
Frontiers in Neuroscience 01 frontiersin.org

Comparison of autism spectrum 
disorder subtypes based on 
functional and structural factors
Shan Wang 1, Zhe Sun 2,3, Laura Alejandra Martinez-Tejada 4 and 
Natsue Yoshimura 4*
1 Department of Information and Communications Engineering, School of Engineering, Tokyo Institute 
of Technology, Yokohama, Japan, 2 Graduate School of Medicine, Juntendo University, Tokyo, Japan, 
3 Faculty of Health Data Science, Juntendo University, Tokyo, Japan, 4 Department of Computer 
Science, School of Computing, Tokyo Institute of Technology, Yokohama, Japan

Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders 
that may affect a patient’s social, behavioral, and communication abilities. As 
a typical mental illness, ASD is not a single disorder. ASD is often divided into 
subtypes, such as autism, Asperger’s, and pervasive developmental disorder-not 
otherwise specified (PDD-NOS). Studying the differences among brain networks 
of the subtypes has great significance for the diagnosis and treatment of ASD. 
To date, many studies have analyzed the brain activity of ASD as a single mental 
disorder, whereas few have focused on its subtypes. To address this problem, 
we explored whether indices derived from functional and structural magnetic 
resonance imaging (MRI) data exhibited significant dissimilarities between subtypes. 
Utilizing a brain pattern feature extraction method from fMRI based on tensor 
decomposition, amplitude of low-frequency fluctuation and its fractional values 
of fMRI, and gray matter volume derived from MRI, impairments of function in the 
subcortical network and default mode network of autism were found to lead to 
major differences from the other two subtypes. Our results provide a systematic 
comparison of the three common ASD subtypes, which may provide evidence 
for the discrimination between ASD subtypes.
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1 Introduction

Autism spectrum disorder (ASD) is a series of complex neurodevelopmental disorders 
that may affect a patient’s social, behavioral, and communication abilities (Molnar-Szakacs 
et  al., 2021). According to the Global Burden of Disease Study in 2019, there are 
approximately 28 million ASD patients worldwide (Vos et al., 2020). ASD is more common 
in children; however, few reports of cases in adults are found due to the lack of effective 
intervention or unfortunate experience in adulthood. The traditional diagnosis of ASD is 
mainly based on the observations of doctors and various rating scales. According to the 
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) (American 
Psychological Association, 1994), ASD can be divided into multiple subtypes, including 
autism, Asperger’s, pervasive developmental disorder not otherwise specified (PDD-NOS), 
Rett’s disorder, and childhood disintegrative disorder. However, in the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (American Psychiatric 
Association, 2013), Rett’s disorder and childhood disintegrative disorder are no longer 
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considered subtypes of ASD (Oberman and Kaufmann, 2020). 
Regardless of the rating scale used, it is widely recognized that ASD 
has multiple subtypes, and disorders including autism, Asperger’s, 
and PDD-NOS are the basic subtypes of ASD (Brown et al., 2010; 
Tamura et al., 2010; Sharma et al., 2018). The basis of traditional 
diagnosis is to compare the behavior of a person with the typical 
performance described in the checklist. In other words, the 
experience of the doctor, rather than the biological signals of the 
patient, plays an important role in the diagnosis. Therefore, 
traditional diagnoses based on rating scales are likely to be affected 
by various subjective factors. This subjectivity may lead to 
misdiagnosis, considering the heterogeneity among patients and 
differences between subtypes.

With the development of medical technology, many 
non-invasive acquisition methods have emerged to obtain signals 
from the human brain, including electroencephalography (EEG), 
magnetic resonance imaging (MRI), and functional MRI (fMRI). 
These non-invasive acquisition methods provide new ideas for the 
study of ASD (Tuchman and Rapin, 2002; Wang et al., 2013; Pierce 
et  al., 2021). In recent years, many ASD studies have been 
conducted based on fMRI, due to its capabilities of providing a 
type of four-dimensional data that contains spatial and temporal 
information of the whole brain. Some studies have attempted to 
illustrate the impairment in brain function of ASD patients 
through fMRI analysis. Haghighat et  al. found differences in 
between-connectivity among default mode network, salience-
executive network, and fronto-parietal network between ASD and 
healthy children (Haghighat et al., 2021). Maximo et al. observed 
reduced brain entropy in the prefrontal areas of children with 
autism (Maximo et al., 2021). Another part of the studies tried to 
apply the deep learning method to fMRI data and classify ASD 
patients and healthy controls. A long short-term memory model 
was proposed in 2019 with data from four sites, achieving an 
average accuracy of 74.8% (Dvornek et al., 2019). Soon after, a 3D 
convolutional neural network (CNN) was proposed in 2020 and 
achieved an accuracy of 66.0% with data from 2085 subjects 
(Thomas et al., 2020). Some new deep learning methods including 
graph convolutional network have also appeared in the ASD 
studies (Parisot et  al., 2018). In addition to the functional 
characteristics, there have also been studies focusing on the 
differences in brain structure between patients with ASD and 
healthy controls. Yaxu et al. observed atypical development in gray 
matter volume (GMV) and gray matter density (Yaxu et al., 2020). 
Watanabe and Rees identified age-associated atypical increases in 
relative GMVs of the regions of auditory and visual networks and 
an age-related aberrant decrease in the relative GMV of the fronto-
parietal network in children with ASD (Watanabe and Rees, 2016). 
In addition, GMV is an important feature of ASD classification 
(Arya et al., 2020).

Although many studies have focused on the analysis or 
classification of ASD, few have focused on its subtypes. Previous 
studies have tended to focus on the difference between single 
subtype and typically developing controls or other mental disorders, 
such as attention deficit hyperactivity disorder and schizophrenia 
(Chen et al., 2017; Huang et al., 2020; Shi et al., 2020). In this study, 
we focused on the functional and structural differences between the 
three common ASD subtypes: autism, Asperger’s, and 
PDD-NOS. For fMRI data, we  applied a tensor decomposition 

method to capture the different brain communities in the ASD 
subtypes. In recent years, tensor decomposition has been used to 
extract the features of brain activity from fMRI data (Aggarwal and 
Gupta, 2019; Li et al., 2020). Resting-state fMRI dataset is a high 
dimension data which is a combination of brain regions, time and 
patients. Tensor decomposition is a good tool to extract a 
compressed feature set or to alleviate the joint effect of factors to 
analyze a certain dimension. As additional functional features, 
amplitude of low-frequency fluctuation (ALFF) (Wang Z. et  al., 
2019; Arya et al., 2020) and fractional ALFF (fALFF) (Zou et al., 
2008; Itahashi et  al., 2015) of the subtypes, were extracted from 
fMRI data, and as a representation of structural features, the gray 
matter volume (GMV) (Zhao et al., 2022) was extracted to evaluate 
the variation of the brain structures among the subtypes. Based on 
the three functional and one structural brain features, we aimed to 
provide a systematic understanding of the heterogeneity among the 
three subtypes, which may provide a new idea for the discrimination 
of ASD subtypes.

2 Materials and methods

In this study, we extracted four types of brain features, three 
functional and one structural features to discover the differences 
between the ASD subtypes as summarized in Figure 1A. As the 
first functional feature, we presented a brain pattern extraction 
method to determine the brain patterns and related sub-networks 
of different ASD subtypes. For the other two functional features, 
we extracted two common features, amplitude of low-frequency 
fluctuation (ALFF) and fractional ALFF (fALFF). Finally, for the 
structural feature, we  extracted gray matter volume (GMV) to 
examine whether there are structural changes between the 
subtypes. In this section, we first introduce the fMRI dataset used 
in this study (Section 2.1). Then, we introduce the fundamental 
features used in this study (Section 2.2), including functional 
connectivity (FC), ALFF, fALFF, and GMV. As shown in Figure 1B, 
we proposed a tensor-decomposition-based brain pattern feature 
extraction method for the ASD subtypes to show brain community 
features (Section 2.3). Finally, we use a statistical test to check 
whether there are significant differences between the ASD 
subtypes in terms of functional and structural features 
(Section 2.4).

2.1 Data acquisition

The fMRI dataset used in this study was obtained from the Autism 
Brain Imaging Data Exchange I (ABIDE I) (Craddock et al., 2013; Di 
Martino et al., 2014), a public dataset involving resting-state fMRI and 
anatomical and phenotypic datasets from 17 international sites. Full 
details for acquisition parameters, site-specific protocols and 
descriptions about the participants can be found at https://fcon_1000.
projects.nitrc.org/indi/abide/abide_I.html. The entire dataset contains 
data from 539 patients with ASD and 573 typical controls. However, 
since our work focused on the differences between ASD subtypes, 
only resting-state fMRI data and anatomical data from patients with 
ASD subtypes were considered for extracting functional and 
structural features, respectively. The inclusion criteria were as follows.
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 • With exact subtype label
 • Without data error
 • Without long-time fixed signal

The first two inclusion criteria were based on phenotypic 
data from the ABIDE I dataset. In terms of the third one, because 
it is based on the functional connectivity method, for the 

FIGURE 1

Framework of this study: (A) feature extraction process. (B) Framework of the FC-based brain pattern feature extraction. (C) Detection of the number of 
the brain patterns.
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completeness of the article, the inclusion criteria will be described 
in Section 2.2.

The corresponding datasets used in this study are described in 
Table 1. The dataset contained resting-state fMRI and anatomical data 
from 152 patients with autism, 54 patients with Asperger’s, and 28 
patients with Pervasive Developmental Disorder-Not Otherwise 
Specified (PDD-NOS). The labels of the subtypes are from the 
phenotypic data provided by the ABIDE project. The diagnosis of 
different subtypes and detailed information of the subjects are 
provided in the Supplementary material. To make our results more 
robust, we  used the same preprocessed data from the ABIDE 
Preprocessed project (Craddock et  al., 2013) with the pipeline 
provided by the Connectome Computation System (CCS) (Xu et al., 
2015). The steps and parameters of the CCS pipeline are presented in 
Table 2. In this study, the fMRI data were collected using the filt_
global preprocessing strategy with band-pass filtering (0.01–0.1 Hz) 
and global signal regression. Registration from the original to 
Montreal Neurological Institute’s 152 (MNI152) brain template was 
calculated using a combination of linear and non-linear transforms.

2.2 Feature extraction

2.2.1 Brain atlas
Based on the anatomical MRI and resting-state fMRI analysis, 

regions of interest (ROI) based features and brain networks features 
are extracted and analyzed to provide some significant information 

for the ASD subtypes discrimination. The brain data ROIs, which are 
defined by brain atlases, represent the averages of the values from the 
brain regions (voxels) with similar functions. Brain networks are even 
bigger concepts representing sets of different ROIs that work together 
to achieve higher-level cognitive functions. In this study, Craddock 
200 brain parcellation (Craddock et al., 2012) was selected to obtain 
the ROI-based features for its data-driven nature. The Craddock 200 
atlas is a gray matter mask that contains 200 ROIs, which can provide 
sufficient regions to discover the differences in functional and 
structural features. The robust performance of the atlas has also been 
verified in several previous studies (Liang and Xu, 2022; Kunda 
et al., 2023).

In terms of large-scale brain networks, this study performed an 
analysis on the 12 well-defined brain sub-networks provided by Power 
et al. (2011). To incorporate these sub-networks into the Craddock 200 
atlas, we chose the adopted sub-networks provided by Ingalhalikar 
et al. (2021). The original networks were assigned to the Craddock 200 
atlas after matching each ROI from the Craddock 200 atlas with the 
ROI from the Power264 atlas, based on the minimum 
Euclidean distance.

2.2.2 Functional connectivity
Functional connectivity (FC) is an effective method for evaluating 

the relationships between different brain regions. FC is a common 
fMRI feature that numerous studies have used to identify the unique 
characteristics of the disease. According to the length of the time 
duration that is considered, FC can be divided into static and dynamic 
FC. Static FC evaluates the relationships between ROIs over the entire 
time length, while dynamic FC evaluates such relationships based on 
multiple time windows. Previous studies have shown that FC may 
have different patterns during the scan period in resting-state fMRI 
data from patients with ASD (Yao et al., 2016; Aggarwal and Gupta, 
2019). Therefore, in this study, the dynamic FCs of each patient were 
extracted to evaluate the various patterns of the subtypes.

Dynamic FC was calculated based on the ROI signals in the 
sliding windows. Denote the time length of the sliding window is L, 
the TR of site i is iTR , then the signal length iN  for the time window 
can be defined as Equation 1:

 
i

i

LN
TR
 

=  
  

(1)

TABLE 1 Details of fMRI data from ABIDE I used in this study.

Site Autism Asperger’s PDD-
NOS

Sex/(M/F) TR/ms Scan 
Time/s

Scan Machine Eye Status/
(Open/
Closed)

NYU 52 18 5 65/10 2000 360 SIEMENS 3 T Allegra 65/10

SDSU 3 7 2 11/1 2000 370 GE 3 T MR750 12/0

SBL 1 4 6 11/0 2,200 448 Philips Intera 3 T 0/11

UM1 35 6 1 36/6 2000 600 GE 3 T Signa 42/0

UM2 10 3 0 12/1 2000 600 GE 3 T Signa 13/0

USM 44 0 1 45/0 2000 486 SIEMENS TrioTim 45/0

Max_Mun 2 8 0 10/0 3,000 606 SIEMENS Verio 7/3

YALE 5 8 13 19/7 2000 400 SIEMENS TrioTim 26/0

Total 152 54 28 209/25 n.a. n.a. n.a. 210/24

M, male; F, female.

TABLE 2 The steps and parameters in the CCS pipeline.

Section Step Strategy

Basic processing

Drop first “N” volumes 4

Slice timing correction Yes

Motion realignment Yes

Intensity normalization 4D Global mean = 1,000

Nuisance signal 

removal

Motion 24-param

Tissue signals Mean WM and CSF signals

Motion realignment Yes

Low-frequency drifts Linear and quadratic trends
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The length of the time window L is not chosen subjectively either. 
Leonardi and Van De Ville found that the length selection of the sliding 
window is related to the low-end cutoff frequency of the bandpass filter 
used in data processing (Leonardi and Van De Ville, 2015):

 

1
low

L
f

=
 

(2)

lowf  in Equation 2 is the low-end cutoff frequency of the bandpass 
filter. In this study, the bandpass filter used in the preprocessing was 
0.01 ~ 0.1 Hz, thus making the length of the time window L 100 s.

After determining the length of the sliding window, the FC in each 
time window can be described as a matrix of Pearson correlation 
coefficients between each two ROIs:

 

( ) ( )( )( )
,

cov , X Y
X Y

X Y X Y

E X YX Y µ µ
ρ

σ σ σ σ
− −

= =
 

(3)

,X Yρ is the Pearson correlation coefficient between ROI X  and 
ROI Y  in the time window. µ is the mean value of the ROI signal in 
the time window and σ  is the standard deviation of the ROI signal in 
the time window. The range of ,X Yρ is ,1 1X Yρ− ≤ ≤ , which represents 
the relationship between the two ROIs in the time window.

In addition to evaluating the relationship between ROIs, dynamic 
FC can also be used to check the quality of the data. As described in 
Section 2.1, dynamic FC was also used for the automatic selection of 
resting-state fMRI data. In the calculation of the dynamic FC, 
we sometimes found errors in the results. From Equation 3, we know 
that there will be an error in the calculation only when the standard 
deviation of the ROI signal is zero. In other words, when errors were 
found, at least one of the ROI signals remained unchanged during the 
time window. In fact, when we rechecked the original time series data, 
we found that some of the patient data had constant ROI signals. 
Therefore, in this study, dynamic FC was also used for the quality 
control of the data. When there was an error in the calculation, 
we excluded the data of the corresponding patients from the dataset 
(data from 15 subjects were excluded).

Finally, after calculating the dynamic FC, the FCs from patients 
with different ASD subtypes were grouped. However, as can be seen 
from Table 1, different sites had different scan times. Therefore, to 
facilitate subsequent processing, the data length of the dynamic FC 
was set to 120.

2.2.3 Frequency domain features
In addition to the dynamic FC extracted from the ROI signal, 

which is a temporal feature based on resting-state fMRI data, 
we  also utilized spectral features to determine the differences 
between ASD subtypes. In previous studies, low-frequency 
fluctuations in resting-state fMRI data have been proven to 
effectively reflect the brain activity of a subject during the scanning 
process (Zang et al., 2007; Hu et al., 2014). Therefore, the spectral 
features, ALFF and fALFF, were extracted to investigate the 
differences of the ROIs in each subtype.

ALFF aims to directly examine the low-frequency of each voxel. 
The ALFF value is defined as the average amplitude from each 
frequency point in the low-frequency band. To make it clear, for the 
time signal of voxel x , the signal ( )y t  after bandpass-filtering can 
be described as Equation 4:

 
( ) ( ) ( )

0
·y t x h t dτ τ τ

+∞
= −∫

 
(4)

where ( )h t  denotes the bandpass filter. Note the power spectrum 
of ( )y t  as ( )Y f , then the ALFF value of voxel x  can be described as 
Equation 5:

 
( )

( )high

low

f
f

high low

Y f df
ALFF x

f f
=

−

∫
 

(5)

where highf  is the high-end cutoff frequency, and lowf  is the 
low-end cutoff frequency. To be consistent with the ALFF features 
used in previous studies, the ALFF map used in this work is also from 
the CCS pipeline in the ABIDE Preprocessed project. Before extracting 
the ROI-level ALFF features, we normalized the ALFF map of each 
patient using the z-score method. Finally, the average of the ALFF 
values from the voxels belonging to the same ROI were calculated.

fALFF is also a common spectral feature in fMRI studies. In 
contrast to ALFF, fALFF also considers the signal of the non-filtered 
data. For the time signal of voxel x , note ( )filteredX f  as the power 
spectrum after bandpass filtering and ( )non filteredX f−  as the power 
spectrum of non-filtered data. The fALFF value of voxel x  can be 
described as Equation 6:

 

( )
( )

( )0

high

low

f
filteredf

non filtered

X f df
fALFF x

X f df
+∞

−

=
∫

∫  

(6)

where highf  is the high-end cutoff frequency, and lowf  is the 
low-end cutoff frequency. Similar to the condition in ALFF, the fALFF 
map is also from the CCS pipeline in the ABIDE Preprocessed project. 
The same normalization and ROI-level feature extraction were 
implemented for the fALFF extraction.

2.2.4 Gray matter volume
As pointed out in previous studies, complicated functional 

changes or impairments occur in patients with ASD (Haghighat et al., 
2021; Yang et al., 2023). Whether there are corresponding structural 
changes in the brain lobes or gyri remains a hot topic in research. In 
our study, GMV was extracted as a representation of structural 
features to determine whether changes in gray matter were similar to 
those in brain function. As mentioned in Section 2.1, the original MRI 
images used in this study were obtained from ABIDE anatomical data. 
To obtain the volume of each ROI, we  used the Computational 
Anatomy Toolbox (CAT12) (Gaser et  al., 2024) of the Statistical 
Parametric Mapping (SPM12) software (Ashburner, 2012) to perform 
the gray matter segmentation and ROI-level GMV estimation. In 
addition, z-score normalization was also adopted to compare the 
GMV of each ROI. To maintain consistency with the comparison 
above, the Craddock 200 atlas was used in the GMV calculation.

2.3 FC-based brain pattern extraction

Tensor decomposition is an effective method for separating attribute 
information from high-dimensional data. For the dynamic FC data in 
this study, which are composed of information on subtype, patient, ROI, 
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and time, it is appropriate to use the tensor decomposition method to 
extract the brain patterns for each subtype. Previous studies have proven 
the effectiveness of tensor decomposition in brain data analysis (Becker 
et al., 2014; Aggarwal and Gupta, 2019; Zheng et al., 2021). Aggarwal 
et  al. proposed an overlapping network identification method for 
multivariate vector regression-based connectivity (MVRC) based on 
tensor decomposition to determine the differences between patients with 
ASD and typical controls (Aggarwal and Gupta, 2019). However, the 
calculation of MVRC is complex, and the selection of the regularization 
parameters is empirical. In this study, we chose to use dynamic FC to 
perform brain pattern extraction for simplicity and objectivity. The 
framework for the brain pattern extraction is shown in Figure 1B.

2.3.1 Group-level dynamic FC
As shown in Figure  1B, before extracting the brain patterns, a 

group-level dynamic FC for each ASD subtype should be produced to 
represent the overall characteristics of the dynamic FC within the same 
subtype. Generally, such group-level FC is generated by simply averaging 
all FC matrices across patients, which is common and easy to realize. 
However, simply averaging assumes that all the patients’ data have the 
same contribution to the construction of group-level FC, which may 
introduce additional noise and ignore the heterogeneity among the 
patients of the same subtype. To address this issue, Tucker decomposition 
(Tucker, 1966) was implemented to calculate the weights for each 
patient’s data and construct a group-level dynamic FC (Figure 1B).

For the dataset of a single ASD subtype, the FC matrices of the 
subjects in each time window can form a three-order tensor. In this 
study, the group-level dynamic FC was calculated based on these 
tensors. Note the three-order tensor for one time window 
as N N S× ×∈  , where N  is the number of ROIs, and S is the number 
of subjects. To obtain the group-level FC for each time point, Tucker 
decomposition was used to calculate the weight of the FC for each 
subject. The decomposition can be described as Equation 7:

 1 2 3X Y Z≈ × × ×   (7)

where  is the core tensor of the decomposition. Because we do 
not need to compress or approximate the FC data, the dimensions of 
the core tensor can be set to be the same as those of  , i.e., N N S× ×∈ 
. Besides, N NX ×∈ , N NY ×∈ , S SZ ×∈  are the orthonormal factor 
matrices along each mode of the tensor  , which contain the 
information of the corresponding attribute. And n×  is the mode n 
product in the decomposition. Obviously, only the matrix Z  contains 
the information of the subjects, and from the principle of Tucker 
decomposition, the first column of Z  contains the most significant FC 
features across the subjects. Therefore, in this study, 1

1
SZ ×∈  as the 

first column of Z , is used as the weight to construct the group-level FC:

 

( ) ( )
( )

11

11

S
s

S
s

Z s M s
G

Z s
=

=

=
∑
∑  

(8)

In Equation 8, N NG ×∈  is the group-level FC for the time point, 
and M  is the FC matrix of the subject. A group-level dynamic FC 
tensor N N W× ×∈   can be constructed by calculating group-level FC 
at each time point, where W is the number of time windows.

2.3.2 Extraction of brain patterns
Brain patterns are sets of brain regions that can provide important 

community information during brain activity. The investigation of brain 
patterns may further illustrate the impairment in brain function based 
on FC. Previous studies have shown that non-negative tensor 
factorization has a good ability to extract pattern information from 
brain data (Ponce-Alvarez et al., 2015; Aggarwal and Gupta, 2019). In 
this study, we performed non-negative CANDECOMP/PARAFAC (CP) 
decomposition with adaptation of the block principal pivoting algorithm 
(Kim and Park, 2008) to extract multiple brain patterns of the subtypes.

Because we are performing non-negative CP decomposition, the 
absolute values of all group-level dynamic FCs of the subtypes are 
obtained. For convenience, the following group-level dynamic FCs 
refer to the absolute values. Given a fixed rank R, for the group-level 
FC tensor N N W× ×∈  , the decomposition of brain patterns can 
be described as Equation 9:

 1

R
i i i i

i
λ

=
≈∑   x y z

 
(9)

where “” is the sign of outer product, 1N
i

×∈x  , 1N
i

×∈y   and 
1W

i
×∈z   are the factor vectors with the column norm of 1, which 

contains the information of the dimensions or modes of the tensor 
 . iλ ∈ are the weights of the rank-one tensors which are produces 
by the outer product of ix , iy  and iz . From the process of CP 
decomposition, we  can know that ix  and iy  represent the 
information of the ROIs and the vector iz  represents the information 
hidden in the time. Since the FCs are symmetric, the vectors ix  and 

iy  should be identical. Then, if we consider each rank-one tensor as 
a brain pattern, the rank R is actually the number of brain patterns 
hidden in the group-level FC tensor and ix  or iy  is actually the 
strength of the ROI in the corresponding pattern. Therefore, to 
determine the ROI communities in each brain pattern, we used the 
mean plus one standard deviation as the threshold value to detect 
ROIs with a high activity strength in the pattern.

2.3.3 Determination of the number of brain 
patterns

From the CP decomposition introduced in Section 2.3.2, we can 
know that rank R is actually the number of rank-one tensors. In other 
words, rank R determines the number of brain patterns in this study. 
However, the prediction of rank R in CP decomposition is an NP-hard 
problem. Various studies have proposed methods for determining the 
appropriate R for CP decomposition. In this study, we introduced the 
core-consistency method (Gauvin et al., 2014) for the prediction of 
rank R for its simplicity and efficiency.

For Tucker decomposition, the result is composed of factor 
matrices related to the corresponding dimensions of the tensor. 
Therefore, if the process is rewritten in the form of vectors, Tucker 
decomposition can be expressed as Equation 10:

 1 1 1

X Y Z

X Y Z X Y Z

X Y Z

I I I
i i i i i i

i i i
k

= = =
≈ ∑ ∑∑   x y z

 
(10)

where 
Xix , 

Yiy , and 
Ziz  are the columns of the original factor 

matrices X , Y  and Z , respectively. 
X Y Zi i ik  is the element of the kernel 
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tensor . Comparing (9) and (10), we can find that when the kernel 
tensor  is a superdiagonal tensor, Tucker decomposition degenerates 
into CP decomposition. This implies that CP decomposition is a 
special form of Tucker decomposition. Then, for the fixed vectors ix , 

iy  and iz  of the CP decomposition (without the constraint that column 
is 1), with an appropriate rank R, the core tensor in Tucker 
decomposition should be similar to the superdiagonal tensor of ones. 
Thus, core consistency can be calculated as Equation 11:

 

( )21 1 1 1
 100 1

R R R
ijki j k k

core consistency
R

= = =
 − = × − 
 
 

∑ ∑ ∑

 

(11)

where ijkk  is the element in the Tucker decomposition. In this 
study, we calculated the core-consistency value from 1R =  to 10R =  
to find the appropriate R value, and to ensure the reproducibility of 
the results, 3-fold cross-validation method was implemented. The 
results are shown in Figure  1C. As shown in Figure  1C, the core 
consistency values of the three ASD subtypes varied from R = 1 to 
R = 10, and we found a rapid decrease from R = 2 to R = 7. The research 
of Rasmus Bro et  al. found that a core consistency value in the 
neighborhood of 50% leads to a problematic model (Bro and Kiers, 
2003). Therefore, in this study, to find as many brain patterns as 
possible while ensuring the stability of the result, 60% is considered as 
an appropriate threshold, and the corresponding R values with the 
core consistency above the threshold are considered as the optimal 
number of brain patterns for each ASD subtype. As a result, the R 
values for autism were 3, and for Asperger’s and PDD-NOS were 4.

2.4 Statistical test

In this study, in addition to the comparison of brain patterns, 
we aimed to determine the differences between ASD subtypes by inter-
comparison. To achieve this goal, the functional and structural feature 
values including ALFF, fALFF, and GMV of each ROI from different 
subtypes were compared by t-test to determine the differences between 
the subtypes. Furthermore, to discover such differences on a larger 
scale, we used the 12 well-defined brain networks parcellation to check 
the sub-networks that were involved in the comparisons. Because these 
comparisons involve multiple testing, in this work, the false discovery 
rate (FDR) correction was used for multiple testing correction. In 
addition, to check which ROIs were involved in all these comparisons 
(brain pattern, ALFF, fALFF, and GMV), we  compared all the 
comparisons results and selected the overlapping ROIs. It should 
be noted here that for the comparison of brain patterns of the subtypes, 
a ROI was counted as involved in the comparison of one brain pattern 
if it appeared in one subtype and did not appear in the other.

3 Results

In this section, we present the results of the tensor decomposition-
based brain pattern extraction and compare the functional and 
structural features. The brain patterns of each ASD subtype are 
described in Section 3.1. The inter-comparisons of ALFF, fALFF, and 
GMV between the subtypes are shown in Section 3.2. It should 

be noted that all the results from the comparisons based on the t-test 
in this study were at a significance level of 0.05, and FDR correction 
was adopted for multiple testing correction.

3.1 Brain pattern extraction

Figure 2 shows the brain patterns of each ASD subtype. Based on 
the results of the core consistency analysis as shown in Figure 1C, the 
number of brain patterns differed depending on subtypes. The patient 
group with autism tended to have three different brain patterns, while 
the patient groups with Asperger’s and PDD-NOS tended to have four 
different brain patterns. To clearly show the spatial distribution of the 
ROIs of the brain patterns, we projected the nodes onto a standard 
brain template using the BrainNet Viewer toolbox (Xia et al., 2013). 
As shown in Figure  2, the brain patterns extracted by the tensor 
decomposition method show a high degree of organization.

To demonstrate how these functional networks vary among 
subtypes, we followed the strategy adopted by Ingalhalikar et al. (2021) 
to divide the ROIs into 12 well-defined sub-networks based on different 
brain functions, including sensory/somatomotor hand (SMH), sensory/
somatomotor mouth (SMM), cingulo-opercular network (CON), 
auditory network (AN), default mode network (DMN), cingulo-parietal 
network (CPN), visual network (VN), fronto-parietal network (FPN), 
salience network (SAN), subcortical network (SCN), ventral attention 
network (VAN), and dorsal attention network (DAN). Table 3 shows the 
sub-networks involved in different brain patterns and the number of 
ROIs that belong to the sub-networks (sub-networks with only one ROI 
are not listed). From Table  3, we  can see that if we  consider the 
sub-networks with more than five ROIs as the dominant sub-network 
in the brain pattern, we can find that some of the brain patterns of 
different subtypes can be grouped together. Pattern 1 of autism, Pattern 
2 of Asperger’s and Pattern 1 of PDD-NOS can be gathered as Group 1, 
Pattern 2 of autism, Pattern 1 of Asperger’s and Pattern 2 of PDD-NOS 
can be  gathered as Group  2, Pattern 3 of the three subtypes can 
be  gathered as Group  3, and finally Pattern 4 of Asperger’s and 
PDD-NOS can be gathered as Group 4. We found that the sub-networks 
of Group 1 were mainly AN and CON, which were related to auditory 
activity, tonic alertness, and task control, while Pattern 1 of PDD-NOS 
showed a difference in SMH, which is linked to the motor activity of the 
hands. Group 2 mainly included the ROIs from the DMN and DAN, 
which are related to resting-state activity and task attention. Previous 
studies have pointed out that the activity of areas from the DMN is anti-
correlated with that of the DAN regions (Wang J. et al., 2019; Qian et al., 
2020). In this study, since we analyzed the brain patterns extracted by 
the non-negative CP decomposition, these two sub-networks were 
gathered in the same pattern, which is consistent with previous studies. 
Group 3 is mainly correlated with the VN, which is from Pattern 3 of all 
subtypes. Finally, Group 4 only included the brain patterns of Asperger’s 
and PDD-NOS, which are the patterns containing the ROIs from the 
SCN and DMN. Abnormalities in the FC of the SCN and DMN may 
lead to the main difference between autism and the other subtypes.

3.2 Inter-comparison of the ASD subtypes

Figures 3–5 show the results of the inter-comparison of the ASD 
subtypes for ALFF, fALFF, and GMV, respectively. In terms of ALFF, as 
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shown in Figure 3, the number of different ROIs between autism and 
Asperger’s was much greater than that in the other two conditions, 
with 27 significant nodes. However, there was no ROI shown in the 
comparison of PDD-NOS and Asperger’s, indicating that the difference 
between PDD-NOS and Asperger’s in ALFF was not significant at the 
level of 0.05. The differences between autism and Asperger’s are mainly 
focused on the ROIs from the DMN, SCN, VN, and some scattered 
ROIs from the SAN, CON, DAN, CPN, VAN, and FPN (only one ROI 
for each). The ROIs with significantly higher ALFF values were mainly 
in the frontal and temporal lobes, whereas the ROIs with significantly 
lower ALFF values were mainly in the parietal and occipital lobes. The 
significant ROIs in the autism vs. PDD-NOS comparison are much 
fewer, with only four nodes from DMN and FPN, which are mainly 
focused on the frontal lobe and insula cortex.

In terms of fALFF, the situation is the opposite to that of ALFF. The 
differences between autism and Asperger’s in the fALFF are not as 
many as in the ALFF. As shown in Figure 4A, the significantly different 
ROIs were mainly focused on the DMN, DAN, VAN, and FPN, with 
scattered ROIs from the SCN and CON. The DMN still showed the 
most different ROIs in the comparison, while ROIs from the DAN and 
FPN of the autism group showed significantly lower fALFF values 
than those of the Asperger’s group. The comparison between autism 
and PDD-NOS showed significantly more significant nodes than the 
other two conditions, with 86 ROIs appearing to be  significantly 
different between the two subtypes. Unlike the condition of autism vs. 

Asperger’s, the SCN from the autism group showed the most different 
nodes compared with the PDD-NOS group, where 19 ROIs showed 
significantly higher fALFF values. Nodes from the DMN, DAN, VAN, 
and FPN also appear in the comparison. In addition, nodes from VN 
and CON show differences that are not found in the comparison 
between autism and Asperger’s condition. There were only three nodes 
showing differences between Asperger’s and PDD-NOS, with two of 
them from the precentral gyrus and one from the angular gyrus.

The differences between the three subtypes of GMV are shown in 
Figures 5A–C. The significant nodes are much fewer than in the ALFF 
and fALFF conditions. In the comparison between autism and 
Asperger’s, there are 3 ROIs showing different GMV values between 
the two subtypes, with two nodes for higher values in the middle 
temporal gyrus and one for lower values in the orbital part of the 
middle frontal gyrus. In the comparison between autism and 
PDD-NOS, the number of different nodes was slightly higher. Three 
ROIs from the SCN of the autism group showed significantly lower 
GMV values, while one ROI from the FPN and DMN showed higher 
GMV values than the PDD-NOS group. For the comparison between 
Asperger’s and PDD-NOS, no ROI survived after the t-test, showing 
no statistical difference between the two subtypes in terms of GMV.

The ROIs involved in multiple comparisons are shown in Figure 6. 
Angular_L, Temporal_Sup_L, and Insula_L are the high-frequency 
ROIs involved in multiple comparisons in autism and the other two 
subtypes. Interestingly, except for Insula_L, which does not belong to 

FIGURE 2

Brain patterns of the ASD subtypes: (A) Pattern 1 of autism (dominated by AN and CON). (B) Pattern 2 of autism (dominated by DMN and DAN). 
(C) Pattern 3 of autism (dominated by VN). (D) Pattern 1 of Asperger’s (dominated by DMN and DAN). (E) Pattern 2 of Asperger’s (dominated by AN and 
CON). (F) Pattern 3 of Asperger’s (dominated by VN). (G) Pattern 4 of Asperger’s (dominated by SCN and DMN). (H) Pattern 1 of PDD-NOS (dominated 
by AN, SMH and CON). (I) Pattern 2 of PDD-NOS (dominated by DMN and DAN). (J) Pattern 3 of PDD-NOS (dominated by VN). (K) Pattern 4 of PDD-
NOS (dominated by SCN and DMN). AN, auditory network; CON, cingulo-opercular network; SCN, subcortical network; SMM, sensory/somatomotor 
mouth; SMH, sensory/somatomotor hand; SAN, salience network; FPN, fronto-parietal network; DMN, default mode network; DAN, dorsal attention 
network; VN, visual network; VAN, ventral attention network; CPN, cingulo-parietal network.
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a certain network, the other two are from the DMN. In addition, in 
the result of PDD-NOS vs. Asperger’s, Angular_L from the DMN also 
showed abnormalities in multiple comparisons. In terms of the other 
ROIs, in the comparisons between autism and Asperger’s, the 
abnormality in DMN and SCN remained the main difference, while 
in the comparison between autism and PDD-NOS, the ROIs from 
CON also appeared in the multiple comparisons. Since the ROIs of 
CON mainly show the difference in the brain pattern comparison, this 
result may indicate an abnormality in the functional connectivity or 
brain community of CON between these two subtypes. In terms of the 
comparisons between PDD-NOS and Asperger’s, only Angular_L 
from DMN showed a high frequency of involvement in the 
comparisons, once again showing fewer differences than the other two 
conditions (autism vs. Asperger’s and autism vs. PDD-NOS).

4 Discussion

In this study, we compared the neuroimaging features of ASD 
subtypes based on multiple criteria including brain patterns, ALFF, 
fALFF, and GMV. In the brain pattern extraction, we  found 
abnormalities in the FC of the SCN and DMN, which may lead to the 
main difference between autism and the other subtypes. In addition, in 
the inter-comparisons, ALFF, fALFF, and GMV showed different 
abilities to capture the functional and structural characteristics of the 
subtypes. For ALFF and fALFF, the ROIs from DMN also showed 
different activities among the three subtypes. ROIs from SCN also 
showed abnormalities in the comparisons between autism and the 
other two subtypes, which is consistent with the results of the brain 
pattern extraction. In addition, multiple ROIs from DAN, VAN, and 
FPN appeared in the comparison of fALFF between autism and 
PDD-NOS. Compared to the comparison between autism and the 
other two subtypes, the comparison between Asperger’s and PDD-NOS 
showed that few ROIs were significantly different. In terms of GMV, 

only three ROIs showed themselves in the comparisons between 
autism and the other two subtypes, and no ROI showed significant 
differences in the comparison between Asperger’s and PDD-NOS, 
showing less severe effects in the brain structures of the three subtypes. 
To further discuss our findings, in this section, the results obtained 
from the patterns, ALFF, fALFF, and GMV for each ASD subtype, as 
described in Section 3, will be combined to analyze the characteristics 
of the subtypes and compared with previous studies. In Section 4.1, the 
results of the brain pattern extraction are discussed, and in Section 4.2, 
our findings on brain patterns, ALFF, fALFF, and GMV are discussed 
together and compared with previous studies. Finally, in Section 4.3, 
the limitations of the study are discussed.

4.1 Brain patterns analysis

Brain pattern is a method used to gather different communities of 
ROIs in brain activity. Multiple methods have been used to extract brain 
patterns. In this study, we used the tensor decomposition method to 
capture multiple brain patterns hidden in the resting-state fMRI scan 
process. As introduced in Section 2.3, by performing on the dynamic FC 
matrices, our brain pattern extraction method is composed of group-
level dynamic FC construction and pattern decomposition. The group-
level dynamic FC construction part was realized by utilizing Tucker 
decomposition to evaluate the activation of each individual subject, and 
the pattern decomposition was realized by utilizing non-negative CP 
decomposition to capture the different brain communities that are 
hidden in the group-level dynamic FC by combining with each other. 
As noted by Aggarwal and Gupta (Aggarwal and Gupta, 2019), such a 
method can be used to extract overlapping dynamic functional brain 
networks, which means that a single ROI can appear in multiple brain 
patterns. Such a characteristic can also be found in the calculation of 
pattern decomposition, as there is no limitation for the ROIs to 
be  selected in different brain patterns. Compared with the method 
proposed in (Aggarwal and Gupta, 2019), the brain pattern extraction 
method proposed in this study has two obvious advantages: (1) the 
dynamic FC is calculated using the Pearson correlation coefficient, 
which avoids the influence of empirical hyperparameters on the 
calculation, and (2) the brain patterns are extracted with a higher 
threshold, which ensures the quality of decomposition and reserves the 
mode of sub-networks. As shown in Figure 5, the nodes of the brain 
patterns extracted from each ASD subtype showed a compact 
distribution in functional areas, with no well-defined sub-networks 
appearing in more than two brain patterns, which is consistent with the 
division of the sub-networks. Furthermore, such distributions will also 
make it easier to analyze the brain functions involved in brain patterns.

To the best of our knowledge, this is the first study to extract brain 
patterns of the three ASD subtypes. From Table 3, we can see that each 
brain pattern has different functions. Furthermore, although not exactly 
the same, there are correspondences between brain patterns in the three 
subtypes, which are described as groups in Section 3.1. We noticed that 
in Groups 1 and 2, the sequence of the brain patterns from Asperger’s was 
different from that of the other subtypes. This is an interesting 
phenomenon, which means that not only the distribution of ROIs in the 
community, but also the order of the brain pattern may illustrate the 
differences between the subtypes. In the calculation of non-negative CP 
decomposition, in addition to the pattern information of the dimensions, 
there is also a weight λ combined with the pattern. A higher-ranked brain 

TABLE 3 Sub-networks involved in brain patterns.

ASD 
subtype

Brain 
pattern

Sub-network (number of ROIs)

Autism

1
AN(9), CON(7), SCN(3), SMM(3), SMH(2), 

SAN(2), FPN(2)

2 DMN(20), DAN(5), SCN(3), FPN(2)

3 VN(15), VAN(2)

Asperger’s

1 DMN(19), DAN(7), SMH(4), VAN(2), FPN(2)

2 AN(8), CON(8), SCN(4), SMM(3), SAN(2)

3 VN(15), DMN(3), FPN(3), VAN(2)

4 SCN(13), DMN(10), SMH(2)

PDD-NOS

1
AN(9), SMH(6), CON(6), SMM(3), FPN(3), 

SCN(2), DMN(2)

2 DMN(22), DAN(6), VAN(3), FPN(2), SMH(2)

3 VN(15), FPN(3), VAN(2)

4 SCN(14), DMN(5), SAN(4), CON(2), SMH(2)

AN, auditory network; CON, cingulo-opercular network; SCN, subcortical network; SMM, 
sensory/somatomotor mouth; SMH, sensory/somatomotor hand; SAN, salience network; 
FPN, fronto-parietal network; DMN, default mode network; DAN, dorsal attention network; 
VN, visual network; VAN, ventral attention network; CPN, cingulo-parietal network. Sub-
networks with more than five nodes (include five) are shown in bold.
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pattern indicates a higher λ value, thus leading to higher energy in group-
level dynamic FC. Therefore, although there are not many differences in 
the brain community in Groups 1 and 2, the abnormality of Asperger’s in 
Pattern 1 and Pattern 2 may also be  considered as a significant 
characteristic of Asperger’s, compared with the other two subtypes.

In terms of the ROIs distributed in the brain patterns, as 
described in Section 3.1, the most significant difference in the brain 
patterns was the lack of Pattern 4 in autism. It should be noted that 
the lack of the pattern here does not mean that the correlated ROIs 
and sub-networks are inactive, which indicates that the energy of 
the community is insufficient to be recognized as a pattern in brain 
pattern extraction. However, this also reflects an abnormality in 
connectivity in the brain community. In addition, compared with 
the results of the inter-comparison, we  also found that the 
differences between Asperger’s and PDD-NOS are not as many as 
the differences between autism and Asperger’s or PDD-NOS, 
showing similar results to the method proposed in this work. In 
terms of the analysis of the brain functions of the three subtypes, 
the t-test results of ALFF and fALFF were also somewhat similar to 
the brain patterns we obtained in Section 3.1. These similarities and 
differences are described in Section 4.3. In addition, as described in 
Section 3.1, Pattern 3 of all subtypes are correlated with the 
VN. This interesting phenomenon indicates that patients of the 
three subtypes may experience similar visual activity during the 
scan process; therefore, we checked the instructions of the resting-
state fMRI scan process from each site and found that seven out of 
eight sites involved in this study required patients to keep their eyes 
open. It appears that this instruction is directly reflected in the 

brain patterns, which further demonstrates the effectiveness of 
our method.

4.2 Comparison of the subtypes

Autism is such a typical subtype of ASD that many studies just 
take “autism” as the short for ASD (Daly et al., 2012; Clery et al., 2013; 
Fan et al., 2014; Leming et al., 2020). ASD is defined based on the core 
symptoms of typical autism (Tang, 2021). The autism subtype is 
dominant among ASD patients, which is also evident from the 
proportion of the three subtypes in the ABIDE dataset used in this 
study. In this study, we aimed to identify biomarkers for the detection 
of ASD subtypes. The result of the brain patterns shows that the brain 
patterns of autism group can be mainly divided into three types, which 
are dominated by AN and CON, DMN and DAN, and VN, 
respectively. The lack of Pattern 4 in the autism group may suggest that 
the variation in the functional connectivity in the SCN and part of the 
DMN leads to the main difference between autism and the other two 
subtypes. Such differences in the DMN can also be observed in the 
inter-comparison of ALFF and fALFF. Abnormal activity in the DMN 
is considered to be the typical difference between patients with ASD 
and healthy controls in previous studies (Guo et al., 2019; Mash et al., 
2019). From the results of the brain patterns and t-test, it can 
be inferred that abnormalities in the DMN can also be important 
biomarkers for the discrimination of ASD subtypes. As found in 
Yang’s research, the DMN shows different intra-and inter-module 
connections in the three ASD subtypes (Yang et al., 2023). It is also 

FIGURE 3

The results of the inter-comparison for ALFF: (A) is the result of the comparison between autism and Asperger’s; (B) is the result of the comparison 
between autism and PDD-NOS; (C) is the result of the comparison between PDD-NOS and Asperger’s. The tables under each subgraph show the ROIs 
with the top five of the smallest q-values (if there are not enough ROIs, then all surviving ROIs are shown). It should be noted that the q-values in this 
study are p-values after FDR correction. The sizes of the ROIs in the figure are related to their q-values. A larger ROI node indicated a smaller q-value, 
showing greater significance in the t-test. AN, auditory network; CON, cingulo-opercular network; SCN, subcortical network; SMM, sensory/
somatomotor mouth; SMH, sensory/somatomotor hand; SAN, salience network; FPN, fronto-parietal network; DMN, default mode network; DAN, 
dorsal attention network; VN, visual network; VAN, ventral attention network; CPN, cingulo-parietal network.
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FIGURE 4

The results of the inter-comparison for fALFF: (A) is the result of the comparison between autism and Asperger’s; (B) is the result of the comparison 
between autism and PDD-NOS; (C) is the result of the comparison between PDD-NOS and Asperger’s. The tables under each subgraph show the ROIs 
with the top five smallest q-values. AN, auditory network; CON, cingulo-opercular network; SCN, subcortical network; SMM, sensory/somatomotor 
mouth; SMH, sensory/somatomotor hand; SAN, salience network; FPN, fronto-parietal network; DMN, default mode network; DAN, dorsal attention 
network; VN, visual network; VAN, ventral attention network; CPN, cingulo-parietal network.

FIGURE 5

The results of the inter-comparison for GMV: (A) is the result of the comparison between autism and Asperger’s; (B) is the result of the comparison 
between autism and PDD-NOS; (C) is the result of the comparison between PDD-NOS and Asperger’s. The tables under each subgraph show the ROIs 
with top 5 of the smallest q-value. AN, auditory network; CON, cingulo-opercular network; SCN, subcortical network; SMM, sensory/somatomotor 
mouth; SMH, sensory/somatomotor hand; SAN, salience network; FPN, fronto-parietal network; DMN, default mode network; DAN, dorsal attention 
network; VN, visual network; VAN, ventral attention network; CPN, cingulo-parietal network.
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pointed out that the DMN has unique roles across ASD subtypes (Qi 
et al., 2020). In addition to the DMN, abnormalities in the SCN are 
also significantly different between autism and the other two subtypes. 
In Qi’s study, the main differences between Asperger’s, PDD-NOS, and 
autism were the functional subcortical brain areas (Qi et al., 2020). 
Our study observed a similar phenomenon in the comparison of brain 
patterns and the inter-comparison of ALFF and fALFF. Interestingly, 
such a difference in SCN did not appear simultaneously in one 
comparison. For example, the lack of the pattern for SCN shows the 
aberrant brain community of autism, while the comparisons of ALFF 
and fALFF show abnormal brain function between autism and the 
other two subtypes. From the results of our work, it can be suggested 
that there are differences in both brain function and region 
collaboration with the ROIs in the DMN and SCN between autism 
and the other subtypes, while the regional collaboration abnormality 
between Asperger’s and PDD-NOS is limited.

In addition to the brain patterns, there were unique findings in 
the inter-comparison. The ALFF and fALFF tests showed different 
abilities to capture the differences between the subtypes. ALFF was 
more sensitive in detecting the functional variation between autism 
and Asperger’s, whereas fALFF was more sensitive in determining 
the differences between autism and PDD-NOS. Apart from the nodes 
from the SCN and DMN mentioned above, we also found low VN 
values for the regions of autism, compared with Asperger’s. However, 
since the group with autism was much larger than the other groups 
and some of the sites asked the participants to keep their eyes closed, 

which may affect the distribution of the functional features in VN, 
whether such differences are due to the different pathologies of the 
subtypes still needs further analysis. In the results of the inter-
comparison, we found low values of fALFF in DAN and FPN for 
autism compared with Asperger’s. The DAN is a brain network that 
includes key nodes in the bilateral intraparietal sulcus and frontal eye 
fields and is primarily involved in applying top-down selection for 
stimuli and responses (Menon and D’Esposito, 2022). Previous 
behavioral attention studies have pointed out that there is impairment 
of DAN in children with ASD compared to typically developing 
controls (TD) (Fan et al., 2002; Pruett et al., 2011). From the results 
of the inter-comparison for fALFF, such impairment can also 
be observed in autism compared with the other two subtypes. It can 
be suggested that the level of attention deficit varies among ASD 
subtypes. In addition, ROIs of the FPN, which is also a representative 
prefrontal cortex network, show a larger scale of low values compared 
with PDD-NOS. Similar to the condition of DAN, in a functional 
network study of ASD (Haghighat et  al., 2021), significant 
connectivity changes in the middle frontal gyrus and inferior frontal 
gyrus, which are important parts of the FPN, have been found in the 
comparison between ASD and TD. Such changes in brain activity in 
the two gyri were also found in our study, with significantly lower 
values in autism than in PDD-NOS. In addition, abnormalities in the 
VAN were found in the comparison between autism and PDD-NOS, 
showing four ROIs with significantly higher fALFF values and three 
with significantly lower values, which may indicate different 

FIGURE 6

ROIs involved in multiple comparisons. (A) is the result of the nodes involved in the comparisons between autism and Asperger’s; (B) is the result of the 
nodes involved in the comparisons between autism and PDD-NOS; (C) is the result of the nodes involved in the comparisons between PDD-NOS and 
Asperger’s. The nodes in the figures are the ROIs involved in at least two comparisons and the nodes in the tables are the ROIs involved in more than 
two comparisons. AN, auditory network; CON, cingulo-opercular network; SCN, subcortical network; SMM, sensory/somatomotor mouth; SMH, 
sensory/somatomotor hand; SAN, salience network; FPN, fronto-parietal network; DMN, default mode network; DAN, dorsal attention network; VN, 
visual network; VAN, ventral attention network; CPN, cingulo-parietal network.

https://doi.org/10.3389/fnins.2024.1440222
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1440222

Frontiers in Neuroscience 13 frontiersin.org

impairments in the ability to detect behaviorally relevant stimuli 
(Menon and D’Esposito, 2022). In terms of the comparison between 
Asperger’s and PDD-NOS, ALFF and fALFF show a high degree of 
similarity, with few differences between the two subtypes, which is 
also suggested in the brain pattern analysis. In our study, only three 
nodes from the precentral gyrus and angular gyrus were different in 
the fALFF. In fact, PDD-NOS itself is usually called “atypical autism,” 
which suggests that PDD-NOS may not be a well-defined disorder 
but a set of disorders failing to meet the criteria for autism or 
Asperger’s. Such heterogeneity makes it difficult to distinguish 
PDD-NOS using a definite method. As pointed out in Walker’s paper 
(Walker et  al., 2004), no differences were observed between the 
PDD-NOS and Asperger’s groups in any variable measuring the level 
of functioning.

In the comparison of GMV, only a few ROIs were found to 
be significantly different between the subtypes. This indicates that the 
functional differences between the subtypes were not always 
accompanied by significant changes in GMV at the ROI level. In the 
comparison of autism and Asperger’s, increased GMV was found in the 
nodes of left middle temporal gyrus in autism, which are also important 
structural differences between autism and TD (Abell et al., 1999; Waiter 
et al., 2004; Ecker et al., 2012). As noted by Ecker’s work (Ecker et al., 
2012), increases in GMV in this region are correlated with increased 
social symptom severity in ASD patients. Asperger’s, as an ASD subtype 
with less severe symptoms and more higher functioning, may be  a 
possible reason for the smaller GMV compared with autism. In the 
comparison between autism and PDD-NOS, as mentioned above, 
increased GMV was also found in the left middle temporal gyrus in 
autism. In addition, three ROIs from the SCN showed decreased GMV 
in autism compared with PDD-NOS. Considering the abnormality of 
SCN in brain patterns and fALFF in autism, this may suggest evidence 
for the reflection of abnormalities in function and structure.

In this study, we analyzed four types of brain features, including 
brain pattern, ALFF, fALFF and GMV, to explore the difference between 
ASD subtypes based on ROI-level and sub-network-level. To the best of 
our knowledge, this is the first study to adopt the tensor decomposition 
method to extract the brain patterns of the three ASD subtypes. 
Generally, we explored the differences between the ASD subtypes in 
four brain features and the functional differences in the subcortical 
network and default mode network of autism were found to lead to 
major differences from the other two subtypes, while the structural 
differences were limited in GMV. These findings provide a systematic 
comparison of the three common ASD subtypes, and may offer 
potential features for distinguishing between them.

4.3 Limitations

In this study, all the functional and structural data were from the 
ABIDE dataset, which is composed of MRI and fMRI data from 
multiple sites. Although we have dealt with the variation in the TRs of 
different sites, the heterogeneity of the MRI machines from each site 
may still have an influence on the features, including ALFF and 
fALFF. To address this problem, we used z-score normalization to 
normalize the features before inter-comparisons. Another limitation is 
that eye status was not considered in our study. From one perspective, 
the lack of standardization may have influenced our findings in the 

visual network; however, from another perspective, the numbers of 
patients with Asperger’s and PDD-NOS are small and there is a big gap 
between the numbers of patients with the three subtypes, and further 
data screening will affect the stability of the analysis results. In fact, 
we tried to exclude the eye-closed data and control the site difference. 
However, as the results provided in the Supplementary materials, the 
lack of data has a more serious impact on the statistical results than the 
site difference and eye status, especially for the subtypes with a small 
data size. In our work, we used non-negative CP decomposition to 
capture the brain community information in the resting-state fMRI 
scan process, and we found valuable brain pattern differences between 
the subtypes; however, the way in which brain networks with 
antagonistic functions work still needs further analysis. Finally, 
although we used features including brain patterns, ALFF, fALFF, and 
GMV to evaluate the differences between the subtypes, topological 
features, including module degree and participation coefficient, can 
also be used to capture more information about the ASD subtypes, 
which may provide a more comprehensive perspective to provide a 
deeper understanding of ASD. Additionally, ReHo might offer 
potential insights in  local neural synchronization, which could 
be considered in future studies as a complementary analysis to further 
investigate local connectivity differences.
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