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SpQuant-SNN: ultra-low
precision membrane potential
with sparse activations unlock
the potential of on-device spiking
neural networks applications

Ahmed Hasssan, Jian Meng, Anupreetham Anupreetham and

Jae-sun Seo*

School of Electrical and Computer Engineering, Cornell Tech, New York, NY, United States

Spiking neural networks (SNNs) have received increasing attention due to

their high biological plausibility and energy e�ciency. The binary spike-based

information propagation enables e�cient sparse computation in event-based

and static computer vision applications. However, the weight precision and

especially the membrane potential precision remain as high-precision values

(e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores

the membrane potential over time and typically updates its value in every

time step. Such frequent read/write operations of high-precision membrane

potential incur storage andmemory access overhead in SNNs,which undermines

the SNNs’ compatibility with resource-constrained hardware. To resolve this

ine�ciency, prior works have explored the time step reduction and low-precision

representation of membrane potential at a limited scale and reported significant

accuracy drops. Furthermore, while recent advances in on-device AI present

pruning and quantization optimization with di�erent architectures and datasets,

simultaneous pruning with quantization is highly under-explored in SNNs. In

this work, we present SpQuant-SNN, a fully-quantized spiking neural network

with ultra-low precision weights, membrane potential, and high spatial-channel

sparsity, enabling the end-to-end low precision with significantly reduced

operations on SNN. First, we propose an integer-only quantization scheme for

the membrane potential with a stacked surrogate gradient function, a simple-

yet-e�ective method that enables the smooth learning process of quantized

SNN training. Second, we implement spatial-channel pruning with membrane

potential prior, toward reducing the layer-wise computational complexity, and

floating-point operations (FLOPs) in SNNs. Finally, to further improve the

accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable

potential threshold for SNN training. Equipped with high biological adaptiveness,

minimal computations, and memory utilization, SpQuant-SNN achieves state-

of-the-art performance across multiple SNN models for both event-based and

static image datasets, including both image classification and object detection

tasks. The proposed SpQuant-SNN achieved up to 13× memory reduction and

>4.7× FLOPs reduction with <1.8% accuracy degradation for both classification

and object detection tasks, compared to the SOTA baseline.
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spiking neural networks, quantization, pruning, event data, static images, low-precision,
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1 Introduction

In the biological nervous system, cortex neurons convert varied

inputs into electrical signals or spikes. Spiking Neural Networks

(SNNs) mimic this by processing the inputs over time, with

gradual increments in their internal energy. Neuronal behavior of

leaky integration and fire (LIF) in SNNs accumulates membrane

potential over time and produces spikes for the membrane values

exceeding the potential threshold. This leads to an efficient

information encoding method with binary spikes (0 or 1). Such

spatial-temporal computation promotes SNN as an attractive AI

solution with both biological plausibility and energy efficiency

in comparison to the conventional artificial neural networks

(ANNs) (He et al., 2016). Moreover, layer-by-layer information

processing using binary spikes benefits cognitive processing on

edge devices, where stringent power and area requirements are

posed. Furthermore, latency-sensitive computer vision tasks such

as efficient detection and tracking of fast-moving objects require

end-to-end sparse and energy-efficient computational flow. Event-

based cameras or Dynamic Vision Sensors (DVS) (Gallego et al.,

2020) provide a binary input stream that directly connects with

SNNs to serve rapid object tracing. Binarized spatial-temporal data

alignment with Spiking Neural Networks (SNNs), shrinks the gap

between computer vision and neuromorphic computing.

Despite such benefits, the direct training process of SNN is

challenging due to the non-differentiability of the spike function.

Early researchers relied on the ANN-to-SNN conversion (Diehl

et al., 2015; Han et al., 2020) to train SNN models with additional

training iterations. These approaches fail to achieve sufficiently

high accuracy with extra computations. Subsequently, various

direct training methods have been proposed to improve the

accuracy of SNNs using surrogate gradient (SG) functions (Lee

et al., 2016; Wu et al., 2019; Deng et al., 2021), which

approximate and propagate the gradient during learning. However,

the inaccurate approximation and heuristic SG selection hurt the

training stability of deep SNNmodels, which further motivated the

temporal normalization method (Zheng et al., 2021) and output

regularization techniques (Deng et al., 2021; Guo et al., 2022) to

smooth the loss.

Most of these SNN algorithms have focused on achieving

high accuracy while employing full precision (FP32) weights and

membrane potential (Deng et al., 2021; Li et al., 2021b; Meng

et al., 2022). Despite the binary information propagation in event-

based SNNs,membrane potential accumulation andweight updates

employ high-precision computation. The membrane potential

values for every neuron must be stored and updated in the local

memory for consecutive time steps. This leads to cyclic memory

access during the read-modify-write process ofmembrane potential

over multiple time steps. Since the average firing rate in SNNs

stays low, the post-spike membrane potential saving for high-

resolution images requires significantly high memory with extra

redundant computations. Additionally, membrane potential shows

long tails of neurons that are less likely to fire for limited time steps.

These inactive neurons utilize excessive local memory and dynamic

energy that hurts the hardware-level computational efficiency in

deep SNNs. In Figure 1, we profile the weight and membrane

potential memory along with convolution and membrane potential

FLOPs of SNN-Yolov2 architecture on the Prophesee Gen1 dataset.

In comparison to full-precision SNN-Yolov2 baseline (FP), 4-

bit weight quantization only (LP-W) reduces the weight memory

but the full-precision membrane potential memory dominates in

this situation. However, quantizing both weights and membrane

potential in SNN-Yolov2 (Qnt) reduces the overall memory by

> 7×. Similarly, exploring the pruning opportunities in quantized-

SNN-Yolov2 (SpQuant-SNN) can help reduce the FLOPs by >

4.7×.

To address these memory computation issues, some recent

works investigate the low-precision representation and pruning in

SNNs at a limited scale. Chowdhury et al. (2021) and Schaefer

et al. (2023) have used 2-bit precision and 5-bit precision of

weights to reduce the weight memory footprint, but these works

use FP32 precision for the membrane potential. In addition,

Chowdhury et al. (2021) used time step-based pruning to reduce

the temporal computations at the cost of lower inference accuracy.

Loihi (Davies et al., 2018) have used 12-bit and 24-bit fixed-point

membrane potential representation with low-precision weights to

optimize the SNN hardware resources. However, to support such

high precision (12-bit and 24-bit) of membrane potential with

high-resolution input data is challenging on edge devices due to

extra memory requirements. A dense feature map in the shape of

membrane potential doubles the computation cost by demanding

high energy during accumulate and fire operations. Furthermore,

Loihi (Davies et al., 2018) does not report the memory vs accuracy

and energy vs. accuracy trade-off against high-resolution datasets,

i. e. ImageNet-100 and ImageNet-1k. Q-SpiSNN (Putra et al.,

2021) implemented low-precision membrane potential and weight

to showcase its performance using the relatively simpler MNIST

and DVS-CIFAR10 datasets. Apart from quantization, some prior

works (Perez-Nieves and Goodman, 2021; Lien and Chang, 2022)

explored pruning opportunities in SNNs to skip the computation

by masking out the negative membrane potential. Kim et al. (2022)

proposes a lottery ticket hypothesis to reduce the time steps and

active weights by applying a pruned weight mask in SNN. Although

these works achieve high feature-level compression, the memory

consumption due to the full precision of membrane potential is

significantly prominent. Disjoint quantization and pruning in prior

SNN works fail to achieve minimum memory consumption and

number of operations with high accuracy.

To bridge these research gaps, we propose SpQuant-SNN, a

fully-quantized spiking neural network with ultra-low precision

weights, membrane potential, and high spatial-channel sparsity,

enabling the end-to-end low precision with significantly reduced

operations on SNN. SpQuant-SNN achieves outstanding memory,

and energy efficiency with negligible accuracy degradation

compared to the SOTA SNN baseline. To further improve

the performance, we incorporate a novel self-adaptive SNN

training algorithm with the learnable threshold to improve the

adaptability of SpQuant-SNN. The proposed SpQuant-SNN makes

the following key contributions to advance SNN performance for

software hardware co-design.

• We propose a novel quantization-aware training algorithm

designed for integer-only SNN. In particular, we propose

Stacked Gradient Surrogation (SGS), a novel SNN training
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FIGURE 1

Memory cost and FLOPs reduction of proposed SpQuant-SNN with YOLO-V2 on Prophesse Gen 1.

scheme designed for low-precision membrane potential

training. As a result, SpQuant-SNN achieves up to 7.01×

and 13× total inference memory reduction on complex static

image and event datasets with deep SNN architectures.

• We present a novel membrane potential aware spatial-channel

dynamic pruning method to reduce the FLOPs without losing

high performance. SpQuant-SNN achieves > 4.7× FLOPs

reduction from the baseline with 80% sparsity on complex

static image and event datasets with deep SNN architectures.

• We propose a layer-wise learnable threshold scheme with

threshold optimization method to improve the training

stability and enhance the adaptability of SNNs. With the

learnable threshold, SpQuant-SNN performance is improved

by > 1.58% and 0.07 in terms of inference accuracy and mAP

value respectively.

2 Related work

2.1 ANN to SNN conversion

Early research works (Diehl et al., 2015; Rueckauer et al.,

2016) converted a high-performance non-spiking ANN model

into a spiking version to resolve the non-differentiability issues.

This conversion-based method relies on the fact that the

SNN firing rate can be estimated by ANN activation for

a corresponding architecture. ANN-to-SNN conversion helps

determine SNN parameters directly from an ANN model without

losing significant performance (Meng et al., 2022). Some of

the prior works incorporate further optimizations including

weight normalization (Sengupta et al., 2019), temporal switch

encoding (Han and Roy, 2020), rate norm layer (Ding et al.,

2021), and bias shift (Deng and Gu, 2021) to match the converted

SNN and ANN performance. However, these approaches require

more training time, high computation overhead, and additional

efforts for the overall training. Several methods have been

proposed to improve the latency of the converted model by

tuning different parameters (Han et al., 2020) and quantizing

the model weights (Li et al., 2022) to compensate for the over-

training cost but these approaches fail to match the performance

of converted SNN to high accuracy of direct SNN training

methods.

2.2 Direct SNN training

Most of the SNN training works use gradient approximations

to resolve non-differentiability issue for direct training of SNNs.

BNTT (Neftci et al., 2019) introduces the gradient surrogation,

which approximates the gradient landscape by the designed non-

linear function (e.g., Sigmoid). To improve the training stability

and accuracy, various SG functions have been implemented in

the literature, such as rectangle function, arctangent, and triangle

functions (Deng et al., 2021). Similarly, DSpike (Cannici et al.,

2020) implements a non-linear function in the forward pass during

SNN training. In the meantime, the emergence of the temporal-

batch normalization (Zheng et al., 2021) and residual gradient paths

enables stable SNN training with deep models. Additionally, some

recent works introduce the temporal gradient approximation (Shen

et al., 2022), where the spatial-temporal computation of SNN

can be considered as a special version of a recurrent neural

network (RNN) (Meng et al., 2022; Shen et al., 2022). These

emerging trends in direct SNN training introduce spike-based
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computer vision using large and deep architectures (Zhou et al.,

2023a) with large-scale datasets (e.g., ImageNet).

2.3 Quantization of SNN

Motivated by the nature of SNN with binary spikes, prior

works have investigated low-precision SNN. Chowdhury et al.

(2021) uses post-training quantization (PTQ) to compress the

low-precision weights down to 5-bit for inference. Another work

(Li et al., 2022) demonstrates weight quantization using ANN-

SNN conversion approach with ImageNet dataset. Quantization

of convolution output and weights is also explored in one of

the recent works to reduce the memory footprint (Castagnetti

et al., 2023). Since SNN introduces the temporal dimension

during inference, besides quantizing the weights (Davies et al.,

2018; Yin et al., 2023), considering the quantization of membrane

potential is important for memory-efficient SNNs Figure 1. Some

recent works have explored membrane potential quantization in

SNNs, albeit to a limited scale with a significant performance

drop. Q-SpiNN (Putra et al., 2021) uses PTQ and QAT for low-

precision representation of membrane potential and weights at

a limited scale. Using 4-bit precision of weight and membrane

potential, the proposed work reports a significant drop in accuracy

for MNIST and DVS-Gensture datasets. Furthermore, Putra et

al. (2022) has also employed fixed-point representation for the

membrane potential. However, none of these methods are verified

against large-scale datasets or achieved the ultra-low-precision (≤

4-bit) membrane. Additionally, the naive implementation of

conventional symmetric or asymmetric quantization decreases

the hardware benefits of SNNs. The accumulation of membrane

potential across multiple time steps makes the hardware-aware

quantization process challenging.

2.3.1 Optimal quantization boundary selection
The key aspect of the quantization algorithm involves

determining the optimal clipping boundary within the full-

precision range of weights and activation in the deep neural

network (DNN). However, Spiking Neural Networks (SNNs) are

different because the membrane potential is iteratively updated at

various time steps during inference. Thus, identifying the ideal

clipping boundary is critical and challenging for the effective

quantization of the membrane potential in SNNs.

2.3.2 Incompatibility of iterative dequantization
in SNNs

The standard quantization process, involving the high-

precision scaling factor, includes the “quantize and dequantize”

workflow to scale the low-precision representation (e.g., INT8)

back to the high precision floating point range. As demonstrated

by the prior work (Jacob et al., 2018), post-quantization

scaling is required to avoid the mismatched numerical range.

In SNN, time step information requires iterative quantization

to maintain low precision. However, rescaling the updated

membrane potential at each time step magnifies the cost of its

hardware implementation. Therefore, the traditional quantization-

aware training (QAT) scheme is incompatible with low-precision

membrane potential. Furthermore, the choice of integer-only

representation of membrane potential gives infinite value in the

backward propagation. The cost of conventional QAT scaling

at the hardware level and the non-differentiability of integer-

only quantization, make the low-precision representation of the

membrane challenging.

2.4 Pruning of SNN

Different from the static weight pruning in DNNs, sparsity

in SNN can be explored in the weights and time domain. Apart

from quantization, recent works (Perez-Nieves and Goodman,

2021; Lien and Chang, 2022) have explored sparse SNN training

to compress the models’ computations with reduced computations.

Kim et al. (2022) investigated the lottery ticket hypothesis to SNNs,

which explores the winning ticket in both weights and temporal

steps for the computation skipping. However, most of these

previous works have explored pruning and quantization dis-jointly

with significant performance degradation on simple datasets.

2.4.1 Quantized SNNs with pruning opportunities
Some of the prior works have tried to explore SNNpruningwith

quantization using naive DNN-based approaches. Chowdhury et

al. (2021) jointly compresses the low-precision weights down

to 5-bit and sparsify the SNN with temporal pruning during

training. Another work investigates NM-sparsity (Chen et al.,

2018) by masking the negative membrane potential values in the

spatial domain. Most of these works have either implemented

naive masking on negative neuron values or introduced extra

computations for weight or activation skipping. Furthermore,

the quantized membrane potential tensors, in these cases are

floating point values that incur high-precision scaling costs during

the cyclic quantization and dequantization process. In addition,

temporal pruning without considering membrane potential

saliency degrades SNN performance with complex datasets.

2.5 Learnable dynamics in SNN

SNN involves parametrized neurons (e.g., LIF neurons) with

spike functions. Instead of heuristic parameter selection, very

limited prior works consider trainable optimization of spike

neurons. Neuroscience work (Kole and Stuart, 2008) with the

location-dependent potential threshold in nervous systems implies

the adaptive firing procedure within the mechanism of spike

generation. Following this, some recent works introduced the

learning dynamics into SNN training, albeit to a limited degree.

Fang et al. (2021) uses a large-sized SNN model and extensive

training efforts (up to 1,024 epochs) to introduce the learnable

time constant for direct SNN training. LTMD (Wang et al., 2022)

introduced the learnable neuron threshold with dropout in SNN

training. Optimization of threshold value based on naive weight

gradient in the backward pass compromised LTMD performance
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against basic event datasets. Similarly, DSR (Meng et al., 2022)

optimizes the potential threshold during training by multiplying a

scaling factor α. In addition, the binary output spikes generated by

DSR are multiplied by the threshold value. Iterative high-precision

scaling with a fixed ratio limits the adaptiveness, resource efficiency,

and freedom of SNN learning and makes it computationally

inefficient for resource-constrained hardware.

3 Basics of spiking neural networks

SNNs mimic the biological nervous system and propagate

binary spikes in the spatial-temporal domain. Membrane potential

exceeding the threshold value in the Leaky Integrate-and-Fire (LIF)

function generates spikes, Equation 1.

ult = τult−1(1− Slt−1)+ Ilt and Ilt =
∑

i

wl
iS
l
i (1)

Where ut represents the membrane potential for layer index l

at time t, Slt−1 is the output spike of the previous time step, and Ilt
is the synapse current for layer index l at time t, w is the synapse

weight, and τ is the time constant. In our experiments, we set τ =

0.5.

During the forward pass, the membrane potential is

accumulated with high precision and if it exceeds the potential

threshold value, the spike is generated according to Equation 2.

Slt = θ(ult − Vth) =

{

1 if ult ≥ Vth

0 otherwise
(2)

Where θ represents the Heaviside step function, and Vth

represents the membrane potential threshold for spiking neurons.

In the backward pass, the weight gradient can be computed based

on Equation 3:

∂L

∂W l
=

∑

t

∂L

∂Slt

∂Slt

∂ult

∂ult

∂Ilt

∂Ilt
∂W l

(3)

Since the Heaviside step function is non-differentiable in nature,
∂St
∂ut

becomes non-deterministic. To continue the learnability in

training, backward pass approximations are implemented in SNNs.

Various surrogate gradient functions are proposed to preserve the

differentiability in SNNs (Lee et al., 2016; Wu et al., 2019; Che et al.,

2022; Chen et al., 2022) and we adopt vanilla triangle function as

mentioned in Equation 4:

∂St

∂ult
= θ ′(ult − Vth) = max(0, 1− |ult − Vth|) (4)

4 Proposed method

Full-precision SNNs without pruning are hard to implement

on the resource-constrained hardware. To achieve maximum

hardware awareness with high performance, we sequentially

implement low-precision, sparsity, and adaptability in SNN.

Starting from membrane potential and weight quantization for

low-precision SNN (Quant-SNN), we explore and resolve the

challenges of clipping boundary selection and interactive scaling

during the quantization process in Section 4.1 and Section 4.2.

Further, we analyze the abundance of negative membrane potential

with a low-spiking rate in Quant-SNN and propose a solution

to explore the pruning opportunities by implementing sparse and

quantized SNN (SpQuant-SNN) in Section 4.3. Finally, we discuss

the gradient mismatch dynamics in SNN and implement a layer-

wise adaptive threshold to improve the performance of SpQuant-

SNN in Section 4.4.

4.1 Membrane potential clipping for
deterministic boundary

In SNNs, post-spike membrane potentials are stored in the

local memory and get iteratively fetched for accumulation in the

next time steps. To maintain low precision of membrane potential,

time step information requires iterative quantization. Clipping

boundary selection during the quantization process for each time

step elevates the cost of its hardware deployment. To address

this challenge, we aim to unify the negative clipping boundary

of membrane potential for each time step. We propose a two-

step analysis for evaluating the robustness of SNN with respect to

different quantization boundaries.

We first denote the negative clipping boundary as c, and the

entire quantization range becomes [c, γ ], where γ is the maximum

membrane potential after spiking. Naturally, 0 ≤ γ < Vth.

The mechanism of “accumulate-and-fire” of SNN makes each

membrane potential neuron possible to fire during the consecutive

time steps. However, the relationship between membrane potential

value and spiking activity is non-observable during inference. Let’s

assume that Ŵu represents the membrane values that are below

the clipping threshold c. Naively unifying all the Ŵu values to the

clipping threshold c will change the spiking rate of the next time

step, and also the final output of the layer. To quantify such impact,

we investigate the robustness of SNN with respect to different

clipping thresholds c with the following two perspectives:

• Step 1: We first quantify the impact of the membrane

potential clipping by analyzing the firing rate of neurons Ŵu.

• Step 2: We evaluate the robustness and accuracy of the SNN

model with different clipping thresholds.

Given the input sample X of the size of N × T × C × H × W,

with total time steps = T, we first investigate the distribution of the

post-spike membrane potential ûlt at the very first time step t = 1.

Mathematically, the membrane values Ŵu are defined as below in

Equation 5:

Ŵu = {ûlt=1 | û
l
t=1 < c} (5)

For the remaining t ∈ [2, . . .T] time steps, the firing rate r of Ŵu

can be computed using Equation 6:

rs =
1

T

∑

t

card(Mt)

C ×H ×W
whereMt = 1Ŵu (u

l) ∧ Slt (6)

Where 1 is the indicator function and it returns the binary flag

that represents whether the membrane value u is unfired and also
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FIGURE 2

Analysis of spiking activity with di�erent membrane potential

clipping boundaries.

small enough. ∧ is the “AND” logic, Slt is the binary spikes of

layer l at time step t, and card(·) returns the number of non-zero

elements inside M. Therefore, rs in Equation 6 characterizes how

many membrane potential neuron values are initially (t = 1)

silent and inactive (less than c) but spike in the future t.

Based on the theoretical setup above, we sweep over different

clipping boundaries c from -5.0 to -1.0. For each value of c, we

compute the average firing rate rs across each t ∈ [2 . . .T],

and record the layer-wise firing rate (percentage). Figure 2 shows

the layer-wise firing rate of a 9-layer lightweight MobileNet-V1

SNN pre-trained on the DVS-CIFAR10 dataset with 30 total time

steps. Compared to the widely used ResNet models, the lightweight

MobileNet models exhibit higher sensitivity to quantization (Park

and Yoo, 2020), which provides accurate insights into the

clipping distortion.

Let’s assume the minimum membrane potential (Min Ut) of

each layer is Umin. As shown in Figure 2, the early layers exhibit

a high magnitude of Umin (e.g., -21.07 for the first layer) in the

floating point baseline. However, there are only 6.35% of neurons

that fire in the future time steps with all the accumulations, where

Umin < Ut < −1. In other words, the remaining unfired 93.6% of

neurons create a “silent region”, where themembrane neurons have

zero contribution to future time steps and the next layer. Although

Umin increases in the latter layers, the silent region in the negative

membrane potential extends. As a result, clipping distortions have a

negligible impact on the majority of the membrane potential, even

with the most aggressive clipping (c=-1.0). Therefore, we have the

following observation:

Observation: If the membrane potentials are negative enough,

their impact on spikes is minimal.

We further prove the clipping robustness with the accuracy

impact during inference with no fine-tuning.

Figure 2 shows that, given the pre-trained full-precision model

with 71.70% inference accuracy for DVSCIFAR-10 dataset, when

the membrane potential is clipped to c = −1.0, the inference

accuracy can still be maintained at 70.50%. We extend the

verification of this observation on CIFAR-10 dataset with ResNet-

19 and validate the accuracy degradation by sweeping the clipping

boundary values from -5.0 to -1.0, as reported in Table 1. The

TABLE 1 Robustness of Quant-SNN for ResNet-19 against di�erent

negative clipping boundaries.

Clipping

threshold

FP-Baseline −5.0 −4.0 −3.0 −2.0 −1.0

CIFAR-10

Accuracy

94.53 94.33 94.21 94.34 94.22 94.09

minimal accuracy degradation allows us to extend theObservation

into: If the membrane potential values are negative enough, their

impact on accuracy is minimal, which implies the robustness of

membrane potential to low-precision representation.

4.2 Quantization algorithm

4.2.1 Incorporating membrane potential
quantization in SNN training

With the proven robustness of SNN with quantized membrane

potential, recovering accuracy degradation becomes a critical task.

To counter this issue, we propose a novel quantization algorithm

designed for SNN training with low-precision membranes.

Motivated by the dequantization challenge in the introduction

section, the proposed method quantizes the membrane potential

without introducing dequantization scaling (Jacob et al., 2018),

leading to high hardware simplicity and efficiency. Unlike prior

works (Putra et al., 2022) that incorporated high-precision scaling

for quantization, we design an integer-only quantization scheme to

assign the membrane potential to the nearest integer level directly.

Different from Davies et al. (2018) and Putra et al. (2021) which

uses high precision fixed point integer on membrane potential,

our method compresses the membrane using Equation 7 down to

ternary.

Q(ut) =











−1 if ut ≤ 0

0 if ut ≤ 0.5

+1 if ut ≥ 0.5

(7)

The non-differentiable quantization operation hinders the

backward propagation in both spatial and temporal directions,

which can be factorized as per Equations 8 and 9:

∂L

∂St
=

∂L

∂Sl+1
t

∂Sl+1
t

∂St
︸ ︷︷ ︸

w.r.t Layer

+
∂L

∂Slt+1

∂Slt+1

∂St
︸ ︷︷ ︸

w.r.t time step

(8)

Where

∂Slt+1

∂St
=

∂Slt+1

∂ult+1

∂ult+1

∂ult

∂ult
∂St

(9)

With the proposed quantization scheme, the membrane

potential at each time step is updated with low precision based on

Equation 10:

ult+1 = τ × Q(ult)+ ylt (10)

The temporal gradient ∂ult+1/∂u
l
t is inaccessible due to the

quantization function Q(·) which outputs integer levels only. To
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TABLE 2 Training results of VGG-9 model on DVS-CIFAR10 dataset with

di�erent SG schemes.

Architecture Epochs T SGS Accuracy (%)

VGG-9 200 30 ArcTan 77.81

VGG-9 200 30 Triangle 70.83

VGG-9 200 30 Piece-wise 78.81

VGG-9 200 30 Sigmoid 80.04

Architecture Epochs T SGS Accuracy (%)

VGG-9 200 30 ArcTan 77.81

VGG-9 200 30 Triangle 70.83

VGG-9 200 30 Piece-wise 78.81

VGG-9 200 30 Sigmoid 80.04

resolve this issue, we propose Stacked Gradient Surrogation (SGS),

which approximates the temporal gradient using the sigmoid

function during the backward propagation to overcome the non-

differentiability of quantization. The choice of Sigmoid function

as SGS is empirical and the performance comparison of different

surrogation functions is summarized in Table 2. Formally in

Equations 11 and 12, we define SGS-based Q∗ as follows:

Q∗(ut) =

K
∑

k=1

T
1

1+ e−T(uqt−sk)
(1−

1

1+ e−T(uqt−sk)
) (11)

and sk = (ki + ki+1)/2 (12)

Where T, k, and sk represent the smoothness, quantization

interval, and shift of each surrogation term respectively. With SGS,

we have:

∂ult+1/∂u
l
t = τQ∗(ut) (13)

Combining Equations 8–13, we formulate a smooth gradient

propagation flow of low-precisionmembrane potential training. To

endorse the performance of the proposed low-precision membrane

potential with the stacked surrogate gradient in Quant-SNN, we

demonstrate the high memory efficiency achieved with minimal

performance degradation against the DVS-CIFAR10 dataset in

Table 5.

4.2.2 Incorporating weight quantization in SNN
training

On top of membrane potential quantization, we incorporate

low-precision weights to reducememory occupancy. To implement

complete low-precision inference in Quant-SNN, we adopt and

modify the Power of Two (PoT) quantizer (Przewlocka-Rus et al.,

2022).

αw = (w− 1)(argminα|w− wq|)) (14)

α = round(
αw

2
+

1

2
) (15)

wc = clip(round(
w

α
),min,max) (16)

In Equation 14–16, w, wq, and wc represent input, quantized

and clipped weights. To achieve exact POT weight quantization,

we also keep α in the power of two. Subsequently, we draw a POT-

based grid g in Equation 17 and round the full precision and clipped

weight to the nearest bit-map level in Equation 18:

g =

{

0 if k ≤ 0

2−k−1 if 0 < k ≤ b
(17)

wq = round(wc[min(|wc − g|)].α) (18)

We choose 8-bit, 4-bit, and 2-bit precision to compress the

layer-wise weights for both object detection and classification tasks.

Binary input spikes of each layer convolving the low precision

weights can be formulated as approximated computing or look-up

tables, which further enhance the hardware efficiency in practice. In

the end, we compute the total memory of Quant-SNN and develop

a total memory vs. accuracy comparison with the current SOTA in

Section 5.

4.3 Sparse binary membrane: motivation
for sparsity exploration in SNNs

The integer-only membrane exhibits a strong potential

for sparsity. Directly ignoring the negative membrane neuron

values after quantization shows minimum accuracy degradation.

Mathematically, after quantizing themembrane potential withQ(·),

using Equations 19 and 20 we disable the spikes that are generated

by the negative membrane values with Umask:

Umask = Bool(Q(ut) < 0) (19)

St = St(1− Umask) (20)

In particular, the negative membrane neuron values are

“pruned” from the spiking process, which can be skipped during

membrane potential updates.

In other words, the membrane potential of the proposed

Quant-SNN can be further compressed down to binary by

sparsifying the original ternary membrane. As shown in Table 3,

directly silencing all the “-1” of the membrane shows minimal

accuracy degradation without any fine-tuning.

The minimum accuracy degradation implies the

improved robustness empowered by the sparse and quantized

SNN (SpQuant-SNN) training along with pruning opportunities.

The pruned binary membrane potential improves the memory

efficiency of SpQuant-SNN even further. The low firing rate,

high percentage of the negative potential, and robustness of

quantized SNN motivate us to explore the membrane potential-

based spatial-channel sparsity before the membrane potential

accumulation process.

4.3.1 Spatial pruning with membrane potential
importance

Following the aforementioned assumptions of low firing rate

and a high percentage of negative membrane potential, we skip the

membrane potential accumulation for non-significant membrane

values before the “accumulate-and-fire” operation. To implement

this, we compute the importance score for each time step and apply

the pruning threshold using Equations 21 and 22 tomask unwanted

spatial membrane values.

Implt =
∥
∥
∥Q(ult)

∥
∥
∥
2

(21)

Usm = Implt > kthvalue(Imp, Q(ut) · sparsity), U
l
t = Usm ×Q(ult)

(22)
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TABLE 3 Quant-SNN performance with pruned ternary membrane potential on di�erent datasets.

Architecture Dataset Binarized Mem Time step Accuracy

ResNet-19 CIFAR-100 No 2 74.63

ResNet-19 CIFAR-100 Yes 2 74.30

VGG-9 DVS-CIFAR-10 No 2 78.13

VGG-9 DVS-CIFAR-10 Yes 2 77.16

VGG-9 N-Caltech No 2 80.45

VGG-9 N-Caltech Yes 2 79.14

Architecture Dataset Binarized Mem Time step Accuracy

ResNet-19 CIFAR-100 No 2 74.63

ResNet-19 CIFAR-100 Yes 2 74.30

VGG-9 DVS-CIFAR-10 No 2 78.13

VGG-9 DVS-CIFAR-10 Yes 2 77.16

VGG-9 N-Caltech No 2 80.45

VGG-9 N-Caltech Yes 2 79.14

For example, we compute the spatial mask U l
sm after the first

convolution operations at layer “l” and mask out the neuron

values at each time step before the accumulate operation. In

contrast to post-spike masking, this approach saves redundant

additions and skips the weak convolution connections in the

subsequent layers. The choice of sparsity value is linked with

the robustness of our proposed SpQuant-SNN. Therefore, we

mask out 35% neuron values in the spatial domain to maintain

the performance along with reduction in computations. We

also implement dynamic channel masking to further reduce the

compute operations inside SNNs. Channel gating for DNNs

has been very well explored in the prior works (Hua et al.,

2019; Li et al., 2021a), however, its implementation in SNNs

is limited due to the spatial-temporal information propagation.

Since SNNs involve time step information for membrane potential

accumulation, naive parallel path computation for time step data

adds more FLOPs in comparison to the skipped connections.

Furthermore, the lottery (Kim et al., 2022) ticket hypothesis

does not fit well on the complex architectures and datasets. To

address such shortcomings, we propose a straightforward channel-

skipping approach, with minimal computational overhead, using

membrane potential prior. In the convolution layer of SNNs,

U l ∈ R
Cl
o×Cl

i×Tl×W l×Hl
represents the membrane potential

feature map of first convolution layer where Tl represents the

time step dimension, Co, is the number of output channels,

and Ci is the number of input channels per layer. Before the

actual convolution for layer l + 1, we apply a parallel path to

compute the attention score of each channel using membrane

potential prior.

4.3.2 Channel masking with membrane potential
prior

To achieve low-compute and resource-efficient channel

masking, we first pass the U l ∈ R
Cl
o×Cl

i×W l×Hl
through the

average pooling layer and extract the succinct spatial attention

U l
mp ∈ R

Cl
o×Cl

i×W l/2×Hl/2. We consider time-domain pooling

by assuming that the first step of spatial pruning leaves salient

membrane values across all the time steps. In the second stage,

we use point-wise convolution U l
att ∈ R

Cl+1
o ×W l/2×Hl/2 to

compute the channel-wise attention and sync the out-channels

of each input feature map with subsequent layers. To compute

the probability score, we use softmax after convolution. Finally,

we obtain binary score vector U l
cm ∈ R

Cl+1
o using Equation 23

FIGURE 3

Spatial-channel masking flow of SpQuant-SNN using membrane

potential prior.

and apply it as a mask to compress the number of active

channels for membrane potential accumulation, as illustrated

in Figure 3.

U l
sf (t) =

eU
l
att

∑J
j=1 e

U l
att

, U l
cm =







1 if U l
sf
≥ θ ,

0 if U l
sf

< θ .
(23)

To evaluate the impact of spatial-channel pruning, we train

SpQuant-VGG9-SNN on the DVS-CIFAR10 dataset. From Table 5,

SpQuant-SNN achieves 5× reduction in FLOPs with <1%

accuracy degradation from the quantized membrane and quantized

weight SNN baseline. Furthermore, we compare the SpQuant-

SNN performance for VGG-9 model with existing full-precision

and non-sparse SOTA works and observe a minimal drop in

performance with significant resource optimization.

4.4 Learning the threshold of membrane
potential

To further improve the performance of the proposed SpQuant-

SNN, we implement a novel SNN training algorithm that
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TABLE 4 Performance comparison of SGP with existing SOTA works on DVS-CIFAR10.

Method Learnable threshold SG function Top-1 accuracy (%)

TET (Deng et al., 2021) ✗ Triangle 77.33

Penalty for all ✓ GPW for all 76.40

This work ✓ SGP 80.04

Method Learnable threshold SG function Top-1 accuracy (%)

TET (Deng et al., 2021) ✗ Triangle 77.33

Penalty for all ✓ GPW for all 76.40

This work ✓ SGP 80.04

resolves the contradiction between threshold optimization, training

stability, and hardware compatibility. We optimize the layer-wise

potential threshold during training, maximizing the biological

plausibility of SNN without introducing any learning constraints.

Previous works assume that the surrogate gradient of ∂St
∂ut

and
∂St
∂Vth

is transferrable, and the identical gradient surrogation is

suitable for separate loss landscape with respect to ut and Vth. To

implement the membrane threshold optimization, we correct the

common surrogate landscape assumption and propose a Separate

Gradient Path (SGP), which treats the gradient computation of ut
and Vth from Equation 24 with dedicated gradient approximations.

We compare the performance of our proposed SGP with the

existing threshold optimization technique and validate a better

performance based on our proposed SGP optimization in Table 4.

Specifically, SGP trains SNNs by introducing the Gradient Penalty

Window (GPW), a simple-yet-effective method that optimizes the

potential threshold without losing training stability. On top of the

gradient approximation in Equation 4, GPW is characterized as a

non-linear function σ (·), which reshapes the surrogate gradient of

the layer-wise potential threshold Vth. Mathematically, the GPW-

aided separate gradient path is characterized as:

∂St

∂ut
= θ ′(ut − Vth) = max(0, 1− |ut − Vth|) (24)

|
∂St

∂Vth
| = θ ′(ut − Vth)σ (ut − Vth) = max(0, 1− |ut − Vth|)

σ (ut − Vth) (25)

In this work, we choose the Sigmoid function as the gradient

penalty window, presented in Equation 26, for the potential

threshold. Here the choice of Sigmoid function is based on the

ablation study, presented in Table 2.

σ (ut − Vth) =
1

1+ e−(ut−Vth)
(26)

For gradient computation of Vth, we accumulate the gradient

computed in Equation 25 to avoid the dimensionality mismatch:

∂L

∂Vth
=

∑ (

1{ut ≥ Vth} × |
∂L

∂Vth
|
)

(27)

Since the unfired neurons have no contribution to the final loss,

the indicator function 1{ut ≥ Vth} in Equation 27 only keeps the

gradient with respect to the active neurons in the forward pass.

We evaluate the performance of SpQuant-SNN with an

adaptive threshold using a similar training setup as Quant-SNN.

Before implementing the adaptive threshold to SpQuant-SNN

directly, we implement it on vanilla SNN and Quant-SNN to

properly benchmark the performance. Using adaptive-SNN, we

first improve the baseline of vanilla SNN by 1.3% and Quant-SNN

by 1.2%. Similarly, from Table 5, applying SpQuant-SNN for VGG-

9 model with layer-wise adaptive threshold improves the baseline

accuracy by 0.86%.

5 Experimental results

We validate the proposed SpQuant-SNN algorithm with both

event-based and static image computer vision datasets. From

event-based datasets, we use DVS-CIFAR10 (Li et al., 2017), N-

Cars (Sironi et al., 2018), N-Caltech101 (Orchard et al., 2015)

and Prophesee Automotive Gen1 (de Tournemire et al., 2020) to

train SpQuant-SNN. Further, we use CIFAR-10 (Krizhevsky et al.,

2009), CIFAR-100 (Krizhevsky et al., 2009), ImageNet-100 (Deng

et al., 2009), and ImageNet-1k (Deng et al., 2009) datasets for

SpQuant-SNN training and inference on static image datasets.

5.1 Data preprocessing

The open-sourced DVS datasets are in the shape of indexed

bit stream where each chunk represents the axis information,

spike polarity, time-step information, and addresses. At the data

preprocessing stage, we extract spike polarity and time-step

information from the bit streams and convert them to 128x128

binary frames. We sample over different time steps and transform

events to 5-D tensors of shape [Batch, Time, Channels, Height,

Width]. For static image data including CIFAR-10, CIFAR-100,

and ImageNet-100, we use the 8-bit static images for the training

and inference (Garg et al., 2021). In the case of static image

data (e.g., ImageNet-100), the input shape is in the form of a

5D tensor [N, T, C, H, W], representing batch size, time steps,

channel, height, and width, respectively. We repeat the static

RGB frames by T times to introduce the temporal domain to

the input.

On the other hand, we convert Prophesee Gen1 events to

binary histograms by sampling over all the time steps. Then

the generated binary histograms are synchronized with artificial

ground truth from Perot et al. (2020). Finally, the events and

annotations are translated to the tensors of shape [Batch, Time,

Channels, Height, Width] and [Batch, Number of boxes, Bounding

box] respectively. Unlike prior works (Zhou et al., 2023b),

we do not use data augmentation to train SpQuant-SNN for

performance improvements.
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TABLE 5 Impact of quantization, pruning, and adaptive threshold on SpQuant-SNN performance with VGG-9 model using DVS-CIFAR10 dataset.

Method Learnable
threshold

Membrane pot.
precision

Weight
precision

Total
memory (MB)

FLOPs
reduction

Top-1
accuracy (%)

TET (Deng et al., 2021) ✗ 32-bit 32-bit 48.58 1X 77.33

DSR (Meng et al., 2022) ✗ 32-bit 32-bit 48.58 1X 75.50

SNN-Baseline ✗ 32-bit 32-bit 48.58 1X 77.20

Quant-SNN ✗ 1.58-bit 2-bit 3.75 1X 76.84

Quant-SNN-Baseline ✗ 1.58-bit 2-bit 3.75 1X 76.84

SpQuant-SNN ✗ 1.58-bit 2-bit 3.75 5X 75.96

Adaptive-SNN-Baseline ✓ 32-bit 32-bit 48.58 1X 79.45

Adaptive-Quant-SNN ✓ 1.58-bit 2-bit 3.75 1X 77.94

Adaptive-SpQuant-SNN ✓ 1.58-bit 2-bit 3.75 5X 76.80

Method Learnable
threshold

Membrane pot.
precision

Weight
precision

Total
memory (MB)

FLOPs
reduction

Top-1
accuracy (%)

TET (Deng et al., 2021) ✗ 32-bit 32-bit 48.58 1X 77.33

DSR (Meng et al., 2022) ✗ 32-bit 32-bit 48.58 1X 75.50

SNN-Baseline ✗ 32-bit 32-bit 48.58 1X 77.20

Quant-SNN ✗ 1.58-bit 2-bit 3.75 1X 76.84

Quant-SNN-Baseline ✗ 1.58-bit 2-bit 3.75 1X 76.84

SpQuant-SNN ✗ 1.58-bit 2-bit 3.75 5X 75.96

Adaptive-SNN-Baseline ✓ 32-bit 32-bit 48.58 1X 79.45

Adaptive-Quant-SNN ✓ 1.58-bit 2-bit 3.75 1X 77.94

Adaptive-SpQuant-SNN ✓ 1.58-bit 2-bit 3.75 5X 76.80

TABLE 6 Model architectures for SpQuant-SNN training.

Model Architecture

MobileNet-Light
32C3-64DW-64DW-AP2-128DW-

128DW-AP2-256DW-AP2-FC256-FC10

VGG-7
32C3-32C3-AP2-64C3-64C3-AP2-

128C3-128C3-AP2-256C3-256C3-AP2-FC10

VGG-9
64C3-128C3-AP2-256C3-256C3-AP2-

512C3-512C3-512C3-512C3-AP2-1024C3-AP2-FC10

Custom-Yolo-V2

32C3-MP2-64C3-MP2-128C3-64C1-128C3-MP2-

256C3-128C1-256C3-MP2-512C3-256C1-512C3-

256C1-MP2-1024C3-512C1-1024C3-AP2-FC512-FC576

ResNet-19

64C3-128C3-128C3-128C3-128C3-128C3-128C3-

256C3-256C3-256C3-256C3-256C3-256C3-256C3-

256C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

ResNet-26

64C3-128C3-128C3-128C3-128C3-128C3-128C3-

256C3-256C3-256C3-256C3-256C3-256C3-256C3-

256C3-512C3-512C3-512C3-512C3-512C3-512C3-

512C3-512C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

“C3”, “DW”, “MP2”, “AP2” and “FC” represent 3×3 convolution layer, 2×2 max-pooling,

2×2 average-pooling, and fully connected layer.

5.2 Experimental setup

For static image-based tasks, we train SpQuant-SNN-based

ResNet-19, ResNet-34, and SpikeFomer architectures and

characterize the accuracy for CIFAR and ImageNet datasets. For

the event-based tasks, we choose the SpQuant-SNN aided VGG-9

and Custom-YOLO-V2 for classification and object detection

algorithms on DVS-CIFAR10, N-CalTech101, and Prophesee Gen1

datasets, as shown in the Table 6.

We train our proposed SpQuant-SNN-based classification and

object detection architectures using PyTorch (Paszke et al., 2019)

version 1.9.0 with CUDA version 11.1. Regarding hyperparameter

selection, we use the Adam optimizer where the learning rate is

set to 0.001. We computed TET (Deng et al., 2021) loss between

the logits and the target labels then compute the average along

the time domain. The regularization level β is set to 0.45 and 0.90

for both the full-precision and low-precision training of VGG and

ResNet architectures, respectively. Instead of the fixed threshold,

we use the learnable threshold in the LIF function for all the

classification and object detection networks. With the proposed

SpQuant-SNN, we sweep across the different quantization levels

to choose the optimal precision, presented in Figure 4, for the

membrane potential quantization to achieve high performance

with maximummemory reduction across various architectures and

datasets. Therefore, considering the performance vs memory trade-

off, we optimally quantize the membrane potential to ternary levels

[−1.0, 0.0, 1.0] for each time step. In addition to the membrane

potential, we quantize the weights to achieve the complete low-

precision flow of SNN. We implement 8-bit, 4-bit, and 2-bit weight

precision using the APOT quantization scheme (Przewlocka-Rus

et al., 2022) for SpQuant-SNN training. Further, to evaluate the

pruning opportunities, we choose a 35% pruning ratio in the

spatial domain and set the channel masking threshold to 0.47 to

balance out the performance with maximum FLOP reduction. To

benchmark the performance of the proposed SpQuant-SNN, we

compare the Ops (integer-only operations) of SpQuant-SNN with

FLOPs of recent SOTA works.

5.3 Evaluation metric

We evaluate the SpQuant-SNN based on memory reduction,

FLOPs reduction, robustness, and accuracy. We compute the

total memory (MB) acquisition of each SpQuant-SNN-based

architecture for all the datasets, where the total memory constitutes

weight, membrane potential, and convolution output memory:

Mt = wp×Nw+up×Nf +us×Nf Where Nw =

ℓ
∑

l=1

wl (28)

And Nf =

ℓ
∑

l=1

(C ×W ×H)l (29)

Mt is the total memory, wp is weight precision, up is membrane

potential precision, us is the binary spike precision (0,1),Nw is total
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FIGURE 4

Membrane potential precision vs. accuracy for CIFAR-10 and

DVS-CIFAR10 datasets and membrane potential vs. mean average

precision for Prophesee Gen1 object detection dataset.

network weights, and Nf is layer-wise spikes. Further, w represents

network weights, ℓ is the number of layers, C is the number of

output channels, and W and H represent the width and height of

the input frame.

Furthermore, to evaluate the FLOPs compression in

Equation 30 we consider spatially active neurons with active

channels and compare them with the conventional SNN flow:

FLOPSSpQuant−SNN = 2× Cl(1− Sc)×W ×H × kl × kl+

T × B× Cl(1− Sc)×W ×H × (1− Sp)
(30)

Here FLOPSSpQuant−SNN is the reduced FLOPs,Cl, Sc, Sp, T, and

k represent the out-channels, channel sparsity, spatial sparsity, time

step and kernel-size respectively.

5.4 RGB/DVS classification

5.4.1 SpQuant-SNN performance on DVS
datasets

We compare the performance of sparse quantized SNN

SpQuant-SNN with existing SOTA works, implementing

full-precision, low-precision SNNs with and without sparse

computations. For DVS datasets, we benchmark SpQuant-SNN

on DVS-CIFAR10 and N-Caltech for the object classification task.

As mentioned in the previous sections, we evaluate the adaptive

SpQuant-SNN performance sequentially. We distinguish the

impact of quantization and pruning and evaluate low-precision

SNN with sparsity (SpQuant-SNN) and without sparsity (Quant-

SNN). Table 7 demonstrates the comparison of the proposed

algorithm with existing SOTAs in the context of memory efficiency,

time step, robustness, FLOPs reduction, and top-1 accuracy.

For the DVS dataset, our low-precision adaptive Quant-SNN

implementation reduces the memory by 13× with a 0.51%

accuracy drop from the full precision baseline. Furthermore,

Quant-SNN with high memory efficiency surpasses the existing

convolution-based full-precision counterparts. Finally, with

SpQuant-SNN, we attain up to 5× FLOPs reduction and 13×

memory reduction with an accuracy drop of 1.14% and 1.8%

for DVS-CIFAR-10 and N-Caltech datasets. Compared with

existing SOTA, the proposed low-precision algorithm, reducing

memory occupancy by 13× and FLOPs by 5×, almost matches the

cutting-edge SNN accuracies for DVS-CIFAR-10 and N-Caltech

datasets, respectively. Furthermore, Figure 5A shows the memory

and performance comparison of SpQuant-SNN for VGG-9 on

DVS-CIFAR10 dataset.

5.4.2 SpQuant-SNN performance on static image
datasets

Similarly, we evaluate SpQuant-SNN performance on various

complex static image datasets. We compare SpQuant-SNN with

full-precision and low-precision sparse and non-sparse SOTA SNN

works. Identical to the DVS datasets, we evaluate the performance

of both Quant-SNN and SpQuant-SNN sequentially. From Table 8,

Quant-SNN with low-precision of membrane and weight, yields

8.13× high memory efficiency with 0.45% and 0.91% drop in

performance for both CIFAR-10 and CIFAR-100 datasets. On top

of this, along with 8.13× reduction in memory consumption,

SpQuant-SNN achieves up to 5.1× FLOPs reduction with minimal

accuracy degradation of 1.48% and 1.91% from SOTA SNN

baseline for CIFAR-10 and CIFAR-100. For Imagenet datasets,

Quant-SNN achieves 4.58× memory reduction with an accuracy

drop of 0.34% and 0.64% for ImageNet-100 and ImageNet-1k

datasets. Furthermore, SpQuant-SNN achieves 4× FLOPs and

4.58× memory reduction with 1.36% and 1.34% accuracy drop

from the baseline on the ImageNet-100 and ImageNet-1k datasets.

Finally, we compared the performance of SpQuant-SNN

with very recent low-precision SNN works i-e. MINT (Yin et

al., 2023). Compared to the MINT-SNN which incorporates

low precision membrane potential from 8-bit to 2-bit, the

proposed SpQuant-SNN achieves 2.3% higher accuracy

together with the 1.58-bit membrane potential and 5.1×

FLOPs reduction with spatial-channel pruning, as shown in

Table 8.

5.5 Object detection with SpQuant-SNN

We further demonstrate the performance of the proposed

SpQuant-SNN on a large-sized Automotive Prohesee Gen1

dataset (de Tournemire et al., 2020). We convert the DVS events

to binary frames and synchronized them with their actual ground

truths. To avoid the gradient vanishing in SpQuant-SNN-YoloV2,

we customize the YoloV2 model by skipping one convolution

block from the original architecture. We quantize the membrane

potential to ternary levels [−1.0, 0.0, 1.0] just like the classification

task and use 4-bit precision for weights to train SpQuant-SNN-

Custom-YoloV2. As shown in Table 9, our proposed SpQuant-

SNN algorithm with custom-YoloV2 reduces memory utilization

by 7.07× and FLOPs by 4.7× in comparison to the full-

precision baseline with a decrement of 0.042 in the mAP against

Prophesee Gen1 dataset. Furthermore, we illustrate the memory

vs. mAP performance comparison of SpQuant-SNN-YoloV2 in

Figure 5B.
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TABLE 7 Experimental results of Quant-SNN and SpQuant-SNN on DVS datasets using T = 10.

Method Architecture Weight
precision

Umem
precision

Weight
memory (MB)

Umem memory (MB) Total memory (MB) FLOPs reduction Top-1 accuracy

DVS-CIFAR10

tdBN (Zheng et al.,

2021)

ResNet-19 32-bit 32-bit 49.94 12.09 74.20 1× 67.80%

TET (Deng et al.,

2021)

VGG-Like 32-bit 32-bit 40.65 3.68 48.01 1× 77.33%

DSR (Meng et al.,

2022)

VGG-11 32-bit 32-bit 70.43 9.7 89.7 1× 75.70%

Dspike (Li et al.,

2021b)

ResNet-18 32-bit 32-bit 44.72 11.7 68.12 1× 75.45%

Spikformer (Zhou

et al., 2023b)

Spikformer-2-256 32-bit 32-bit 38.5 NA 38.5 1× 80.90%

Our

work (SNN-BL)

VGG-9 32-bit 32-bit 41.12 3.68 48.58 1× 78.45%

Our

work (Quant-SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 1× 77.94% (-0.51)

Our

work (SpQuant-

SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 5.0× 76.80% (-1.14)

N-Caltech

YOLE (Cannici

et al., 2019)

VGG7-Like 32-bit 32-bit 42.69 2.01 46.71 1× 70.02%

EST (Gehrig et al.,

2019)

ResNet-34 32-bit 32-bit 88.39 43.4 175.19 1× 78.70%

Asynet (Messikommer

et al., 2020)

VGG-13 32-bit 32-bit 22.32 4.09 30.50 1× 76.10%

Our

work (SNN-BL)

VGG-9 32-bit 32-bit 41.12 3.68 48.58 1× 80.45%

Our

work (Quant-SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 1× 79.45% (-1.0)

Our

work (SpQuant-

SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 4.8× 78.65% (-1.8)

Method Architecture Weight
precision

Umem
precision

Weight
memory (MB)

Umem memory (MB) Total memory (MB) FLOPs reduction Top-1 accuracy

DVS-CIFAR10

tdBN (Zheng et al.,

2021)

ResNet-19 32-bit 32-bit 49.94 12.09 74.20 1× 67.80%

TET (Deng et al.,

2021)

VGG-Like 32-bit 32-bit 40.65 3.68 48.01 1× 77.33%

DSR (Meng et al.,

2022)

VGG-11 32-bit 32-bit 70.43 9.7 89.7 1× 75.70%

Dspike (Li et al.,

2021b)

ResNet-18 32-bit 32-bit 44.72 11.7 68.12 1× 75.45%

Spikformer (Zhou

et al., 2023b)

Spikformer-2-256 32-bit 32-bit 38.5 NA 38.5 1× 80.90%

Our

work (SNN-BL)

VGG-9 32-bit 32-bit 41.12 3.68 48.58 1× 78.45%

Our

work (Quant-SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 1× 77.94% (-0.51)

Our

work (SpQuant-

SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 5.0× 76.80% (-1.14)

N-Caltech

YOLE (Cannici

et al., 2019)

VGG7-Like 32-bit 32-bit 42.69 2.01 46.71 1× 70.02%

EST (Gehrig et al.,

2019)

ResNet-34 32-bit 32-bit 88.39 43.4 175.19 1× 78.70%

Asynet (Messikommer

et al., 2020)

VGG-13 32-bit 32-bit 22.32 4.09 30.50 1× 76.10%

Our

work (SNN-BL)

VGG-9 32-bit 32-bit 41.12 3.68 48.58 1× 80.45%

Our

work (Quant-SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 1× 79.45% (-1.0)

Our

work (SpQuant-

SNN)

VGG-9 2-bit 1.58-bit 2.57 0.23 3.75 4.8× 78.65% (-1.8)
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TABLE 8 Experimental results of SpQuant-SNN on static image datasets including CIFAR-10 with T = 4 and T = 2 (our work), CIFAR-100 with T = 2, ImageNet-100 with T = 2, and Imagenet-1k with T = 4.

Method Architecture Weight precision Umem
precision

Weight
memory (MB)

Umem memory
(MB)

Total memory (MB) FLOPs reduction Top-1 accuracy

CIFAR-10

tdBN (Zheng et al., 2021) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1× 93.16%

DSR (Meng et al., 2022) ResNet-18 32-bit 32-bit 44.72 5.33 55.38 1× 91.89%

Dspike (Li et al., 2021b) ResNet-18 32-bit 32-bit 44.72 5.33 55.38 1× 94.25%

Spikformer (Zhou et al.,

2023b)

Spikformer-4-256 32-bit 32-bit 38.20 NA 38.20 1× 95.51%

MINT (Yin et al., 2023) ResNet-19 8-bit 8-bit 12.48 1.37 15.22 1× 91.36%

MINT (Yin et al., 2023) ResNet-19 4-bit 4-bit 6.24 0.69 8.30 1× 91.45%

MINT (Yin et al., 2023) ResNet-19 2-bit 2-bit 3.12 0.35 4.84 1× 90.79%

Our work (SNN-BL) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1× 94.56%

Our work (Quant-SNN) ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 1× 94.11% (-0.45)

Our work (Quant-SNN) Spikformer-4-256 8-bit 1.58-bit 9.62 0.25 15.26 1× 94.99% (-0.52)

Our

work (SpQuant-SNN)

ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 5.1× 93.09% (-1.48)

CIFAR-100

DSR (Meng et al., 2022) ResNet-18 32-bit 32-bit 44.72 5.33 55.38 1× 68.33%

TET (Deng et al., 2021) ResNet-19 32-bit 32-bit 49.94 5.33 60.94 1× 72.87%

Our work (SNN-BL) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1× 72.78%

Our work (Quant-SNN) ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 1× 71.87% (-0.91)

Our

work (SpQuant-SNN)

ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 4.7× 70.87% (-1.91)

ImageNet-100

TET (Deng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 74.70%

Our work (SNN-BL) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 74.76%

Our work (Quant-SNN) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 74.42% (-0.34)

Our

work (SpQuant-SNN)

ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 4× 73.40% (-1.36)

ImageNet-1K

tdBN (Zheng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 63.72%

TET (Deng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 68.00%

Dspike (Li et al., 2021b) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 68.41%

Our work (SNN-BL) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 68.46%

Our work (Quant-SNN) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 67.82% (-0.64)

Our

work (SpQuant-SNN)

ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 4× 67.12% (-1.34)

Method Architecture Weight precision Umem
precision

Weight
memory (MB)

Umem memory
(MB)

Total memory (MB) FLOPs reduction Top-1 accuracy

CIFAR-10

tdBN (Zheng et al., 2021) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1× 93.16%

DSR (Meng et al., 2022) ResNet-18 32-bit 32-bit 44.72 5.33 55.38 1× 91.89%

Dspike (Li et al., 2021b) ResNet-18 32-bit 32-bit 44.72 5.33 55.38 1× 94.25%

Spikformer (Zhou et al.,

2023b)

Spikformer-4-256 32-bit 32-bit 38.20 NA 38.20 1× 95.51%

MINT (Yin et al., 2023) ResNet-19 8-bit 8-bit 12.48 1.37 15.22 1× 91.36%

MINT (Yin et al., 2023) ResNet-19 4-bit 4-bit 6.24 0.69 8.30 1× 91.45%

MINT (Yin et al., 2023) ResNet-19 2-bit 2-bit 3.12 0.35 4.84 1× 90.79%

Our work (SNN-BL) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1× 94.56%

Our work (Quant-SNN) ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 1× 94.11% (-0.45)

Our work (Quant-SNN) Spikformer-4-256 8-bit 1.58-bit 9.62 0.25 15.26 1× 94.99% (-0.52)

Our

work (SpQuant-SNN)

ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 5.1× 93.09% (-1.48)

CIFAR-100

DSR (Meng et al., 2022) ResNet-18 32-bit 32-bit 44.72 5.33 55.38 1× 68.33%

TET (Deng et al., 2021) ResNet-19 32-bit 32-bit 49.94 5.33 60.94 1× 72.87%

Our work (SNN-BL) ResNet-19 32-bit 32-bit 49.94 5.5 60.94 1× 72.78%

Our work (Quant-SNN) ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 1× 71.87% (-0.91)

Our

work (SpQuant-SNN)

ResNet-19 4-bit 1.58-bit 6.24 0.25 7.49 4.7× 70.87% (-1.91)

ImageNet-100

TET (Deng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 74.70%

Our work (SNN-BL) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 74.76%

Our work (Quant-SNN) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 74.42% (-0.34)

Our

work (SpQuant-SNN)

ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 4× 73.40% (-1.36)

ImageNet-1K

tdBN (Zheng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 63.72%

TET (Deng et al., 2021) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 68.00%

Dspike (Li et al., 2021b) ResNet-34 32-bit 32-bit 87.19 11.03 109.25 1× 68.41%

Our work (SNN-BL) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 68.46%

Our work (Quant-SNN) ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 1× 67.82% (-0.64)

Our

work (SpQuant-SNN)

ResNet-34 8-bit 1.58-bit 21.27 0.51 23.83 4× 67.12% (-1.34)
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TABLE 9 Experimental results of the proposed SpQuant-SNN on Prophesee Automotive Gen1 dataset.

Dataset Method SNN Weight
precision

Umem
precision

Total
memory
(MB)

FLOPs
reduction

mAP

Asynet (Messikommer et al., 2020) FB-Dense No 32 - 532.00 1× 0.145

MatrixLSTM (Cannici et al., 2020) ResNet-19 No 32 - 260.00 1× 0.300

RED (Perot et al., 2020) RetinaNet No 32 - 96.00 1× 0.410

VGG-11+SSD (Cordone et al., 2022) VGG+SSD-

SNN

Yes 32 32 302.39 1× 0.187

This work (SNN-BL) Custom-

YoloV2-SNN

Yes 32 32 223.20 1× 0.240

This work (Quant-SNN) Custom-

YoloV2-SNN

Yes 4 1.58 31.57 1× 0.198

This work (SpQuant-SNN) Custom-

YoloV2-SNN

Yes 4 1.58 31.57 4.7× 0.176

Dataset Method SNN Weight
precision

Umem
precision

Total
memory
(MB)

FLOPs
reduction

mAP

Asynet (Messikommer et al., 2020) FB-Dense No 32 - 532.00 1× 0.145

MatrixLSTM (Cannici et al., 2020) ResNet-19 No 32 - 260.00 1× 0.300

RED (Perot et al., 2020) RetinaNet No 32 - 96.00 1× 0.410

VGG-11+SSD (Cordone et al., 2022) VGG+SSD-

SNN

Yes 32 32 302.39 1× 0.187

This work (SNN-BL) Custom-

YoloV2-SNN

Yes 32 32 223.20 1× 0.240

This work (Quant-SNN) Custom-

YoloV2-SNN

Yes 4 1.58 31.57 1× 0.198

This work (SpQuant-SNN) Custom-

YoloV2-SNN

Yes 4 1.58 31.57 4.7× 0.176

FIGURE 5

(A) Memory and performance comparison of SpQuant-SNN for VGG-9 on DVS-CIFAR10 dataset. (B) Memory and performance comparison of

SpQuant-SNN for Yolo-V2 on Prophesse Gen 1 dataset.

TABLE 10 Theoretical energy consumption vs. performance of SpQuant-SNN with di�erent architectures.

Architecture Dataset Weight
precision

Membrane
pot.

precision

E_mul (uJ)
theoretical

E_add (uJ)
theoretical

E_total (uJ)
theoretical

T Top-1
accuracy (%)

SpQuant-SNN-

VGG9

DVS-CIFAR-10 2-bit 1.58-bit 0.29 0.156 0.45 10 76.80

SpQuant-SNN-

ResNet19

CIFAR-10 4-bit 1.58-bit 1.04 0.58 1.62 4 93.09

SpQuant-SNN-

ResNet34

ImageNet-1k 8-bit 1.58-bit 5.54 2.62 8.16 4 67.12

SpQuant-SNN-

Yolov2

Prophesee-Gen1 4-bit 1.58-bit 4.63 2.362 6.99 1 0.176

5.6 Theoretical energy consumption of
SpQuant-SNN

Finally, we compute the theoretical energy consumption of our

proposed SpQuant-SNN algorithm for different architectures. We

follow BitNet (Wang et al., 2023) to compute the theoretical energy

of our proposed work. Since we perform the training on NVIDIA

A6000 GPUs, we adopt 7nm energy for add and multiplication

operation from Table 2 of BitNet (Wang et al., 2023). Overall, we

use Equation 31 to compute the theoretical energy consumption:

Theoretical ESpQuant−SNN =

Emul × Cl(1− Sc)×W ×H × kl × kl+

Eadd × Cl(1− Sc)×W ×H × kl × kl+

Eadd × T × B× Cl(1− Sc)×W ×H × (1− Sp)

(31)
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Table 10 demonstrates the theoretical energy consumption

of our proposed SqQuant-SNN-based architectures along

with their performance. Furthermore, we observe that

Spikformer (Zhou et al., 2023b) and BitNet (Wang et al.,

2023) do consider the membrane potential accumulation

in their energy modeling. For a fair comparison of energy

consumption between SpQuant-SNN and Spikformer, it is

important to count the membrane potential accumulation

energy.

6 Conclusion

In this paper, we propose SpQuant-SNN, a novel SNN

algorithm that implements both quantization and pruning to

achieve highly efficient SNNwith double compression. The integer-

only SNN with high sparsity largely reduces memory and compute

complexity. The proposed algorithm successfully compresses the

membrane potential down to ternary representation, achieving

up to 13× memory footprint reduction, while maintaining

the high simplicity of SNN. Furthermore, SpQuant-SNN shows

strong robustness in dynamic membrane pruning. SpQuant-SNN,

learning the membrane potential prior, implements spatial-channel

pruning and achieves >4.7× reduction in FLOPs. SpQuant-SNN

is evaluated on a comprehensive spectrum of computer vision

tasks, including both static image classification and event-based

object detection. The outstanding versatility makes the proposed

SpQuant-SNN a powerful solution for energy-efficient on-device

computer vision.
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