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Objective: This study aims to develop and validate SwinHS, a deep learning-based 
automatic segmentation model designed for precise hippocampus delineation 
in patients receiving hippocampus-protected whole-brain radiotherapy. By 
streamlining this process, we seek to significantly improve workflow efficiency 
for clinicians.

Methods: A total of 100 three-dimensional T1-weighted MR images were 
collected, with 70 patients allocated for training and 30 for testing. Manual 
delineation of the hippocampus was performed according to RTOG0933 
guidelines. The SwinHS model, which incorporates a 3D ELSA Transformer 
module and an sSE CNN decoder, was trained and tested on these datasets. 
To prove the effectiveness of SwinHS, this study compared the segmentation 
performance of SwinHS with that of V-Net, U-Net, ResNet and VIT. Evaluation 
metrics included the Dice similarity coefficient (DSC), Jaccard similarity 
coefficient (JSC), and Hausdorff distance (HD). Dosimetric evaluation compared 
radiotherapy plans generated using automatic segmentation (plan AD) versus 
manual hippocampus segmentation (plan MD).

Results: SwinHS outperformed four advanced deep learning-based models, 
achieving an average DSC of 0.894, a JSC of 0.817, and an HD of 3.430  mm. 
Dosimetric evaluation revealed that both plan (AD) and plan (MD) met treatment 
plan constraints for the target volume (PTV). However, the hippocampal Dmax in 
plan (AD) was significantly greater than that in plan (MD), approaching the 17  Gy 
constraint limit. Nonetheless, there were no significant differences in D100% or 
maximum doses to other critical structures between the two plans.

Conclusion: Compared with manual delineation, SwinHS demonstrated superior 
segmentation performance and a significantly shorter delineation time. While 
plan (AD) met clinical requirements, caution should be  exercised regarding 
hippocampal Dmax. SwinHS offers a promising tool to enhance workflow 
efficiency and facilitate hippocampal protection in radiotherapy planning for 
patients with brain metastases.
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1 Introduction

Whole-brain radiotherapy (WBRT) is an effective treatment for 
patients with brain metastases (Berghoff and Preusser, 2018). 
Prophylactic cranial irradiation (PCI) can significantly reduce the 
probability of brain metastasis and improve the overall survival rate of 
patients (Gondi et al., 2010). However, WBRT can cause hippocampal 
damage and cognitive disorders, with an incidence ranging from 50 to 
90%. This often manifests as short-term memory impairment, 
decreased attention, and problem-solving abilities, seriously affecting 
the patient’s quality of life (Fike et al., 2009; Peters et al., 2016). With 
advancements in radiotherapy and growing emphasis on post-
radiotherapy quality of life, hippocampal avoidance whole-brain 
radiotherapy (HA-WBRT) has been shown to significantly improve 
cognitive function in patients post-treatment. The Radiation Therapy 
Oncology Group (RTOG) 0933 phase II trial demonstrated that 
protecting the hippocampus could reduce the incidence of cognitive 
dysfunction to 7% (Gondi et  al., 2014). Subsequently, the NRG 
Oncology CC001 phase III trial confirmed these findings. Notably, the 
results showed that WBRT combined with memantine for 
hippocampal protection resulted in superior cognitive preservation in 
adult patients with brain metastases, compared to WBRT with 
memantine but without hippocampal protection. Importantly, there 
was no significant difference in intracranial progression-free survival 
(PFS) or overall survival (OS) (Brown et  al., 2020). Therefore, 
protecting the hippocampus during midbrain radiotherapy for brain 
tumor patients can mitigate memory and cognitive impairment, 
consequently enhancing the overall quality of life.

According to RTOG 0933, outlining the hippocampus on axial 
T1-weighted MR images is essential (Gondi et al., 2014). However, the 
hippocampus is a complex structure, and accurate delineation is 
crucial for effective radiation treatment planning and minimizing 
radiation-related side effects (Mukesh et al., 2012; Walker et al., 2014). 
Additionally, the hippocampus is situated between the thalamus and 
the medial temporal lobe of the brain. In magnetic resonance imaging, 
the gray matter intensity of the hippocampus is very similar to that of 
surrounding structures like the amygdala, caudate nucleus, and 
thalamus, with no distinct boundary, making delineation difficult. 
Currently, the method of hippocampal delineation is mainly based on 
the anatomical expertise of the doctor, who refers to the patient’s MR 
images to outline the CT images. The accuracy of this approach 
depends on the registration precision between MR and CT images, as 
well as the physician’s proficiency and anatomical knowledge. 
Significant variability exists between the delineation results of different 
doctors. Therefore, improving the accuracy, efficiency, and 
standardization of hippocampal delineation is a key step in reducing 
the risk of radiation-induced brain injury. Automatic segmentation of 
the hippocampus from MR images remains a challenging task.

Deep learning approaches based on convolutional neural 
networks (CNNs) have been widely used due to their efficiency and 
accuracy (Erickson, 2021). In 2015, U-Net was first proposed, 
constructing a U-shaped deep network using encoders and symmetric 
decoders, achieving commendable performance in segmenting image 
edges (Ronneberger et  al., 2015). Specifically, U-Net employs an 
encoder to extract low-level details and high-level semantic features 
from the image and utilizes a decoder to map the features back to the 
original size, thereby generating the segmented image. By establishing 
connections between the encoder and decoder, the features from 

corresponding layers in both components can be  merged, which 
enhances the preservation of detailed information in the input image 
and improves segmentation outcomes. Given that CT and MR images 
are typically three-dimensional, a 3D U-Net (Çiçek et al., 2016) was 
designed. Building upon this framework, V-Net (Milletarì et al., 2016) 
integrates encoder information filtered by the decoder and adds a 
ResNet (He et  al., 2016), which prevents gradient vanishing, 
accelerates network convergence, and achieves superior performance. 
Subsequently, several U-Net variants have been developed.

The CNN method typically utilizes deep convolution layers with 
an encoder-decoder architecture to capture global information. 
However, this process often relies on skip connections to compensate 
for the loss of shallow feature information. The convolution operation 
is inherently local due to the receptive field size, which limits its 
effectiveness, particularly in segmenting small objects (Fei et al., 2023).

In recent years, the Transformer has been widely adopted in 
medical image segmentation as an alternative architecture featuring a 
global self-attention mechanism. Models like TransFuse (Zhang 
Y. et al., 2021), MFSuse (Basak et al., 2022), TFormer (Zhang et al., 
2023), and TransCeption (Azad et al., 2023) effectively capture edge 
information, enhance segmentation accuracy, and optimize network 
performance. However, these advancements come with increased 
parameters, computational complexity, and longer inference times. 
Despite their enhanced localization capabilities, these models still 
struggle to capture low-level details.

As a transformer-based model, the Vision Transformer (VIT) 
(Dosovitskiy et al., 2020) surpasses CNNs due to its global and long-
range modeling capabilities. However, VIT’s computational efficiency 
is relatively low because it depends on a self-attention mechanism for 
feature extraction. Swin Transformer (Liu et al., 2021), a new variant 
of VIT, introduces a sliding window approach to constrain self-
attention. This model integrates locality into multihead self-attention 
(MHSA) through local self-attention (LSA), embedding local details 
in the earlier layers. However, LSA’s performance is comparable to that 
of convolution and is inferior to dynamic filters. To improve this, an 
enhanced LSA module (ELSA) (Zhou et al., 2021) has been introduced 
to better capture local information. SwinBTS (Jiang et al., 2022), the 
first model to incorporate the ELSA Transformer module in brain 
tumor segmentation tasks, brings forward innovative approaches.

Building upon the success of the Swin Transformer and the 
detailed feature extraction capabilities of enhanced local self-attention 
(ELSA), we propose SwinHS, a novel neural network designed for the 
automatic segmentation of hippocampal MR images. SwinHS improves 
local detail extraction by incorporating a 3D ELSA Transformer 
module. Additionally, we introduce the spatial squeeze excitation (sSE) 
block, which allows feature maps to be more informative both spatially 
and across channels. The primary goal of this study was to develop an 
AI tool for automated hippocampal delineation, with a focus on 
validating the segmentation’s accuracy and clinical applicability, 
ultimately aiming to enhance workflow efficiency for clinicians.

2 Materials and methods

2.1 Data collection

The Ethics Committee (No. XYFY2023-KL155-01) approved the 
retrospective collection of 100 three-dimensional T1-weighted 
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(3D-T1) MR images from patients who underwent hippocampus-
protected whole-brain radiotherapy at the Department of Oncology 
and Radiology of Xuzhou Medical University between 2018 and 2023. 
The patient cohort included 61 males and 39 females, aged between 
30 and 83 years, with a median age of 60 years. Any images depicting 
hippocampal tumor invasion were excluded prior to MRI. The images 
were obtained using a GE Discovery MR750 3.0 T (GE Healthcare, 
Milwaukee, WI, United States) magnetic resonance imaging system. 
The scanning protocol employed a slice thickness of 0.8 mm, a spatial 
resolution of (0.8 0.496 0.496× × ) mm3. The sequence used was 3D 
BRAVO, with repetition time (TR) = 7 ms, echo time (TE) = 3 ms, flip 
angle (FA) = 12°, and the resulting images were exported and saved in 
DICOM files. For the study, 70 patients were allocated to the training 
set and 30 to the test set.

2.2 Manual delineation

In accordance with the hippocampus atlas contouring guidelines 
proposed by RTOG0933 (Gondi et al., 2014), a tumor radiotherapist 
who was thoroughly trained and experienced in hippocampal 
delineation manually outlined the hippocampus on 100 axial MR 
images using the Varian Eclipse 13.6 planning system (Varian Medical 
Systems, Palo Alto, CA, United  States). To ensure accuracy, the 
delineation results were subsequently reviewed and, where necessary, 
adjusted by another expert in tumor radiotherapy. The two radiologists 
involved in this study have 13 and 14 years of experience respectively, 
ensuring a high level of expertise in interpreting the imaging data.

2.3 Model training and testing

The overall architecture is illustrated in Figure  1. The input 
consists of a multimodal MR medical image H W D CX R × × ×∈ , where 
the image size is H W D× ×  and C is the number of channels. These 
images are divided into non-overlapping patches, which are then 
passed to the transformer-encoder. The encoded features are 
subsequently processed through the ELSA module and the Swin 
Transformer module. Next, the feature representations are transmitted 
to the sSE CNN-decoder via skip connections at multiple resolutions, 
generating the final segmentation output. Each component of the 
proposed architecture is detailed in the following sections.

2.3.1 Transformer encoder
Initially, we employ a 3D patch partition layer to segment medical 

images into nonoverlapping 3D patches with a volume of 
2 2 2
H W D
× ×

. Subsequently, these patches are projected into an embedding space 
with a dimensionality of C, enabling us to generate a feature map 

of size 
2 2 2
H W D C× × × .

2.3.2 ELSA Transformer module
The ELSA Transformer module is employed to enhance local 

detailed feature extraction. ELSA introduces a novel local self-
attention mechanism that outperforms both LSA and dynamic filters 
in the Swin Transformer. A key element of ELSA is Hadamard 
attention, which applies the Hadamard product to improve attention 

across neighboring elements while maintaining high-order mapping. 
In deep learning, it is commonly assumed that higher-order mappings 
offer stronger fitting capabilities. The low accuracy of some attention 
mechanisms may stem from their lower mapping order (Gondi et al., 
2010), as the attention mechanism typically performs second-order 
mapping of the input, as described in Supplementary Formula 1.

As illustrated in Figure  2, the ELSA Transformer module is 
derived by incorporating an identical MLP module subsequent to the 
attention structure in conjunction with the Transformer architecture, 
as depicted in Supplementary Formula 3.

2.3.3 Swin Transformer module
The Swin Transformer is a hierarchical VIT that performs self-

attention computations through an efficient shifted window 
partitioning scheme. This approach significantly reduces the number 
of parameters while enabling multiscale feature extraction with 
improved feature learnability. As shown in Figure  1, the Swin 
Transformer block in the architecture consists of a normalization layer 
(LN), window-based multihead self-attention module (MHSA), and 
multilayer perceptron (MLP).

2.3.4 SSE CNN decoder
The decoder has the same depth as the encoder and is used to 

decode the feature representation of the extracted encoder. A skip 
connection is used between the encoder and decoder at each 
resolution. The output characteristics are reshaped to the size 

2 2 2i i i
H W D
× ×  

at each stage i (i ∈ 0, 1, 2, 3, 4) of the encoder and the
 

bottom, and then the residual block composed of two 3 × 3 × 3 
normalized convolutional layers is input. Then, the sSE block is 
applied to the extracted features so that the feature map can provide 
more information both spatially and channelwise for image 
segmentation (Hu et al., 2018).

A linear transformation of the feature map is performed to 

enhance the dimension (
2 2 2
H W D C× × × ), which subsequently allows 

obtaining an output resolution similar to that of the image input, i.e., 
H W D× ×  resolution output. The final segmentation output is 
calculated by using a 1 × 1 × 1 convolutional layer and a sigmoid 
activation function.

For the model, the Adam optimizer is used for training, the initial 
learning rate is 1 × 10−4, and the weight is attenuated to 1 × 10−5. The 
default batch size is 50, and the default number of training iterations 
is 150. All experiments were performed using an Nvidia 
RTX2080Ti GPU.

2.4 Model evaluation

We use the Dice similarity coefficient (DSC), Jaccard similarity 
coefficient (JSC) and Hausdorff distance (HD) to evaluate the 
performance of our automatic delineation tool in the test set. The 
formulas are provided in the Supplementary material.

The DSC is the most commonly used metric for measuring the 
overlap between two contours, and its value is between 0 and 1. The 
larger the DSC value is, the greater the similarity between the two 
contour lines (Taha and Hanbury, 2015). Similarly, JSC compares the 
similarities and differences between finite sets (Eelbode et al., 2020). 
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The larger the JSC is, the greater the sample similarity. HD describes 
the boundary similarity of 2 point sets by measuring the maximum 
distance of the closest pair of points. The smaller the HD is, the greater 
the coincidence degree between A and B, and the better the 
segmentation effect (Taha and Hanbury, 2015). In the special 

dosimetric evaluation reported by Gondi et  al. (2014), deviations 
greater than 7 mm are considered unacceptable.

2.5 Comparison of model performance

To demonstrate the effectiveness of our proposed SwinHS, 
we compared its segmentation performance with that of four advanced 
deep learning-based methods: V-Net (Milletari et  al., 2016), U-Net 
(Ronneberger et al., 2015), ResNet (He et al., 2016), and VIT (Chen et al., 
2022). Then, each method was trained and tested on the same dataset 
using their respective frameworks. We evaluated the performance of 
SwinHS and the four other methods using DSC, JSC, and HD.

2.6 Radiotherapy planning and dosimetric 
evaluation

To evaluate the feasibility of applying hippocampal delineation via 
the SwinHS model in clinical practice, we conducted a study comparing 
simulated whole-brain radiotherapy plans for 10 randomly selected 
patients. We  compared the differences in dosimetric distribution 
between two sets of radiotherapy plans: one using the manually 
delineated hippocampi and the other using the automatically delineated 
hippocampi by the SwinHS model. A large aperture CT simulator 
(Philips, Cleveland, OH, United  States) was used to collect CT 
localization images of the patients’ head area, with a slice thickness of 
1.5 mm. According to the RTOG 0933 report, the hippocampus is a 
low-signal gray matter structure that begins medially from the inferior 

FIGURE 1

Overview of the model training process. The Transformer encoder includes three levels: each level includes two ELSA Transformer modules, and the 
next level includes two Swin Transformer modules. In the first level, the linear embedding layer is used to create a three-dimensional feature map. In 
the first, second and third stages, the ELSA module is used to extract very detailed feature information. Stage 4 uses the Swin Transformer to extract 
multiresolution features and the shift window mechanism to calculate self-attention. In these four stages, a slice merging layer is used to reduce the 
resolution of the feature by 2 times. On the right, the encoder is used to decode the extracted feature representations of the encoder through skip 
connections.

FIGURE 2

Structure of the ELSA Transformer block.
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horn of the lateral ventricle’s temporal horn and is bounded externally 
by the cerebrospinal fluid, typically forming a crescent shape. On the 
MR image, the contoured hippocampal tissue is expanded by 5 mm to 
create the hippocampus planning risk volume (HC-PRV). We registered 
the patient positioning CT image with the 3DT1 MR image on the 
MIM workstation (MIM Software Inc., Beachwood, OH). The 
delineated hippocampus and HC-PRV on the MR image were then 
mapped to the positioning CT, and the CT image was subsequently 
imported back to the treatment planning system (TPS) for the creation 
of the simulated radiotherapy plan. The target area was defined as 
follows: the patient’s whole brain tissue was the CTV, and the CTV was 
expanded by 3 mm and subtracted from the hippocampus to generate 
the planned target volume (PTV). The prescribed radiotherapy dose 
was 30 Gy, administered in 10 fractions. The goal of all plans was to 
cover at least 95% of the PTV with a 100% prescription dose.

We created two radiotherapy plans, plan (AD) and plan (MD), using 
the automatically contoured hippocampus (AD) and manually contoured 
hippocampus (MD) respectively, where the optimization parameters are 
identical. The radiotherapy plan was designed using the Varian 
VitalBeam (Varian Medical Systems, Palo Alto, CA, United States) 6 MV 
X-ray in FFF mode, utilizing the dynamic intensity-modulated 
radiotherapy (sIMRT) technique. A dose rate of 1,200 MU/min was 
applied across 9 noncoplanar irradiation fields. Dose calculations were 
performed with the Varian Eclipse 13.6 planning system, employing an 
anisotropic analytical algorithm with a spatial resolution of 2.5 mm.

Given that we used the manually delineated hippocampus as the 
reference standard for evaluating the accuracy of the automatically 
delineated hippocampus, our plan (AD) and plan (MD) evaluations 
were based on the manually delineated hippocampus to accurately 
reflect the hippocampal dose during radiotherapy. We compared the 
dose distribution differences between the radiotherapy plan (AD) and 
the radiotherapy plan (MD) using a dose-volume histogram (DVH) 
and assessed whether the relevant indicators in the radiotherapy plans 
met the dose limits outlined in the RTOG-0933 protocol (Gondi et al., 
2015) and the NRG Oncology CC001 phase III trial (Brown et al., 
2020). When administering whole-brain radiotherapy at 30 Gy/10 F, 
the indices included the following: (1) PTV: D2% ≤37.5 Gy (D2%: the 
dose received by 2% of the PTV), D98% ≥25 Gy (D98%: the dose received 
by 98% of the PTV), V30 Gy ≥90% (V30 Gy: the percentage of the PTV 
volume receiving 30 Gy). (2) Hippocampus: Dmax ≤17 Gy (maximum 
dose), D100% ≤10 Gy (D100%: the minimum dose received by the entire 
hippocampus). All treatment plans were designed by the same medical 
physicist with 5 years of experience in radiotherapy planning, and 
subsequently reviewed by other experts to ensure quality and 
adherence to clinical standards.

2.7 Statistical analysis

Paired t tests were conducted to compare the hippocampal 
volume, DSC, JSC and HD between the manual delineation group 
(MD) and the automatic delineation group (AD), as well as assess 
the differences in dosimetric parameters between the MD and AD 
plans. All the statistical analyses were performed using SPSS v22.0 
software. A significance level of p < 0.05 was considered considered 
statistically significant.

3 Results

3.1 Patient characteristics

The characteristics of the patients in the training dataset and 
the test dataset are presented in Table  1. In the test dataset, a 
significant difference was observed between the hippocampus 
volumes in the manual delineation (MD) and automatic 
delineation (AD) groups, with a p-value of 0.019. Specifically, the 
hippocampus volume in the AD group was smaller than that in 
the MD group.

3.2 Performance comparison of the 
SwinHS models

We compared the segmentation results of five different models in 
the test dataset, as presented in Table 2, using DSC, JSC, and HD as 
evaluation metrics. The table demonstrates that our proposed model 
outperforms the other four models across all indicators. Specifically, 
the average DSC is 0.894 ± 0.017, the average JSC is 0.817 ± 0.020, and 
the average HD is 3.430 ± 0.245 mm.

The segmentation results of the hippocampus at different levels 
between the proposed model and other models are visually 
compared, in Figure 3. The first column displays the actual manual 
segmentation of the hippocampus. From the second column 
onwards, it becomes evident that the proposed method shows 
greater consistency with the manual delineation of the 
hippocampus contour. In the third column, the contour delineated 
by VIT appears smooth but shows slight deviations from the actual 
delineation. The fourth and fifth columns reveal rough 
hippocampal contours delineated by 3D ResNet and 3D U-Net, 
respectively. Finally, in the sixth column, the hippocampal contour 
delineated by V-Net is depicted inaccurately and incompletely.

TABLE 1 Basic characteristics of the 100 patients.

Total subjects 
(n =  100)

Training cohort 
(n =  70)

Testing cohort (n =  30)

MD AD

Number of male patients (%) 61 (61) 43 (61.4) 18 (60)

Number of female patients (%) 39 (39) 27 (38.6) 12 (40)

Median age in years (range) 60 (30–83) 62.5 (33–81) 57.5 (30–83)

Volume of hippocampus (±SD cm3) 4.02 ± 0.83 3.89 ± 0.85 4.32 ± 0.70 4.15 ± 0.67

p-value - - 0.019

MD, manual hippocampus segmentation; AD, automatic segmentation; SD, standard deviation.
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FIGURE 3

Representative cases of the proposed model and other model methods. The first column shows the contour of the hippocampus in the real MR image. 
Columns 2 to 6 show the results of the proposed model, VIT, 3D ResNet, 3D U-Net, and V-Net, respectively.

3.3 Dosimetric evaluation of the SwinHS 
model

According to the requirements of the RTOG0933 phase II trial 
(Gondi et al., 2015) and the NRG Oncology CC001 phase III trial 
(Brown et al., 2020), specific criteria must be met for radiotherapy 
planning. When administering whole-brain radiotherapy at 30 Gy/10 
F, it is essential to ensure that the dose received by 2% of the planning 
target volume (PTV D2%) is ≤40 Gy and that the dose received by 98% 
of the PTV (D98%) is ≥25 Gy. Additionally, it is considered unacceptable 
if the volume of the PTV receiving 30 Gy (V30  Gy) exceeds 90%. 
Furthermore, for the hippocampus, it is imperative that the minimum 
dose (D100%) does not exceed 10 Gy, and the maximum dose (Dmax) 
remains under 17 Gy. In this study, radiotherapy plans were generated 
using both AD and MD hippocampus, denoted as plan (AD) and plan 
(MD), respectively. We utilized the MD hippocampus as the reference 
standard to assess the accuracy of the AD hippocampus. Subsequently, 
we compared the dose indicators and distribution differences between 
plan (AD) and plan (MD) based on MD hippocampus delineation.

The representative patient dose distributions comparing 
automatic and manual hippocampus segmentation plans are shown 
in Figure  4. Plan (AD) was generated using automatically 
delineated hippocampus, while plan (MD) was based on 
hippocampus manually contoured by experienced clinicians. The 
contours in both plan (AD) and plan (MD) are the same; however, 
the manually contoured hippocampus serves as the reference 
standard for evaluating both plans. The volume of the automatically 
segmented hippocampus was smaller than that of the manually 
delineated hippocampus, resulting in the 17 Gy dose color brush 
being closer to the actual hippocampus in the automatic 
segmentation plan. As shown in Table 3, the dose indicators for 
PTV in both plan (AD) and plan (MD) met the treatment plan 
constraints recommended by the RTOG 0933 trial, with no 
significant differences observed between the two groups of plans. 
Regarding hippocampus dosimetry, although both plan (AD) and 
plan (MD) met acceptable variations, the hippocampus Dmax in 
plan (AD) was significantly greater than that in plan (MD), with a 
notable difference (p < 0.001) at 1697.03 ± 11.02 cGy, approaching 
the limit of the 17 Gy constraint. Moreover, there was no significant 
difference in D100% between the two groups (p = 0.236).

3.4 Delineation time analysis

The median time required for automatic hippocampal 
delineation in the test group of 30 patients was 13.3 s (range: 11.7–
14.9 s). This result was significantly shorter than the time required 
for manual delineation (MD) (p < 0.001), which was 786 s (range: 
635–905 s).

TABLE 2 Results of different models.

DSC JSC HD (mm) p-value

SwinHS 0.894 ± 0.017 0.817 ± 0.020 3.430 ± 0.245

VIT 0.891 ± 0.016 0.803 ± 0.016 3.959 ± 0.328 0.002

3D ResNet 0.871 ± 0.024 0.783 ± 0.022 4.730 ± 0.262 0.016

3D U-Net 0.845 ± 0.025 0.759 ± 0.019 6.895 ± 0.268 2.5 × 10−4

V-Net 0.778 ± 0.020 0.674 ± 0.023 7.785 ± 0.277 0.008

DSC, Dice similarity coefficient, JSC, Jaccard similarity coefficient; HD, Hausdorff distance.
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4 Discussion

In this study, we  employed a Swin Transformer-based neural 
network, SwinHS, to automatically segment hippocampal MR images. 
This network incorporated a 3D ELSA Transformer module to enhance 
local detailed feature extraction and a spatial squeeze excitation 
module (sSE) to integrate spatial and channel information. Four deep 
learning models, namely, V-Net, U-Net, ResNet, VIT, and the SwinHS 

network developed in this study, were trained and tested on the same 
dataset. Performance was evaluated using DSC, JSC, and HD metrics, 
and the dosimetric parameters of plan (AD) and plan (MD) were 
compared. The results demonstrated that the proposed model 
outperformed the other four models across all indicators, achieving a 
contouring effect more consistent with manual hippocampal 
delineation. The PTV of both the AD and MD plans met the constraints 
outlined in the RTOG 0933 treatment plan. However, the Dmax of the 

FIGURE 4

Dose distribution of representative patient plans (MD) and plans (AD). (A) Plan (AD) automatic delineation of the hippocampus-generated radiotherapy 
plan. (B) Plan (MD) manually outlines the radiotherapy plan generated by the hippocampus. The horse body was manually sketched (yellow line), and 
the hippocampus was automatically depicted (blue). Both plans were evaluated using manual delineation of the hippocampus. In the Plan (AD), a small 
portion of the manually delineated hippocampus was closer to a dose of 1700  cGy.
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TABLE 3 Dosimetric comparison between plan (AD) and plan (MD).

Plan (AD) (±SD) Plan (MD) (±SD) p-value

PTV D2% (cGy) 3353.25 ± 29.31 3352.71 ± 28.66 0.111

D98% (cGy) 2795.22 ± 21.75 2793.43 ± 22.32 0.172

V30Gy (%) 94.30 ± 0.73 94.30 ± 0.74 0.545

Hippocampus Dmax (cGy) 1697.03 ± 11.02 1474.25 ± 35.51 0.000

D100% (cGy) 997.22 ± 5.88 994.54 ± 7.13 0.236

Dmax, the maximum dose; V30 Gy, the volume of PTV getting 30 Gy; D98%, the dose received at 98% of PTV; D2%, the dose received at 2% of PTV; D100%, the dose to 100% of hippocampus.

hippocampus in the AD plans was significantly greater than that in the 
MD plans (p < 0.001), while the D100% remained below 10 Gy, with no 
significant difference observed. These findings suggest that the 
automatic hippocampal segmentation method proposed in this study 
effectively extracts global features, accurately outlines hippocampal 
contours, and enhances hippocampal segmentation accuracy.

The RTOG-0933 protocol requires that the hippocampus 
be delineated on the patient’s high-resolution 3DT1-weighted MR 
image before HA-WBRT and then registered with the positioning CT 
for planning design (Gondi et  al., 2015). In practice, manual 
segmentation by clinicians is time-consuming and labor-intensive, 
often leading to large segmentation errors. According to the RTOG-
0933 test, nearly 7% of the hippocampus delineations by a doctor were 
deemed unqualified (Gondi et  al., 2015). Additionally, manual 
segmentation of organs is highly subjective, with significant variation 
among doctors (Zhang J. et al., 2021). To address these challenges, 
scholars have conducted extensive research on accurate automatic 
hippocampal segmentation. Feng et  al. (2020) used NeuroQuant 
software approved by the U.S. Food and Drug Administration to 
perform hippocampal segmentation on T1 MR in patients undergoing 
whole-brain radiotherapy. Among 100 patients, 99 underwent 
acceptable automatic hippocampal segmentation without manual 
intervention, with all plans meeting the PTV dose-volume target set 
by the NRG CC001 protocol. However, the segmentation technology 
of NeuroQuant is based on atlas-based registration (Fischl et  al., 
2002). Although this method provides accurate results and reduces 
manual effort, it requires significant computation and depends heavily 
on the choice of atlas, resulting in unstable segmentation performance. 
Wang et  al. (2022) found that the deep learning (DL) model 
demonstrated superior segmentation performance, especially for 
smaller OARs, by comparing the differences between the multiatlas 
segmentation method and the deep learning method in the automatic 
segmentation (OARs) scheme of nasopharyngeal carcinoma risk 
organs. In recent years, deep learning methods based on convolutional 
neural network CNNs have been widely used in the field of medical 
images (Li and Shen, 2022). Among them, 3D U-Net-based models 
are widely used in medical image segmentation tasks (Li and Shen, 
2022) (deep learning-based methods have been proposed, in which 
3D U-Net was employed because it is widely used in medical image 
segmentation tasks). In addition, scholars have carried out in-depth 
research on automatic segmentation of the hippocampus. Lin et al. 
(2023) developed an improved 3D U-Net segmentation model. For 
CT images of 10 patients in the independent test set, the overall 
average DSC and 95% HD of the hippocampal contour were greater 
than 0.8 mm and less than 7 mm, respectively. All the plans met the 
RTOG 0933 standard. Porter et al. (2020) proposed the attention-
gated 3D ResNet (proposed Attention-Gated 3D ResNet) network 

model to study the segmentation of the hippocampus on patients’ 
noncontrast CT, with Dice coefficients of 0.738/0.737 (left/right). 
However, these studies require strict registration of MR and CT 
images. The automatic segmentation tool for the hippocampus based 
on CT has made progress, but MRI is still the most reliable method 
for excluding the metastasis of the hippocampus. Hänsch et al. (2020) 
compared the automatic segmentation of the hippocampus based on 
a convolutional neural network (CNN) for MR and CT images and 
found that high-quality and anatomically accurate training contours 
can be generated on MR images and propagated to CT images to 
obtain optimal results. Therefore, Qiu et al. (2021) proposed a 3D 
U-Net model of multitask edge-aware learning for segmenting 
T1-weighted MR images of patients and obtained a Dice coefficient of 
0.8483 ± 0.0036, an HD of 7.5706 ± 1.2330 mm, and an AVD of 
0.1522 ± 0.0165 mm. In addition, Pan et al. (2021) proposed a CNN 
network structure based on 3D U-Net to segment the hippocampus 
on 3D-T1 MR images, with average DSC and AVD values of 0.86 and 
1.8 mm, respectively. Encouraged and inspired by previous research, 
we propose a new automatic hippocampal segmentation model for 
3DT1 MRI called SwinHS, which is based on the Swin Transformer. 
This model is designed to address the limitations of conventional 
CNN models and traditional Vision Transformers (VIT). Unlike these 
models, the Swin Transformer leverages a self-attention mechanism 
to capture long-range dependencies and context information across 
the entire input, significantly enhancing the model’s ability to 
understand complex spatial relationships in the hippocampal region. 
This global attention mechanism enables the model to accurately 
capture the spatial positioning of the hippocampus in MR images. 
Additionally, the network incorporates an enhanced version of local 
self-attention (ELSA) instead of LSA. The introduction of the 
Hadamard product in ELSA facilitates more efficient attention 
generation while preserving high-order mapping relationships 
(Ghazouani et al., 2024), thereby enhancing the extraction of local 
detailed features. Finally, the feature representation extracted by the 
decoder is passed through a multiresolution skip connection to the 
sSE CNN decoder, resulting in the final output segmentation map.

In traditional Vision Transformer (ViT) models, the input tokens 
have a fixed size, and the model operates at a fixed sampling rate of 16, 
which is effective for image classification tasks. However, for dense 
prediction tasks on high-resolution images, the computational 
complexity scales quadratically with image size, leading to significant 
computational costs (Fang et al., 2023). To address this limitation, 
we  introduced a hybrid model that combines the strengths of 
Transformer architectures, which excel at capturing long-range 
dependencies, with the hierarchical structure of convolutional neural 
networks (CNNs), thereby reducing computational complexity while 
retaining the model’s ability to capture both global and local features.
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When evaluating hippocampus segmentation performance, 
SwinHS demonstrated exceptional results across key performance 
metrics, including Dice similarity coefficient (DSC), Jaccard similarity 
coefficient (JSC), and Hausdorff distance (HD). Compared to other 
models, SwinHS achieved a high DSC of 0.894 and significantly 
reduced HD values. This improvement can be  attributed to the 
Transformer architecture’s ability to capture global information while 
preserving local detail, making it highly effective for segmenting small 
and intricate structures like the hippocampus.

In terms of data processing efficiency, the innovative design of the 
SwinHS architecture significantly accelerates processing speed. While 
manual segmentation typically requires an average of 786 s, SwinHS 
completes the same task in just 13.3 s, drastically reducing the 
workload for clinical practitioners. Compared to other models, 
SwinHS combines the efficiency of deep learning with the adaptability 
of Transformers, speeding up the computation process without 
compromising accuracy. In hippocampus segmentation tasks, this 
translates to faster and more precise outcomes.

In conclusion, the high accuracy and efficiency of the Swin 
Transformer model are expected to positively impact the development 
of hippocampus avoidance whole-brain radiotherapy treatment plans 
in clinical practice. Accurate hippocampus segmentation is also 
expected to assist in the early detection and monitoring of diseases 
related to hippocampus atrophy, such as Alzheimer’s disease. 
Additionally, the model’s rapid processing capabilities can shorten the 
time patients wait for diagnostic results, improving the overall 
responsiveness of healthcare services.

On the other hand, our proposed model operates as a supervised 
learning model, which requires sufficient data and precise manual 
contours as training labels. Hence, to optimize the automatic 
segmentation performance of the hippocampus in hippocampus-
shielded whole-brain radiotherapy, we deliberately excluded data from 
healthy adults and individuals with mental disorders. Instead, 
we compiled training datasets from relevant patient cohorts, a strategy 
also supported by Lei et al. (2023). Experimental findings indicate that 
this approach effectively leverages hippocampus guidance information 
from MR images of patients undergoing whole-brain radiotherapy, 
leading to improved hippocampal segmentation accuracy compared 
to traditional deep learning methods.

We employed the dynamic IMRT technique to compare the 
dosimetric differences between plan (AD) and plan (MD) in order to 
evaluate the clinical feasibility of the SwinHS model for automatic 
hippocampal segmentation. According to previous studies, VMAT 
technology provides excellent treatment plan quality for hippocampus-
protected whole-brain radiotherapy (Lin et al., 2023) and is superior 
to IMRT in terms of efficiency (Soydemir et al., 2021). In a study by 
Jiang et  al. (2019), conducted by our team, all treatment plans, 
including static IMRT, dynamic IMRT, VMAT, and TomoTherapy, met 
the RTOG 0933 dose standards for hippocampus protection in 
patients with limited brain metastases undergoing hippocampus-
sparing whole-brain radiotherapy. However, compared to VMAT and 
TOMO, the average maximum doses delivered to the hippocampus 
using sIMRT and dIMRT were significantly lower. Despite this, the 
differences in the mean hippocampal dose among the sIMRT, dIMRT, 
VMAT, and TOMO groups were not statistically significant.

Additionally, studies have shown that flattening filter free (FFF) 
beams not only provide higher dose rates and reduce field scatter and 
electron contamination but also minimize normal tissue exposure 

outside the target area (Hrbacek et al., 2011; Ghemiş and Marcu, 
2021; Ji et al., 2022). To enhance treatment effectiveness and reduce 
hippocampal dose, we opted for 9-field noncoplanar FFF-dynamic 
IMRT. According to our experimental results, the automatically 
delineated hippocampus had a smaller volume than the manually 
delineated one, as shown in Table 1. In most cases, the contours of 
the automatically delineated hippocampus closely matched the 
manual delineations, as illustrated in Figure 1. Additionally, since the 
manually delineated hippocampus was used to evaluate plan (MD), 
while the automatically delineated hippocampus was used to generate 
plan (AD), there was a notable difference in the average maximum 
dose (Dmax) to the hippocampus. Specifically, the average Dmax in the 
manual plan (MD) was 1474.25 ± 35.51 cGy, while in the automatic 
plan (AD), it was 1697.03 ± 11.02 cGy. Despite this difference, both 
values remained within the permissible limits specified by RTOG 
0933 for hippocampal doses. In terms of D100%, there was no 
statistically significant difference between the automatic and manual 
plans, with both remaining below 10 Gy. Additionally, no dosimetric 
differences were observed in the PTV between plan (AD) and plan 
(MD). This is consistent with our expectations, as the volume 
variation of the hippocampus is negligible compared to the overall 
PTV. According to the RTOG 0933 study, these findings are 
considered clinically acceptable.

Our model has some limitations and presents opportunities for 
future improvements. First, we  focused solely on hippocampal 
segmentation, so future research should explore automatic 
segmentation of other normal tissues in MR images, such as the 
crystalline lens, eyeballs, and brainstem, to further enhance treatment 
efficiency. Second, in the RTOG 0933 trial, 15.85% of participants 
failed the centralized review due to fusion or hippocampal 
segmentation errors (Gondi et al., 2015). This highlights the need to 
explore accurate automatic MR and CT registration as a critical area 
for future development. Moreover, our model’s training process was 
limited by the use of a relatively small dataset. Given the variability in 
hippocampal shapes among patients, future research should involve 
larger, multicenter datasets to improve the model’s robustness and 
generalizability. While our model assists physicians in hippocampal 
segmentation, the importance of the hippocampus in whole-brain 
radiotherapy means it is not yet capable of fully automating the 
segmentation process. Post-segmentation review and calibration by 
clinicians remain essential.

5 Conclusion

In this paper, we propose a hippocampus segmentation method 
based on the Swin Transformer, which effectively captures global 
features and enhances segmentation accuracy. We  believe this 
approach has the potential to significantly improve clinical treatment 
efficacy for patients undergoing whole-brain radiotherapy (WBRT), 
leading to better prognoses by reducing treatment-associated 
cognitive decline and improving overall outcomes.
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