should reflect the

probability of entering REM sleep at a certain time during a sleep

episode. Such a probability can be computed from sleep recordings

as was recently done by Park et al. (2021). They propose a data-

driven, probabilistic measure of propensity for REM sleep: the

cumulative distribution function (CDF) of the amount of NREM

sleep between REM bouts. Analyzing spontaneous sleep data in

mice, Park et al. (2021) found that the CDF of the amount of

NREM sleep between REM bouts was predictive for the duration

of REM episodes. However, by definition, this CDF does not give

the likelihood of entering REM sleep in the future. Instead, the CDF

evaluated at some value t gives the probability that REM sleep

has already been entered after t seconds of NREM sleep. Further,

interpreting the CDF as a REM propensity measure assumes that

the REM propensity shares the properties of the CDF: specifically,

the REM propensity increases with time in NREM sleep and

is thus an hourglass process. As a result, the CDF cannot be

used to test whether a REM propensity measure represents an

hourglass process.

In this paper, we build on the work of Park et al. (2021)

and, we propose an alternative REM propensity measure that is

defined precisely as the probability of entering REM sleep in the

near future. We apply this measure to investigate the hypothesis

that the need for REM sleep accumulates during NREM sleep.

Analyzing spontaneous sleep data in mice (Park et al., 2021), our

results show that, during the light phase only, this REM sleep

propensity measure is significantly correlated with features of the

subsequent REM bout. In particular, the propensity is positively

correlated with the duration of the subsequent REM bout. Further,

higher propensities following longer REM bouts, called “single

REM bouts” (Zamboni et al., 1999; Park et al., 2021), are correlated

with a higher probability of being followed by short REM bouts,

called “sequential REM bouts” (Kripke et al., 1968; Ursin, 1970;

Merica and Gaillard, 1991; Amici et al., 1994; Zamboni et al.,

1999; Gregory and Cabeza, 2002; Park et al., 2021) that occur in

sequences of short REM/NREM alternations. However, we also

find that for mice, as the amount of time spent in NREM sleep

increases, this REM propensity measure increases until it reaches a

peak value; REM propensity eventually decays to zero as the time

spent in NREM sleep continues to increase. Our analysis shows

that after the propensity reaches its peak value, it ceases to be

significantly correlated with the above features of the subsequent

REM bout. This suggests that the amount of time in NREM sleep

drives transitions into REM sleep and acts like an hourglass process,

but only for a limited range of NREM sleep accumulation.

2 Results

We define our proposed REM propensity measure as follows.

At a particular time, let |N| represent the total amount of NREM

sleep that has occurred since the last REM bout (ignoring time

spent in wake). We propose that the propensity to enter REM sleep

at that time is the probability that the transition to REM sleep

occurs before the amount of NREM sleep has increased by another

1|N| seconds. This probability is defined as:

p1|N|(|N|) =
CDF(|N| + 1|N|)− CDF(|N|)

1− CDF(|N|)
. (1)

It can be verified by Bayes’ law that p1|N|(|N|) in Equation 1

is indeed the desired probability (see Supplementary material S1).

For this propensity measure to reflect an “hourglass-like”

FIGURE 1

Hypnogram for one REM cycle. A REM cycle consists of an initial

bout of REM sleep followed by an inter-REM interval where both

NREM sleep and wake may occur. We denote the length of the

cycle’s initial REM bout by |REMpre| and the total duration of NREM

sleep that occurs in the cycle’s inter-REM interval by |N|.
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FIGURE 2

GMMs fit the data well and can be used to distinguish single and sequential REM episodes. (A) The empirical PDF of log(|N|) (blue histogram) along

with the GMM fit curve (green line) for log(|N|) for REM cycles falling during the light phase with REMpre ∈ [30, 60) s. (B) The empirical PDF of log(|N|)

(blue histogram) with the normal distributions Nl and Ns that comprise the GMM when summed with weighting kl (green curves). The value of |N| at

which klNl and (1− kl)Ns intersect (purple circle) is the cuto� below which we label REM cycles as “sequential”, and above which we label REM cycles

as single. (C) An example of a single REM cycle. (D) An example of a sequential REM cycle. Sequential REMs tend to have shorter |REMpre| and |N|.

process, it should increase with the amount of NREM sleep

accumulation: i.e., p1|N|(|N|) increases with |N|. We derive

conditions that determine whether p1|N|(|N|) increases with |N| in

Supplementary material S2.

We compute this REM propensity measure from data in Park

et al. (2021), which contains 125 recordings from 72 mice housed

in 12:12 h light and dark conditions with unlimited access to food

and water. REM, NREM, and wake states were scored in 2.5 s bins

during spontaneous behavior in the light (7 a.m.–7 p.m.) and dark

(7 p.m.–7 a.m.) phases (see Park et al., 2021 for more details about

the recordings). In each phase, we identify “REM cycles” (Figure 1),

defined as the period between the start of one REM bout and the

beginning of the next REM bout (Kripke et al., 1968; Ursin, 1970;

Merica and Gaillard, 1991; Park et al., 2021).

The total duration of a REM cycle between a preceding

REM bout, called REMpre, and the subsequent REM bout, called

REMpost, includes the REMpre duration, denoted as |REMpre|,

the cumulative duration of all NREM sleep during the inter-REM

interval, denoted by |N|, and the cumulative duration of any wake

occurring during the inter-REM interval (Figure 1). Following

the analysis in Park et al. (2021), we separate REM cycles into

bins based on REMpre durations. The bins are [0, 30), [30, 60),

[60, 90), [90, 120), [120, 150), [150, 180) s, and |REMpre| > 180 s.

For each |REMpre| bin, we analyze REM cycles to identify the |N|

values. Then we fit the distribution of log(|N|) values to a Gaussian

Mixture Model (GMM), described by:

PGMM(x) = klNl(x)+ (1− kl)Ns(x),

where Ns and Nl are normal distributions with means given,

respectively, by µs and µl where µl > µs, and standard deviations

given, respectively, by σs and σl. Further, kl ∈ [0, 1] is a

weighting parameter that describes the relative contributions of

each distribution; kl = 1 indicates that only the distribution with

the larger mean contributes to the GMM.We show in Figures 2A, B

an example of the GMMfit to log(|N|) data for |REMpre| in [30, 60)
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s and the weighted normal distributions klNl and (1− kl)Ns which

comprise it.

As introduced in Park et al. (2021), the two modes of

each GMM fit capture “sequential” REM cycles and “single”

REM cycles (Figure 2). Specifically, the Ns portion of the GMM

corresponds to sequential cycles, for which |N| tends to be

smaller; whereas the Nl portion of the GMM corresponds to

single cycles, for which |N| tends to be larger. The GMM fit for

each |REMpre| bin qualitatively matches the PDF of log(|N|) for

the bin (Supplementary Figure S1). Furthermore, using corrected

Kolmogorov-Smirnov tests (Section 4.2), we find that the GMM

generally quantitatively matches the distribution of log(|N|) values.

Namely, for each bin for light and dark period data with one

exception, we fail to reject the null hypothesis that the distribution

of log(|N|) is truly the GMM we have identified. For the

|REMpre| ∈ [60, 90) s for light period data, we did not fail

to reject the null hypothesis. We report the GMM parameters

(kl,µl, σl,µs, and σs) for the fits for each |REMpre| bin in

Supplementary Figure S2.

2.1 REM propensity exhibits a peak after
which it decays to zero

From the GMMfits of the data, we compute the CDF describing

the probability that the mouse enters REM sleep after |N| s of

NREM sleep since the end of the last REM bout and use that

CDF directly in Equation 1. Specifically, for 1|N| = 30 seconds

of NREM, i.e., the “near future”, we compute the propensity for the

mouse to re-enter REM as:

p30(|N|) =
CDF(|N| + 30)− CDF(|N|)

1− CDF(|N|)
. (2)

Light

Dark

FIGURE 3

REM propensity measures as a function of NREM sleep duration. Panels show REM propensities (red curves) for REM cycle data in each |REMpre| bin,

in the light (top 2 rows) and dark (bottom 2 rows) phases. For comparison, the CDF (adjusted from log(|N|) to |N|) derived from the GMM fit for each

of the binned data is also displayed (blue dashed curves). The REM propensity p30(|N|) was calculated utilizing Equation 2. Each propensity curve has

a local maximum (red filled circle) between 500 and 1,500 s, and decays to 0 as |N| → ∞.
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FIGURE 4

Relationship between REM propensity at REM onset and the duration (|REMpost|) of the subsequent REM bout. Rows 1–4 show the relationship

between the REM propensity and |REMpost| for, respectively, from top to bottom, data before the peak in propensity during the light phase; data after

the peak in propensity during the light phase; data before the peak in propensity during the dark phase; and data after the peak in propensity during

the dark phase. Columns 1–3, from left to right, show, respectively, scatter plots (blue circles) of |REMpost| vs. REM propensity along with the line of

best fit (red line) as calculated by linear regression; box-and-whisker plots for |REMpost| binned according to REM propensity; and CDFs (heat-color)

and the corresponding contours (black lines) for |REMpost| binned according to REM propensity, using the same bins as the second column, with the

scatter plot data (red circles) overlaid.
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Thus, p30(|N|) represents the probability that when the

mouse has accumulated |N| s of NREM sleep since the last

REM episode (without re-entering REM), the mouse will re-

enter REM before it has undergone 30 s more of NREM sleep.

We show some validation studies of this propensity measure

in Section 4.3.

We find that the propensity p30(|N|) does not increase

monotonically for any |REMpre| bin in light or dark periods

(Figure 3, red curves). By contrast, for each |REMpre| bin, the

propensities are non-monotonic with at least one local maximum

from which the propensity decays to zero as |N| → ∞. In fact, we

can show that any propensity defined as in Equation 1 for which the

CDF of the log of the underlying accumulating quantity is a GMM

must have at least one local maximum and must eventually decay

to zero (see Supplementary material S3 for details). This decrease

in the REM propensity for large |N| suggests that in long REM

cycles, the amount of NREM sleep alone may cease driving an

hourglass-like need to transition to REM sleep.

We also find that the propensity reflects the presence of

sequential REM bouts. In particular, in the data for shorter

|REMpre| values, which we expect to contain more sequential REM

cycles, we find that the propensity often initially decreases to a

local minimum value (see e.g., |REMpre| bins [30, 60) and [60,

90) s in Figure 3 for both the light and dark periods) or shows a

transient decrease in the rate at which it grows (see e.g., |REMpre|

bins [0, 30) s for both the light and dark periods). This reflects

the presence of cycles associated with both sequential and single

REM bouts in these bins. Specifically, initially higher propensity

values that then decrease reflect the presence of sequential REM

cycles at shortest |N| values and their absence at slightly longer |N|

values. The eventual subsequent increase in propensity to the local

maximum reflects the occurrence of single REM cycles with longer

|N| values.

2.2 The propensity predicts the duration of
the next REM bout

To test the hypothesis that, until it reaches its peak, the

propensity drives an hourglass-like homeostatic pressure to enter

REM sleep, we investigated the relationship between the propensity

value at the onset of REMpost and REMpost duration, |REMpost|.

We expected that if the propensity represents an hourglass-like

homeostatic pressure to enter REM sleep, then a higher propensity

at REM onset should lead to a longer |REMpost| (Park et al.,

2021). We find that this relationship holds (Figure 4), but only

during the light period (Supplementary Figure S3), and only for

cycles with |N| less than the value of |N| at peak propensity (see

Supplementary Figure S3 vs. Supplementary Figure S5).

Indeed, the top row of Figure 4 (panels Light.A.—Light.C.)

shows that higher propensities are associated with longer

|REMpost| during the light period. This positive correlation is seen

in the raw data (Light.A.) and when propensity values are binned

(Light.B.,C.). As shown in Table 1, there is a small but highly

statistically significant positive correlation between propensities

and |REMpost| for REM cycles whose |N| is smaller than the |N|

at which propensity peaks. However, Table 1 and row 2 of Figure 4,

(panels Light.D - Light.F), indicate that after the propensity

peak, there is no significant correlation between |REMpost| and

propensity at REM onset. Interestingly, rows 3–4 of Figure 4,

(i.e., panels Dark.A.–Dark.F.), and Table 1 indicate that there is

also no correlation between propensity and |REMpost| during the

dark period.

2.3 The propensity predicts whether the
next REM cycle is sequential

To further investigate the hypothesis that the propensity

represents a homeostatic pressure to enter REM sleep, we explored

the relationship between the propensity at the end of a single

REM cycle and the number |S| of consecutive sequential REM

cycles that follow, (i.e., the length of a “chain” of sequential REMs;

|S| = 0 means that the single REM cycle was followed by another

single REM cycle). We found that the propensity has a small but

highly significant correlation with |S| for propensities less than the

peak propensity value (Table 1; Supplementary Figures S3, S5) and

only during the light period (Figure 5; Table 1). This lends further

support to the hypothesis that propensity represents a homeostatic

pressure to enter REM sleep only for inter-REM intervals preceding

the peak in propensity.

To break down the relationship between REM propensity and

|S|, we separately investigated the relationship between propensity

and (1) whether there is a subsequent sequential REM cycle

at all, and (2) the number of sequential REM cycles assuming

that there is at least one subsequent sequential REM cycle. We

find that there is a statistically significant positive correlation

between the propensity at REM onset and the probability of a

subsequent sequential REM cycle (Table 1 and the Light.A. panel

of Figure 6) during the light period for |N| before the REM

propensity peaks (Table 1; Supplementary Figures S4, S6). In fact,

the probability of a subsequent sequential REM cycle more than

doubles as propensity increases to its peak value across all REM

cycles occurring during the light phase. However, assuming that

there is at least one subsequent sequential REM cycle during

the light phase, the positive correlation between propensity and

|S| (Light.B. and Light.C. panels of Figure 5), while trending, is

not statistically significant (Table 1). Correlations between REM

propensity and |S| during the dark period are not significant

(Figure 5; Supplementary Figure S4), nor are correlations between

REM propensity and |S| after the propensity reaches its peak (see

Supplementary Figure S4 vs. Supplementary Figure S6).

To investigate why REM propensity correlates with the

presence of a subsequent sequential REM, we check whether

sequential REM cycles contain proportionally more REM sleep

than single REM cycles. We find that, on average, during the light

phase, about 11.73% of sleep occurring during single cycles is

REM sleep, whereas almost three times that much–31.57%–of sleep

occurring during sequential cycles is REM sleep (p= 0.0029,Welch’s

t-test, Table 2). An even higher percentage–32.32% on average–of

sleep during chains of sequential cycles is REM (Table 2). Similarly,

during the dark phase, the percentage of sleep that is REM is

roughly 3 times larger during sequential REM cycles than during

single REM cycles (Table 2). Thus, proportionally more REM sleep

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1431407
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ginsberg et al. 10.3389/fnins.2024.1431407

TABLE 1 Correlation between REM propensity and features of REM sleep.

Correlation between REM
propensity and:

Light or dark Before or after peak
propensity

Pearson’s corr. coe�cient P-value

REMpost Light Before 0.0977 3.5632 · 10−10

After n.s. (0.0205) 0.6560

Dark Before n.s. (0.0345) 0.3267

After n.s. (0.0175) 0.8666

# of consecutive sequential cycles Light Both 0.0751 5.4818 · 10−6

Before 0.0795 5.2222 · 10−6

After n.s. (0.0308) 0.5494

Dark Both n.s. (0.0172) 0.6232

Before n.s. (0.0269) 0.4661

After n.s. (−0.1265) 0.2517

Probability of a sequential cycle Light Both 0.0740 7.5989 · 10−6

Before 0.0776 8.6799 · 10−6

After n.s. (0.0405) 0.4316

Dark Both n.s. (0.0226) 0.5176

Before n.s. (0.0362) 0.3267

After n.s. (−0.1265) 0.2517

# of consecutive sequential cycles in

chains

Light Both n.s. (0.0592) 0.1234

Before n.s. (0.0659) 0.1040

After n.s. (−0.0257) 0.8350

Dark Both n.s. (-0.0280) 0.8102

Before n.s. (−0.0480) 0.6953

After – –

Non-significant correlation coefficients are indicated by n.s., followed by the corresponding coefficient in parentheses. Correlation coefficients that could not be computed due to lack of data

are denoted by “–”.

TABLE 2 The proportion of sleep spent in REM for single cycles, sequential cycles, and chains of sequential cycles.

Light or dark Proportion of sleep that is REM P-value for single vs.
sequential

P-value for single vs.
sequential chain

Single cycles Sequential
cycles

Sequential
chains

Light 0.1173 0.3157 0.3232 0.0029 0.0085

Dark 0.1190 0.4088 0.3966 5.8008 · 10−6 1.9405 · 10−5

There is a statistically significant difference in the proportion of sleep that is REM for single cycles vs. sequential cycles, and for single cycles vs. chains of sequential cycles. Statistical significance

was determined using the two-tailed version of Welch’s t-test.

occurs during sequential cycles and chains of sequential cycles

compared to single cycles.

3 Discussion

We have developed a new measure for the propensity to enter

REM sleep (Equation 1). Our propensity measure depends only on

the accumulation of time spent in NREM sleep up to the present,

and therefore has the potential to be predictive, in contrast to

other previous measures of REM sleep need. In addition, unlike

previously proposed REM sleep propensity measures, our proposed

REM propensity measure increases, attains a local maximum, and

then decreases to zero as |N| increases (Figure 3). We also find

that the propensity reflects the presence of sequential REMs by e.g.,

initially decreasing after short NREM accumulation.

Like Park et al. (2021), we find that our REM propensity at REM

onset is correlated with the duration |REMpost| of the subsequent

REM bout (Figure 4; Table 1). However, we find that the correlation

is only statistically significant during the light phase, and only

before the REM propensity peaks (Figure 4; Table 1).

Furthermore, the REM propensity is correlated with the

number |S| of sequential REM cycles that follow a single REM

episode (Figure 5; Table 1). However, upon closer examination,
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FIGURE 5

Relationship between REM propensity and the number of sequential cycles that follow. Rows 1 and 2 describe the relationship between the REM

propensity at the end of a single cycle and the number of consecutive sequential REM cycles that follow, for the light and dark phases, respectively,

for all REM cycles regardless of whether the corresponding REM propensity comes before or after the peak REM propensity. Columns 1–2, from left

to right, show, respectively, scatter plots (blue circles) of the number of sequential REMs (if any) that follow a single cycle vs. REM propensity along

with the line of best fit (red line) as calculated by linear regression; and CDFs (heat-color) and the corresponding contours (black lines) for the

number of consecutive sequential REMs (if any) that follow, binned according to REM propensity, with the scatter plot data (red circles) overlaid.

we find that this relationship reflects a correlation between

propensity and the probability of a subsequent sequential REM

(Figure 6; Table 1). Like the correlation between propensity and

|REMpost|, the correlations between propensity and |S| and

between propensity and the probability of a subsequent sequential

REM cycle are only statistically significant during the light phase,

and only over ranges where the REM propensity is increasing

(Supplementary Figures S3–S6, as well as Table 1). Providing a

potential reason as to why the REM propensity correlates with

the presence of a subsequent sequential REM cycle, we find that

a higher proportion of sleep is REM during sequential REM

cycles and chains of sequential REM cycles than during single

REM cycles.

Our analyses collectively highlight the properties and the

usefulness of our proposed REM propensity measure. Our results

also provide evidence for the hypothesis that a homeostatic REM

pressure accumulates during NREM sleep, driving both longer

durations of the subsequent REM episode and the presence of

sequential REM cycles during the light phase. However, our results

suggest that after sufficient NREM accumulation, REM pressure

ceases to increase with amount of NREM sleep. The absence of

significant correlations in the dark phase data suggest that the

influence of the duration of NREM sleep on REM pressure is

weaker in the dark phase.

3.1 Unique properties of the proposed
REM propensity measure

Our proposed REM propensity measure mathematically

represents the probability of entering REM sleep in the near future.

To our knowledge we are the first group to apply this measure

to data describing REM sleep. Similar formulas to our proposed

propensity, however, have been used in the study of survival

analysis. Specifically, the propensity definition we use is similar to

the definition of the hazard function (see e.g., Clark et al., 2003

for a discussion of the hazard function in the study of survival

analysis). However, the propensity definition we use differs in

key ways from the hazard function. Most significantly, while the

propensity we use exactly describes the probability of entering

REM sleep in the near future, the hazard function can be used
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FIGURE 6

Relationship between REM propensity and the length of subsequent sequential chains vs. the probability that a sequential chain occurs. Rows 1 and 2

describe the relationship between the REM propensity at the end of a single cycle and the chain of consecutive sequential REM cycles that follows (if

present), for the light and dark phases, respectively, for all REM cycles regardless of whether the corresponding REM propensity comes before or

after the peak REM propensity. The leftmost column displays a bar chart of the probability that a sequential REM bout follows a single REM bout

across bins of REM propensities at the onset of REM sleep at the end of the single cycle. The red best-fit line shows a positive (and statistically

significant) slope during the light phase indicating that the probability of having a sequential REM increases with REM propensity. Columns 2–3, from

left to right, show, respectively, scatter plots (blue circles) of REM propensity vs. the number of sequential REMs that follow a single REM cycle given

that at least one sequential REM cycle follows along with the line of best fit (red line) as calculated by linear regression; and CDFs (heat-color) and the

corresponding contours (black lines) for the number of sequential REM cycles binned according to REM propensity, with the scatter plot data (red

circles) overlaid.

to approximate that probability (see Supplementary material S4 for

more details).

A key advantage of the proposed REM propensity measure

is its predictive power to describe how likely it is that REM

sleep will occur as well as features of the following REM

bout. This is a significant departure from previous measures

of REM propensity which tended to be descriptive. Given the

proposed REM propensity’s predictive power, it could be used in a

probabilistic model of ultradian sleep-state switching. Future work

implementing real-time assessment of REM propensity may be able

to gauge the probability that a transition to REM sleep occurs at a

specific time point.

Our proposed REM propensity has several unique features. It

is non-monotonic, has a local maximum, and eventually decays

to zero. For smaller values of |REMpre|, the REM propensity

measure may also exhibit a local minimum reflecting the presence

of sequential REM cycles. Additionally, the decreases exhibited

by our REM propensity measure differ from previously proposed

measures of homeostatic REM sleep drive, such as the CDF

of |N|, which increases monotonically by definition. Since the

duration of NREM sleep since the last REM bout has been

proposed to drive an hourglass-like process to enter REM sleep

(Benington and Heller, 1994; Vivaldi et al., 1994, 2005; Franken,

2002; Park et al., 2021), the propensity to enter REM sleep

based on |N| should increase as |N| increases. By contrast,

our REM propensity measure decreases with sufficiently long

time spent in NREM sleep, suggesting that |N| may drive an

hourglass-like homeostatic REM pressure but only for a limited

range of |N| durations. The REM propensity decaying to 0

as |N| becomes sufficiently large suggests that, for longer |N|

durations, other factors affect the transition to REM more than

the NREM duration does. In particular, other physiological or

neurological factors, such as circadian rhythms, might begin to

play a more dominant role in determining sleep cycle transitions.

Moreover, inter-REM intervals with longer |N| durations are more

likely to include more microarousals or longer wake episodes

compared to intervals with shorter |N| durations, which could also

play a role.
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3.2 Homeostatic REM pressure
accumulates during NREM sleep only
during the light phase and while the
propensity is increasing

Our analysis suggests that NREM sleep since the last REM bout

does drive an hourglass-like REM pressure, but only during the

light phase and only before REM propensity peaks. Specifically, if a

higher REM propensity indicates a greater build-up of homeostatic

REM pressure during NREM sleep, then a longer REM bout should

follow, so as to dispel the elevated REM pressure. We find that to be

the case, specifically during the light phase and before propensity

reaches its peak. Interestingly, we also find that specifically during

the light phase and before peak propensity, this REM propensity

measure is also correlated with the presence of a subsequent

sequential REM cycle. Since after the propensity begins to decay

it is no longer predictive of the duration of the subsequent REM

bout nor of the presence of a subsequent sequential REMs, we

surmise that after enough NREM sleep has passed, |N| ceases to

predict REM homeostatic need, or that its effects may be obscured

by other factors.

Interestingly, the proposed REM propensity measure is not

predictive of features of the subsequent REM bout during the

dark period. This suggests that during the dark period, other

factors contribute to driving transitions into REM sleep.We suspect

that since mice are active during the dark period, confounding

behavioral factors such as locomotion or eating may affect the

need to enter REM sleep as much as the amount of |N| that has

passed, explaining the lack of correlation between propensity and

|REMpost|. Similarly, confounding factors may play a greater role

when |N| is longer.

Additionally, the correlations between the REM propensity

measure and features of the subsequent REM bout, including

its duration and whether it is a sequential REM bout, while

statistically significant, are low. This suggests that even when the

REM propensity measure is predictive, there are likely other factors

that also influence transitions to REM sleep. Such confounding

factors could include ambient temperature (Amici et al., 1994),

time of day (Merica and Gaillard, 1991), or circadian phase (Khalsa

et al., 2002). Wake episodes and microarousals interspersed with

sleep could also disrupt the drive to REM sleep. In particular,

wake episodes have been linked with delayed REM transitions on

the ultradian timescale (Park et al., 2021). However, Park et al.

(2021) found that the presence of wake had no effect on the

correlation between the CDF of |N| and the duration |REMpost|

of the subsequent REM bout.

While our REM propensity measure supports the hypothesis

of a short-term REM homeostatic drive, the absence of identified

processes underlying REM homeostasis has prompted the proposal

of alternative mechanisms generating NREM-REM alternations.

For example, motivated by the strong positive correlation between

the duration of a REM bout and the duration of the following inter-

REM interval (Benington and Heller, 1994; Vivaldi et al., 1994),

Le Bon (2021) proposed an asymmetrical hypothesis in which REM

episodes are followed by a post-REM refractory period that limits

when the next REM episode can occur. Alternatively, alternations

in EEG power in the delta and theta frequency bands, that are

associated with periods of NREM sleep and REM sleep or wake,

respectively, have been shown to display features of self-organized

criticality (Wang et al., 2019; Lombardi et al., 2020; Huo et al.,

2024), a dynamical state that has been proposed to explain multiple

features of brain activity dynamics (see Plenz et al., 2021 for a

review), including during sleep (Comte et al., 2006; Priesemann

et al., 2013; Scarpetta et al., 2023). A primary feature suggesting

that cortical dynamics are positioned in a critical regime across

wake and sleep states is that the durations of high theta power

episodes (presumably wake or REM sleep bouts) show a power-

law distribution and the durations of high delta power episodes

(presumably NREM sleep bouts) show a Weibull (exponential)

distribution (Wang et al., 2019; Lombardi et al., 2020; Huo et al.,

2024). Interestingly, these authors find that obtaining these scaling

behaviors for duration distributions depends on the durations

of consecutive high delta and high theta episodes being anti-

correlated, namely that long delta episodes are followed by short

theta episodes. While this contrasts with our finding of higher REM

propensity based on longer time in NREM sleep being correlated

with longer REM bouts, the multiple differences in the data and

analysis methods between those studies and ours make a direct

comparison inappropriate. Discriminating among these competing

theories for mechanisms governing NREM-REM alternation will

require continued experimental study to identify brain regions

and processes responsible for the short-term temporal architecture

of sleep.

3.3 Higher REM propensity correlates with
sequential REMs

The observation that a higher propensity correlates with the

occurence of sequential REM bouts (in the light phase and before

peak propensity) suggests that chains of sequential REM bouts

may help to dispel REM pressure. There are several findings in

the literature that support this hypothesis. Namely, in rats, sleep

deprivation leads to an increase in the number of sequential REM

cycles, but not in the number of single REM cycles (Zamboni et al.,

1999). Similarly, REM sleep deprivation due to cold exposure leads

to a rebound in REM sleep manifested by an increased number

of sequential REM cycles, but not in the number of single REM

bouts (Amici et al., 1994). Indeed, increased sequential REM bouts

would preferentially help to dispel REMpressure if more REM sleep

occurs during intervals with sequential REM cycles compared to

intervals with single REM cycles. Our results support this notion,

since in the mouse sleep data from Park et al. (2021), we find

that 3 times more of sleep during sequential cycles and chains of

sequential cycles is REM compared to in single cycles, and that this

difference is statistically significant. Thus, sequential REM cycles

present amuchmore efficient way to getmore REM sleep compared

to single cycles, supporting the notion that chains of sequential

REMs help dispel REM pressure.

3.4 Limitations

The use of GMMs to describe the distribution of |N|

may affect the accuracy of the REM propensity measure.

For example, computing the propensity based on discrete
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bins of |REMpre| introduces error by potentially ignoring

finer time-scale dependencies on |REMpre| durations.

This error is likely small, but it has the potential to be

more significant for smaller REMpre bins which contain

more |N| data than other bins and whose |REMpre| values

correspond to regions where the GMM fits change most rapidly

(Supplementary Figure S2).

Further, the GMM fit for REM cycles occurring during the

light period when |REMpre| ∈ [60, 90) s, while qualitatively

reproducing the distribution of |N|, fails the Kolmogorov-Smirnov

test. Thus, for the GMM for that particular bin, the REM cycles

that comprise the data are not clearly divided into sequential

REM and single REM episodes. We suspect that the GMM fit

fails the Kolmogorov-Smirnov test for that particular bin due to

an asymmetric peak in the PDF of |N| (Supplementary Figure S1),

which we suspect to be a random fluctuation in the data that

would vanish with more data for longer |N|s. Along similar

lines, we have little data on REM cycles occurring during the

dark phase when |REMpre| exceeds 180 s. As a result, the GMM

fit for that bin might not well-represent the true distribution

of |N|, even though the fit does pass the Kolmogorov-Smirnov

test. Nevertheless, since there are so few data points for this

bin, the possibility that the GMM fit might not well-represent

the true distribution of |N| likely has no significant impact on

our conclusions.

Also noteworthy is that kl is larger for bins corresponding

to longer REMpre durations, suggesting that when |REMpre| is

long, sequential cycles are unlikely. Thus, the parameters µs and

σs corresponding to the “short” distribution comprising the GMM

for those bins have little impact on the actual shape of the GMM.

We suspect that if we had more data for those bins, that the

values of µs and σs would lie roughly on a line extended from

the values of µs and σs for bins with smaller |REMpre| values

(Supplementary Figure S2).

3.5 Conclusions

We have defined a new, predictive REM propensity measure

that depends only on the time spent in NREM sleep between

REM bouts. We have demonstrated that this measure reflects

the likelihood of entering REM sleep in the near future and

predicts features of the next REM bout. Namely, a higher REM

propensity measure predicts that the next REM bout will be

longer and is more likely to belong to a sequential REM cycle.

This REM propensity measure also suggests that, during the

light phase, the amount of NREM sleep drives an hourglass-

like REM pressure only up to a certain time, namely for

NREM sleep amounts corresponding to the increasing phase of

REM propensity.

Application of this REM propensity measure to additional

data sets will further test its accuracy and usefulness. For

example, the measure has potential to quantify effects of REM

sleep deprivation on sleep architecture, where the amount of

NREM sleep corresponding to the peak propensity is likely

to be affected. Furthermore, applying the measure to sleep

data from different mammalian species can test the overall

prediction that REM sleep homeostasis depends primarily on

NREM sleep duration.

4 Materials and methods

4.1 Data processing

All data processing and analysis was conducted with MATLAB.

For each scored epoch in each of the 125 recordings, we labeled

whether the mouse’s environment was light or dark according to

experimental protocol and the time stamp of the recording. We

also lumped the sleep scores corresponding to various stages of

NREM sleep into one general NREM sleep category. From the

resulting scored data, we identified all REM cycles. However, to

make sure the REM cycles occurred while the mice were primarily

sleeping, we discarded REM cycles that included extended wake

periods, interpreting “extended” to mean lasting longer than 5

min. We separately analyzed light and dark period data, and we

identified 4,686 REM cycles during the light period and 927 REM

cycles during the dark period. Note that the difference in the

number of REM cycles between our model and between Park

et al. (2021) occurs primarily because we exclude REM cycles with

extended wake periods, whereas Park et al. (2021) does not. Also

differing from Park et al. (2021), we interpreted microarousals

as wake and not part of |N| when computing the inter-REM

interval duration.

4.2 Fitting the data to a GMM

After dividing the data into the aforementioned REMpre bins,

we fit a Gaussian mixture model (GMM) to the distribution

of log |N| for each |REMpre| bin for the light and dark data

separately by using an expectation-maximization algorithm. Also

since Weibull distributions are a common choice for modeling the

rate of state transitions or failures in survival analysis (Latimer,

2013), we tried to fit a 5-parameter Weibull mixture model to

log |N| for each |REMpre| bin using an expectation-maximization

algorithm (Elmahdy and Aboutahoun, 2013). However, using

corrected Kolmogorov-Smirnov tests for the GMM fits (Park

et al., 2021) and for the Weibull mixture model fits (Parsons and

Wirsching, 1982), we found that the GMMs fit the data better

compared to the Weibull mixture models (data not shown). As a

result, we only report analysis of the data using GMMs.

We used the expectation-maximization algorithm to compute

20 fits of the GMM to the distribution of log(|N|), selecting initial

choices of parameters uniformly at random from a reasonable

range. From this collection of fits, we retained the fit that yielded

the lowest Kolmogorov-Smirnov statistic. Each time we applied the

expectation-maximization algorithm, we iterated the expectation

and maximization steps repeatedly until the squared Euclidean

distance between GMM parameter vectors (kl,µl, σl,µs, σs) across

two successive iterations of the expectation and maximization steps

was less than 10−10, as a criterion for the convergence of the

algorithm. We then evaluated the goodness of fit of the GMM

model for each |REMpre| bin using a Kolmogorov-Smirnov test

with a Lilliefors-like correction (see Park et al., 2021).
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4.3 Validation of the proposed REM
propensity measure

To validate the proposed REM propensity measure, we divided

all REM cycle data for the light phase into a training set consisting

of 80% of the REM cycles, and a test set consisting of the remaining

20% of the REM cycles. We computed a GMM for each REMpre

bin of the training data set exactly as we did in Section 4.2 (finding

that each GMMfit passed the Kolmogorov-Smirnov test), and from

each GMM we computed the corresponding propensity measure.

From the test data, we computed an empirical propensity measure

for each REMpre bin, not from the GMM, but directly from the test

data as follows:

Empirical Propensity =

# of REM cycles transitioning from NREM to REM in the next 30 s

# of REM cycles that have yet to transition from NREM to REM
.

This empirical propensity was computed at each second of the

|N| interval. To reduce the noise present in the empirical propensity

due to sparse data, particularly for large |N|, we computed the

averages of the empirical propensities across 30 s bins of |N|.

As shown in Figure 7, for each REMpre bin, average empirical

propensities, while noisy, qualitatively matched the propensity

measure based on the GMMs computed from the training data.

Consequently, we expect that our GMM-based propensity measure

can reasonably predict whether the C57BL/6J mice [the type of

mice used in the Park et al. (2021) study], when housed in 12:12

h light:dark conditions, will transition from NREM to REM sleep

in the next 30 s. Analogously, separating the data for the dark phase

into a training set and a test set and computing GMM-based and

empirical propensities yielded similar qualitative matching albeit

with much noisier empirical propensities due to fewer data points

(results not shown).

To further validate the REM propensity measure, we compared

the distribution of log(|N|) values from the REM cycle data to

a distribution of log(|N|) values computed from an equally sized

“surrogate” data set artificially generated by the propensity measure

based on the GMM. For the surrogate data set, to generate a single

value of |N|, we used the propensity to determine whether the

transition to REM occurs in a 30 s interval. For example, if the REM

propensity was 0.1 at time 1 s, then 10% of the time, |N| ∈ [1, 31).

For the computation, we compared the value of the propensity at

the beginning of each 30 s interval (starting at time 1 s) to the value

of a uniform random number between 0 and 1. If the propensity

exceeded the random number, then we considered the transition to

REM to occur within the next 30 s, and selected |N| uniformly at

random within that 30 s interval. If the propensity did not exceed

the random number, then we considered the transition to REM

to not have yet occurred, and repeated the preceding process for

the subsequent 30 s interval choosing a new random number. We

proceeded in this manner until an |N| was determined. As shown

in Figure 8 for the light and dark data with |REMpre| ∈ [30, 60) s,

the resulting distribution of surrogate log(|N|) values qualitatively

matches the distribution of log(|N|) exhibited in the experimentally

measured REM cycle data. Similar results were obtained for the

other REMpre bin data (results not shown).

4.4 Computing the relationship between
the REM propensity measure and
|REMpost|

As noted above, we separately analyzed light and dark phase

data. For each REMpre bin, to determine whether |N| for each REM

cycle came before or after the peak in propensity, we computed

the largest |N| value at which the propensity for the corresponding

|REMpre| bin has a local maximum. For the particular data sets that

we were working with, this amounted to finding the value of |N|

at the peak propensity for each bin. To do so, we computed the

propensity for |N| = 1, 2, 3, . . . , 3, 000 s. Using MATLAB’s built-

in “islocalmax” function, we computed all values of |N| at which

the propensity has a local maximum, and found the largest of the

resulting values of |N|. Then, for each phase, we lumped REM cycles

into two groups (across all |REMpre| bins) according to whether or

not they came before or after the largest |N| at which there was a

local maximum. For each of those two groups for each phase, we

then found the Pearson’s Correlation Coefficient between the REM

propensity measure at REM onset and the duration (|REMpost|) of

the subsequent REM cycle. We found the corresponding p-value

using a two-tailed Student’s t-test.

4.5 Computing the relationship between
the REM propensity measure and
consecutive sequential REMs that follow

For each |REMpre| bin for the light (dark) phase, we compute a

cutoff-value of |N|, above which a REM cycle is labeled as a single

REM cycle and below which the cycle is labeled as a sequential REM

cycle. To compute the cutoff, we assume that the log(|N|) values

come from one of twoGaussian distributions composing the GMM:

Ns, the portion of the GMM with a shorter mean |N|, or Nl, the

portion of the GMMwith the longer mean |N|. Using this notation,

GMM = klNl+ (1−kl)Ns. We take the cutoff to be the value of |N|

at which the probability that the REM cycle came from Ns equals

the probability that the cycle came from Nl. This cutoff is simply

the value of |N| at the intersection between the klNl and (1− kl)Ns

functions. However, for the light phase bin where |REMpre| > 180

s, Nl and Ns have nearly the same mean, suggesting that all REM

cycles in the bin may be of the same type. Also considering that

the means of Ns and Nl for this bin are large and comparable to

the means of Nl for the next shorter |REMpre| bins ∈ [120, 150)

s and [150, 180) s, we label all cycles for the bin with |REMpre|

> 180 s in the light phase as single. Similar issues arise for the

dark phase, where Ns and Nl have similar means for the bins with

|REMpre| > 180 s and with |REMpre| ∈ [150, 180) s. As a result, we

approximate the cutoff value of |N| above which we labeled a cycle

as single with the cutoff from a nearby bin. In particular, we set the

cutoff value of |N| for the bin with |REMpre| > 180 s to the cutoff

for the bin with |REMpre| ∈ [150, 180) s; and to set the cutoff value

of |N| for the bin with |REMpre| [90, 120) s to the cutoff for the bin

with |REMpre| ∈ [120, 150) s.

For each single REM cycle in the light (dark) phase, we

investigate three quantities: (1) we count the number of consecutive

sequential REM bouts that follow, (2) we count the number
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FIGURE 7

Validation of the proposed REM propensity measure. We consider REM propensity during the light phase. The red curve represents the propensity

functions computed from the GMM fit of the CDF for |N| for each REMpre bin for a training data set consisting of 80% of all the REM cycles. The filled

blue circles, on the other hand, show average empirical propensity values computed from a test data set consisting of the remaining 20% of the REM

cycles (averages taken across 30 s bins of |N|).

FIGURE 8

Validation of the proposed REM propensity measure via generation of surrogate data. We consider REM propensity during the light phase (left panel)

and dark phase (right panel) separately, for |REMpre| ∈ [30, 60) s. The blue histograms (backgrounds) show the probability distribution of log(|N|) for

the experimentally measured REM cycle data. The red histograms (foregrounds) show the probability distribution of log(|N|) calculated from a

surrogate data set generated by the propensity functions.

of sequential REM bouts that follow assuming that there is at

least one sequential REM that follows; and (3) we track whether

a sequential REM cycle follows at all. We then compute the

Pearson’s Correlation Coefficient between the REM propensity

measure at REM onset and each of those three quantities, and

the corresponding p-value using a two-tailed Student’s t-test.

For the third quantity, we also compute a logistic regression

between the REM propensity measure at REM onset and the

presence of a subsequent sequential REM cycle (denoted by 1

if a sequential REM cycle follows and 0 if not). The logistic

regression yielded qualitatively similar results to a linear regression,

so we focused on the linear regression because we can interpret

it using Pearson’s correlation coefficient and report its statistical

significance in the same manner we report statistical significance of

other relationships. We repeat this analysis after lumping all single

REM bouts within the light and dark periods, respectively.
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4.6 Computing di�erences in the
proportion of sleep spent in REM during
sequential vs. single cycles

For each REM cycle in the light or dark phase, respectively,

we computed the ratio of REM sleep duration to total sleep

duration. We then computed the average ratios across single

cycles, sequential cycles, and chains of sequential cycles. We

applied Welch’s t-test to determine whether the average ratio of

REM sleep duration to total sleep duration differs between single

and sequential REM cycles. We use a p-value of 0.05 as the

cutoff for statistical significance, as we do elsewhere throughout

the manuscript.
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