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Background: Multipin dry electrodes (dry EEG) provide faster and more 
convenient application than wet EEG, enabling extensive data collection. This 
study aims to compare task-related time-frequency representations and resting-
state connectivity between wet and dry EEG methods to establish a foundation 
for using dry EEG in investigations of brain activity in neuropsychiatric disorders.

Methods: In this counterbalanced cross-over study, we acquired wet and dry 
EEG in 33 healthy participants [n  =  22 females, mean age (SD)  =  24.3 (± 3.4) years] 
during resting-state and an auditory oddball paradigm. We computed mismatch 
negativity (MMN), theta power in task EEG, and connectivity measures from 
resting-state EEG using phase lag index (PLI) and minimum spanning tree (MST). 
Agreement between wet and dry EEG was assessed using Bland–Altman bias.

Results: MMN was detectable with both systems in time and frequency domains, 
but dry EEG underestimated MMN mean amplitude, peak latency, and theta 
power compared to wet EEG. Resting-state connectivity was reliably estimated 
with dry EEG using MST diameter in all except the very low frequencies (0.5–
4  Hz). PLI showed larger differences between wet and dry EEG in all frequencies 
except theta.

Conclusion: Dry EEG reliably detected MMN and resting-state connectivity 
despite a lower signal-to-noise ratio. This study provides the methodological 
basis for using dry EEG in studies investigating the neural processes underlying 
psychiatric and neurological conditions.
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1 Introduction

Electroencephalography (EEG) is an important instrument for 
researching and diagnosing human brain activity. Improved sensor 
concepts lead to new application areas, particularly for research into 
the neurophysiological basis and pathophysiological mechanisms of 
neurological and psychiatric diseases. In this context, EEG can capture 
brain states that are not observable phenotypically but display disease-
specific signal patterns, known as endotypes (Lascano et al., 2016). 
However, these applications often require multichannel setups beyond 
the 21 standard electrode positions of routine clinical EEGs, enabling 
comprehensive signal processing, analysis, and interpretation.

Commercially available multichannel EEG systems with 64 or 
more channels are based on conventional silver/silver-chloride 
electrodes in combination with electrolyte gels or pastes (so-called wet 
EEG). Their application requires well-trained staff for time-consuming 
and comprehensive preparations, including skin abrasion, gel 
application, and impedance optimization (Teplan, 2002). This process 
can cause skin irritation, hair damage (Searle and Kirkup, 2000; 
Teplan, 2002), and measurement errors due to gel bridges. These 
drawbacks limit wet EEG’s utility, particularly in large-scale studies 
and non-laboratory settings, where rapid and repeated measurements 
are necessary. However, the need for robust and ecologically valid 
datasets is critical to identify and interpret brain activity patterns 
associated with specific neuropsychiatric conditions.

The disadvantages of wet EEG led to novel sensor concepts for 
bioelectrical signal acquisition, including full capacitive sensors, 
infrared sensors, and dry and quasi-dry contact electrodes (Horng 
et al., 2012; Liao et al., 2012; Lopez-Gordo et al., 2014). Recently, 
multipin dry electrodes (dry EEG) that optimally penetrate the hair 
layer have been applied to multichannel EEG with 64 or more 
channels (Fiedler et al., 2013; di Fronso et al., 2019). Studies comparing 
these dry EEG systems to wet EEG have shown that dry EEG offers 
significant advantages in terms of application speed and participant 
comfort (di Fronso et al., 2019; Kam et al., 2019; Hinrichs et al., 2020; 
Fiedler et al., 2022). Additionally, dry EEG produces results similar to 
wet EEG in resting-state recordings, particularly in higher frequency 
bands (Fiedler et al., 2015; Hinrichs et al., 2020; Heijs et al., 2021). 
However, analyses of resting-state power spectra provide only a rough 
estimate of disease-relevant mechanisms. This study focuses on two 
key areas to validate dry EEG for measures associated with cognitive 
functioning and neuropsychiatric disorders: resting-state connectivity 
and task-related time-frequency representations.

Resting-state connectivity, often analyzed through measures such 
as phase lag index (PLI; Stam et al., 2007) and graph theory using 
minimum spanning tree (MST) analysis (Stam et  al., 2007; van 
Diessen et al., 2015), provides insights into functional brain network 
characteristics (Vecchio et al., 2017). It has been associated with both 
aging (Otte et al., 2015) and neuropsychiatric disease (Tewarie et al., 
2014; van Dellen et al., 2015; Fleischmann et al., 2019). However, it 
remains to be investigated whether these connectivity measures can 
be reliably assessed using dry EEG. This assessment is essential for the 
identification of brain states associated with disease.

In addition to resting-state recordings, task-related activity offers 
valuable insights into neurophysiological changes associated with 
neuropsychiatric conditions. Here, event-related potentials (ERPs) - 
particularly robust EEG components that can be detected in temporal 
correlation to an experimentally manipulated stimulus (e.g., sound/

image sequences)—can help to map brain activity to functional 
domains of cognition. Some studies have shown that dry EEG can 
detect certain ERPs, such as visually- and auditory-evoked potentials 
(VEP/AEP; Fiedler et al., 2015; Heijs et al., 2021; Fiedler et al., 2022) 
and P300 (Clements et al., 2016; Mathewson et al., 2017; Hinrichs 
et al., 2020). However, whether task-related activity in the frequency-
domain can be reliably assessed using dry EEG remains unclear. Here, 
an ERP of particular interest is mismatch negativity (MMN). MMN 
is a frontocentral negative potential elicited 100 to 250 ms after a rarely 
occurring “deviant” stimulus (“oddball”) surrounded by repeated 
“standard” stimuli. It is associated with higher cognitive functions, 
such as attention and memory (Näätänen and Alho, 1995; Näätänen 
et al., 2007), and neurodegenerative disease (Laptinskaya et al., 2018). 
In the frequency domain, it has been linked to activity in the theta 
band (Fuentemilla et al., 2008; Hsiao et al., 2009; Ko et al., 2012), 
which is often impaired in neuropsychiatric conditions such as 
schizophrenia (Hua et al., 2023).

Thus, dry EEG is a promising tool for investigations of brain activity 
for which many aspects of traditional wet EEG have been replicated. 
However, further validation is necessary to ensure its reliability for 
connectivity and task-related frequency representation. This study 
contributes to this effort by comparing wet and dry EEG in detecting 
MMN in the frequency domain and analyzing resting-state connectivity. 
This validation is critical for enabling the use of dry EEG in diverse 
settings, facilitating the collection of extensive clinical datasets.

Therefore, this cross-over study with 33 healthy participants aims 
to compare wet and dry EEG in detecting MMN, specifically regarding 
its corresponding theta power. In addition to MMN, we  analyze 
resting-state connectivity using PLI and MST-Diameter across 
common frequency bands. By validating dry EEG for both time and 
frequency representations of MMN, as well as for resting-state 
connectivity, we aim to provide a solid methodological basis for using 
dry EEG in neurodegenerative or psychiatry applications. We apply 
Bland–Altman statistics as a measure of agreement between wet and 
dry EEG which is currently only available for sleep parameters (Leach 
et al., 2020). The otherwise reported p-values only indicate that the 
alternative hypothesis, in this case, the assumption that EEG measures 
differ between dry and wet electrodes, cannot be rejected. This does not 
necessarily indicate that the null hypothesis—the equivalence of the 
two systems—is true. Similarly, the reported correlations between the 
systems provide only a measure of relation and not agreement (Altman 
and Bland, 1983; Giavarina, 2015). As previous validation studies have 
shown that dry EEG is comparable to wet EEG, we hypothesized that 
MMN can be  detected with dry EEG, i.e., there is a significant 
difference in amplitude and theta power between standard and deviant 
tones for both EEG systems. Furthermore, we  hypothesized that 
resting-state connectivity is comparable between wet and dry EEG in 
alpha and beta frequency but might differ in lower frequencies where 
significant power differences have been found in previous studies 
(Fiedler et al., 2015; Hinrichs et al., 2020; Heijs et al., 2021).

2 Methods

2.1 Participants

Thirty-three participants [n = 22 female, mean age (SD) = 24.3 
(3.4) years] without underlying psychiatric or neurological disease 
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were recruited through public advertisements. The study was 
performed in line with the ethical standards outlined in the 
Declaration of Helsinki and was approved by the local Ethics 
Committee. All participants provided written informed consent 
before their participation. Participants were reimbursed with 20 € for 
their participation.

2.2 Oddball paradigm

The auditory oddball paradigm was administered over 
headphones using E-Prime 2.0 software (Psychology Software Tools, 
Inc., Pittsburgh, PA, United States) and lasted approximately 20 min. 
After a few practice trials at the beginning of the session, the sound 
level was adjusted to a level at which participants reported being 
able to clearly detect the stimuli. The standard stimulus was a 
1,000  Hz tone, while deviant stimuli had frequencies of either 
500 Hz or 1,500 Hz. Consecutive stimuli were separated by a 
stimulus-onset asynchrony (SOA) of 1,555 ms. The two different 
deviant tones were interspersed among standard tones, occurring 
102 times with a 12.5% probability each within a sequence of 612 
standard repetitions (75% probability). The presentation order of 
standard and deviant stimuli was pseudo-randomized, ensuring a 
minimum of two and a maximum of four standard repetitions 
between each pair of deviants. Prior to the experimental trials, 10 
additional repetitions of the standard stimulus were provided 
for habituation.

2.3 Procedure

All examinations took place on one day in an examination room 
of the Neurological Outpatient Clinic at University Hospital 
Greifswald and took approximately two and a half hours. Participants 
first filled out demographic and anamnestic information on a paper-
based form. Then, participants sat in a comfortable chair with armrests 
and EEG caps were applied. First, the practice trials of the oddball 
paradigm were performed to determine the individual loudness level. 
Then, a resting-state recording was performed where participants 
were instructed to sit quietly, look at a fixation cross on a screen in 
front of them, and maintain a state of spontaneous flow of thoughts 
for five min in a relaxed state. For the following oddball paradigm, 
participants were instructed to ignore the incoming stimuli and focus 
their attention on a silent movie. Then, the same procedure was 
completed with the other EEG system. The order of dry and wet EEG 
was counter-balanced. Participants who completed the procedure with 
the wet EEG first washed and dried their hair before continuing with 
the dry EEG.

2.4 EEG recording

Wet and dry EEG were recorded with a waveguard touch using 
eego™ mylab (Advanced Neuro Technologies, Enschede, 
Netherlands), a sampling rate of 1,024 Hz, and a 512 Hz low-pass filter. 
The reference and ground electrodes were placed at the left and right 
mastoid, respectively. Electrode layouts are shown in 
Supplementary Figure 1.

2.4.1 Wet EEG
The wet EEG was recorded using a 64-channel cap. Three 

electrodes were placed above, below, and at the outer canthus of the 
left eye to record the electrooculogram (EOG). The remaining 61 scalp 
electrodes were mounted according to standard 10–20 electrode 
positions. The exact electrode layout is depicted in 
Supplementary Figure  1A. Electrode impedances were kept 
below 5kΩ.

2.4.2 Dry EEG
The dry EEG was recorded using caps with 64 multipin electrodes. 

Two electrodes were placed below, and at the outer canthus of the left 
eye to record the EOG. The remaining 62 scalp electrodes were placed 
in equidistant positions. The exact electrode layout is depicted in 
Supplementary Figure 1B. Electrode impedances can significantly 
exceed 5kΩ, which is an inherent property of the methodology. 
Therefore, we used the system’s quality index aimed to be “sufficient” 
(dimension-free measure, arbitrary units) to ensure signal quality.

2.5 Data analysis

2.5.1 Preprocessing of EEG data
Preprocessing of the EEG data and the calculation of ERPs were 

done using MNE Python version 1.4.2 (Gramfort et al., 2013). Data 
from two participants could not be correctly recorded due to technical 
failure during recording. First, data was referenced to the average of 
the mastoids. Then, electrodes containing no signal or substantial 
artifacts (0–4 per recording for wet EEG, 10–19 per recording for dry 
EEG) were rejected after visual inspection. Next, data was filtered 
between 0.1 and 25 Hz using a bandpass filter. Data from the oddball 
paradigm was epoched into trials starting 0.1 s before stimulus onset 
until 0.5 s after stimulus onset. Resting-state data was cut into epochs 
of 8 s. Epoched data was resampled to 512 Hz. For the wet EEG, the 
signals from EOG electrodes above and below the eye were converted 
offline to a bipolar vertical EOG signal by re-referencing them against 
each other. The horizontal EOG was obtained by re-referencing the 
horizontal EOG next to the left eye against F7. For the dry EEG data, 
the EOGs below and next to the left eye were re-referenced against 1 L 
and 1LD for the bipolar vertical and horizontal EOG, respectively. 
Independent component analysis (ICA) was performed, resulting in 
15 components, and components correlating with the EOG signal 
(threshold = 0.2) were rejected (Jung et al., 2000; Winkler et al., 2011; 
Hanna et al., 2014; Lucchese et al., 2017). EEG channels with artifacts 
that had previously been rejected were then interpolated using the 
spherical spline method. Epochs from the task data with voltage 
deflections larger than 150 mV peak-to-peak were rejected. Only 
participants with more than 70% of the trials retained and signal-to-
noise ratio (SNR) > 1 in both dry and wet EEG recordings are included 
in the task analyses (Lopez-Calderon and Luck, 2014; Luck, 2014), 
resulting in 23 complete datasets for ERP and 32 datasets for resting-
state analyses.

2.5.2 Mismatch negativity
ERPs to standard and deviant tones were calculated by averaging 

over trials and baseline-corrected using the time window from 0.1 
before until stimulus onset. The initial 10 standard repetitions and the 
instances of the standard stimuli occurring immediately after a deviant 
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were excluded from the averages, and the number of trials was 
equalized for standard and deviant tones and wet and dry EEG for 
each participant. To calculate MMN, data was extracted from channel 
FCz (wet EEG) and 3Z (dry EEG) in the time window of 100 to 150 ms 
after stimulus onset and amplitude in response to standard stimuli was 
subtracted from deviant tones. Peak latency and amplitude were 
determined with the MNE get_peak-function, which determines the 
maximum amplitude and its time point in the given time window 
and channel.

2.5.2.1 Theta power
Time-frequency analysis was conducted with the Fieldtrip toolbox 

(Oostenveld et al., 2011) in Matlab (The MathWorks, Natick, MA) 
using a Morlet wavelet with a varying number of cycles increasing 
from 3 to 10 (wavelet length m = 2; normalization factor A = σt − 1/2 
π − 1/4) in a frequency range from 1 to 18 Hz in frequency bins of 1 Hz 
and time window 1.2 s before and after stimulus onset, respectively (a 
total of 2.4 s), in time bins of 0.05 s (Roach and Mathalon, 2008; 
Garagnani et al., 2016). Trials for standard and deviant tones were 
averaged for each participant and EEG system separately, and 
subsequently, decibel (dB) baseline-corrected in the time window 600 
to 300 ms before stimulus onset. Then, theta (4–8 Hz) power 100 to 
300 ms after stimulus onset was extracted from channel FCz (wet 
EEG) and 3Z (dry EEG) for subsequent statistical analyses.

2.5.2.2 Signal-to-noise ratio
The SNR is calculated through dividing the signal by an estimate 

of noise. Traditionally, the signal is defined as the power at peak 
latency, while noise is defined by the mean power in a baseline period 
before the signal of interest. To estimate the noise, we used the plus-
minus procedure by Schimmel (1967) instead because it allows signal 
and noise to be estimated in the same time window, leading to a more 
conservative estimation of SNR (Viola et al., 2011). First, the signal 
was calculated for each participant by averaging all deviant trials from 
channel FCz (wet EEG) or 3Z (dry EEG) in the time window of 100 
to 150 ms. Then, the noise was estimated by flipping the polarity of 
every other deviant trial from channel FCz (wet EEG) or 3Z (dry 
EEG) in the time window of 100 to 150 ms before averaging over trials 
(Schimmel, 1967; Viola et al., 2011). This procedure leads all time-
locked features to sum to zero while the noise remains in the average. 
Finally, the SNR was calculated by dividing the root mean square 
(RMS) of the signal by the RMS of the estimated noise (Hanna and 
Pulvermüller, 2014; Lucchese et al., 2017).

2.5.3 Resting-state connectivity
Connectivity analyses were performed in Brainwave (Version 

0.9.165.57; van Dellen et al., 2018). Data was referenced to an average 
reference, bandpass filtered to extract activity in common frequency 
bands - delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and only lower 
beta frequencies (13-20 Hz) to mitigate the impact of muscle activity 
(Whitham et  al., 2007) on connectivity measures. PLI was used to 
calculate functional connectivity strength (Stam et al., 2007). The PLI is 
based on Hilbert-transformed instantaneous phase differences, 
capturing the asymmetry in phase leading and lagging between two 
signals. Its values range between 0 and 1; 1 indicates complete phase 
locking, and values reaching 0 mean no phase synchronization or equal 
in leading and lagging over the epoch. An average over all PLI values 
between all channel pairs was calculated per epoch and averaged to a 

mean PLI per frequency band per subject. MST was derived from 
PLI. Since MST algorithms work on distances, PLI values were 
transformed into distance measures. The resulting MST is a subset of 
the graph that connects all nodes (channels) with the minimum possible 
total edge weight (distance) and without any cycles. The diameter of an 
MST (D) is the longest path between any two nodes in the MST (d) 
defined by the number of steps required to get from one node to another 
node (the number of links between two nodes; Stam and van Straaten, 
2012). It is corrected for the total number of links (M): D = d/M (Tewarie 
et al., 2014). MST diameter reflects the greatest distance over which 
information or synchronization is transmitted within the network (with 
greater values indicating a less efficient network; Numan et al., 2017).

2.5.4 Statistical analyses
To determine whether brain activity in the oddball paradigm can 

be distinguished with both wet and dry EEG, two repeated-measures 
ANOVA with the factors EEG system (wet versus dry) and tone 
(standard versus deviant) were applied with the mean amplitude and 
mean theta power of the specified channel and time window as the 
dependent variable. In case of a significant interaction, follow-up 
one-sided dependent t-tests were conducted with Bonferroni 
correction to correct for multiple testing. An alpha level of 0.05 was 
applied for all tests. Additionally, peak latency and amplitude of MMN 
were compared between wet and dry EEG with two-sided dependent 
t-tests.

Additionally, Bland–Altman statistics (Altman and Bland, 1983; 
Giavarina, 2015) were conducted to test the agreement between wet 
and dry EEG for ERP characteristics (MMN mean and peak 
amplitude, peak latency; theta power; PLI and MST-Diameter in 
different frequency bands) using blandr (Datta, 2017). Here, the bias 
of dry EEG was calculated compared to wet EEG as the “gold standard” 
by taking the mean difference between wet and dry EEG of the 
corresponding value. A mean difference of zero would indicate 
complete agreement between measurement methods. We report 95% 
confidence intervals of the bias to determine statistical significance. 
Lower and upper limits of agreement were determined as values 
falling within 95% around the mean difference. Bland Altman plots 
show the difference between wet and dry EEG in the corresponding 
measure plotted against the mean between wet and dry EEG as 
approximation of the true value (Altman and Bland, 1983).

3 Results

3.1 Data quality

Rejected channels, components and trials, and SNR of MMN were 
compared between EEG systems using a dependent t-test (see 
Supplementary Table 1 for detailed results). For dry EEG, significantly 
more channels and trials were rejected than for wet EEG (t(22)
s < −9.22, ps < 0.001). The SNR of MMN was significantly lower for dry 
than for wet EEG (t(22) = 2.26, p = 0.034; see Figure 1).

3.2 Mismatch negativity

Figure 2 shows the ERP curves over the whole epoch (0.1 s before 
stimulus onset until 0.5 s after stimulus onset) with the time window 
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used for analysis (100 to 150 ms after stimulus onset) indicated by the 
shaded gray area (Figure 2A), mean amplitude responses to standard 
and deviant tones (Figure  2B), and topographical maps of MMN 
(Figure 2C) for both EEG systems. There was a significant EEG system 
(wet vs. dry) x tone (standard vs. deviant) interaction on mean MMN 
amplitude (F(22) = 13.276, p = 0.001, ηp

2 = 0.38). Post-hoc dependent 
t-tests indicated that with both EEG systems, the amplitude following 
deviant tones was significantly more negative than following the 
standard tones (see Figure 2B; wet EEG: t(22) = −11.20, pcorr < 0.001, 
d = 2.33; dry EEG: t(22) = −5.17, pcorr < 0.001, d = 1.08), indicating that 
MMN could be detected with both EEG systems. However, the mean 
difference between standard and deviant tones differed between wet 

(mean (SD) = −3.35e-06 (1.44e-06) μV) and dry (mean 
(SD) = −1.96e-06 (1.82e-06) μV) EEG (t(22) = −3.64, p = 0.001, 
d = 0.76), thus explaining the significant interaction term between 
EEG system and tone. The peak amplitude of MMN did not differ 
significantly between wet (mean (SD) = −2.70e-7 (1.72e-6) μV) and 
dry (mean (SD) = −3.55e-7 (2.89e-6) μV) EEG (t(22) = 0.11, p = 0.911, 
d = 0.02) EEG. However, the peak amplitude was reached significantly 
earlier when measured with dry (mean (SD) = 126 (15) ms) compared 
to wet (mean (SD) = 138 (13) ms) EEG (t(22) = 2.52, p = 0.02, d = 0.53) 
EEG. The results for other fronto-central electrodes were overall 
similar to FCz/3Z (see Supplementary Table 2).

The Bland–Altman bias for mean amplitude (bias = 1.38e-6 μV, 
95% CI = [5.97e-7, −2.17e-6]) shows that the difference scores between 
deviant and standard tones tend to be  underestimated with dry 
compared to wet EEG (see Figure 3A). The peak latency is also slightly 
underestimated with dry compared to wet EEG (see Figure  3B; 
bias = −0.01 s, 95% CI = [−0.002, −0.02]). The confidence interval for 
the bias of the peak amplitude contains zero, indicating that the peak 
amplitude is comparable between wet and dry EEG (see Figure 3C; 
bias = −8.50e-8 μV, 95% CI = [−1.64e-6, 1.47e-6]). Additionally, for all 
MMN characteristics, the individual values fall within the upper and 
lower limits of agreement.

3.2.1 Theta power
For theta power, there was a significant EEG system (wet vs. dry) 

x tone (standard vs. deviant) interaction (F(22) = 5.014, p = 0.036, 
ηp

2 = 0.19). Post-hoc dependent t-tests indicated that theta power was 
higher following deviant compared to standard tones for both EEG 
systems (see Figure 4A; wet EEG: t(22) = 3.98, pcorr < 0.001, d = 0.83; dry 
EEG: t(22) = 2.09, pcorr = 0.048, d = 0.44), indicating that theta 
associated with MMN could be detected with both EEG systems. 
However, the mean difference between standard and deviant tones 

FIGURE 1

SNR for wet and dry EEG. The SNR is shown with scattered dots 
indicating individual participants, and boxplots showing the median, 
first and third quartile, and 1.5 interquartile range. SNR, signal-to-
noise ratio.

FIGURE 2

MMN can be detected in wet and dry EEG. In panel A, MMN amplitude (deviant – standard tones) in channels FCz (wet EEG) and 3Z (dry EEG) is 
depicted for wet and dry EEG with a 95% confidence interval. The time window used to determine mean amplitude and used for statistical analyses is 
indicated by the shaded gray area. In panel B, mean amplitude in response to deviant and standard tones is shown for wet and dry EEG with their 
distribution displayed by density plots. Scattered dots indicate individual participants, boxplots show the median, first and third quartile, and 1.5 
interquartile range. In panel C, topographies of MMN averaged in the time window from 100 to 150  ms are shown for both wet (left) and dry (right) EEG 
with a red circle marking the channels used for analyses. All data is baseline-corrected with a baseline time window from 100  ms before until stimulus 
onset. μV, microvolts. ms, milliseconds. Std, standard tone. Dev, deviant tone. MMN, mismatch negativity.
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differed between wet (mean (SD) = 0.67 (0.81) dB) and dry (mean 
(SD) = 0.27 (0.61) dB) EEG (t(22) = −2.24, p = 0.036, d = 0.47), thus 
explaining the significant interaction term between EEG system and 
tone (see Figure  4C). The Bland–Altman bias for theta power 
(bias = −0.41 dB, 95% CI = [−0.78, −0.03]) shows that the difference 
in theta power between deviant and standard tones is slightly 
underestimated with dry compared to wet EEG (see Figure 4B).

3.3 Sensor-level resting-state connectivity

The Bland–Altman bias is reported for PLI and MST-Diameter 
with a 95% confidence interval separately for each frequency band in 
Table  1. The Bland–Altman plots are shown in Figure  5 and the 
distribution of raw values is depicted in Supplementary Figure 2. PLI 
was significantly underestimated for alpha and beta frequency and 
significantly overestimated for delta frequency (see Figure 5A). In 
theta frequency, the PLI measured with dry EEG was slightly higher, 
but overall, it was similar to wet EEG (95% confidence interval of bias 
includes zero, see Figure 5A, right). Overall, PLI was within the limits 
of agreement for most values except three extreme values for lower 
frequency bands (see Figure 5A). The MST-Diameter could be more 
reliably measured with dry EEG than PLI. Here, the 95% confidence 
interval of the bias includes zero for alpha, beta, and theta connectivity 
(see Figure 5B), indicating that the MST-Diameter is very similar 
measured with dry and wet EEG in these frequency bands. Only in 
delta frequency is MST-Diameter significantly overestimated with dry 
compared to wet EEG (see Figure 5B). However, for MST-Diameter, 
all values fall within the limits of agreement (see Figure 5B). The 
results acquired using Bland–Altman statistics are overall comparable 
with frequentist comparisons between wet and dry EEG using 
Wilcoxon t-tests to correct for non-normal distribution of the data, 

which we report in Supplementary Table 3 for power and multiple 
additional connectivity measures. Here, the effect sizes show that the 
differences in PLI range from small (theta) to large (delta), while the 
differences in MST-Diameter are small or even negligible except for 
delta frequency (Cohen, 1992; see Table 1).

4 Discussion

Developing, improving, and validating methods to investigate the 
neural processes underlying cognition is crucial for diagnosing and 
treating psychiatric and neurological conditions. This counterbalanced 
cross-over study contributes to this effort by comparing wet and dry 
EEG in measuring connectivity and task-related frequency 
representation. In line with our hypothesis, we show that the neural 
response to infrequently occurring deviant auditory stimuli can 
be  distinguished from frequently occurring standard tones using 
multipin dry EEG in both the time and frequency domain. These 
results indicate that cognitive ERPs, commonly investigated using the 
standard wet EEG, such as MMN, can also be reliably detected using 
dry EEG. Furthermore, we show that resting-state connectivity can 
be  assessed with dry EEG with results similar to wet EEG. Here, 
MST-Diameter was more in line with values from wet EEG than PLI.

Building on previous research demonstrating the comparability 
of wet and dry EEG for resting-state power and ERPs (Fiedler et al., 
2015; Clements et al., 2016; Mathewson et al., 2017; Kam et al., 
2019; Hinrichs et al., 2020; Heijs et al., 2021; Fiedler et al., 2022), 
our study further investigates this comparability by measuring the 
agreement between high-density wet and dry EEG for resting-state 
connectivity and MMN in time and frequency domains. While 
P300 as a cognitive ERP and AEP as an auditory ERP could 
be  detected with both wet and dry EEG (Clements et  al., 2016; 

FIGURE 3

Bland Altman plots show the level of agreement between wet and dry EEG for MMN characteristics. Bland Altman plots show the difference between 
wet and dry EEG (y-axis) in the corresponding measure plotted against the mean between wet and dry EEG (x-axis) of the corresponding value as 
approximation of the true value (Altman and Bland, 1983) for each participant. Panel A shows the difference in baseline-corrected (−100 to 0  ms) MMN 
averaged at channel FCz (wet EEG) and 3Z (dry EEG) 100 to 150  ms after stimulus onset between wet and dry EEG for each participant plotted against 
the mean MMN in wet and dry EEG as approximation of the true MMN amplitude values. Panel B shows the difference in peak latency of MMN 
between wet and dry EEG plotted against the mean peak latency of the both systems. Panel C shows the difference in peak amplitude between wet 
and dry EEG plotted against the mean peak amplitude of the two EEG systems. The scatterplots show individual participants. Dotted lines represent the 
bias and lower (−) and upper (+) limit of agreement as indicated, with 95% confidence intervals indicated by shaded gray areas. The lower and upper 
limits of agreement are determined as the values falling within 95% around the mean difference. MMN, mismatch negativity. –LOA, lower limit of 
agreement. +LOA, upper limit of agreement.
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Mathewson et al., 2017; Kam et al., 2019; Hinrichs et al., 2020; Heijs 
et al., 2021), our results extend these findings for MMN and by 
assessing the degree of agreement between the two methods 

regarding ERP characteristics. Previous studies found that P300 
amplitudes are highly correlated (Kam et al., 2019), and amplitude 
and peak latencies do not differ significantly between systems for 
P300 or AEP (Hinrichs et al., 2020; Heijs et al., 2021). Contrary to 
this and our initial expectations, however, statistics assessing the 
agreement between the two methods show that key characteristics 
of MMN, such as peak latency and peak and mean amplitude, can 
differ between wet and dry EEG. This finding aligns with a study 
using dry EEG for a brain-computer interface, which also found 
significantly different P300 amplitudes between wet and dry EEG 
(Clements et al., 2016). As ERP peak measures are easily influenced 
by noise (Luck, 2014), this could have resulted in our study’s 
significant differences in MMN mean and peak amplitude, and 
latency. Therefore, while detecting ERPs of higher cognitive 
functions using dry EEG is possible, the specific measures should 
not be compared with previous wet EEG results but rather with a 
control group assessed with dry EEG. In addition to the time 
domain of MMN, we  extend previous studies by showing that 
condition differences in the frequency domain can also be detected 
with dry EEG. Specifically, there was a significant difference in theta 
power between standard and deviant tones for wet and dry 

FIGURE 4

Theta power in the oddball paradigm can be distinguished with both wet and dry EEG. In panel A, mean dB baseline-corrected theta power in 
response to deviant and standard tones is shown for channels FCz (wet EEG) and 3Z (dry EEG) with their distribution displayed by density plots. 
Scattered dots indicate individual participants, boxplots show the median, first and third quartile, and 1.5 interquartile range. Panel B shows the 
difference in theta power between wet (channel FCz) and dry (channel 3Z) EEG (y-axis) for each participant plotted against the mean of theta power in 
wet and dry EEG (x-axis) as approximation of the true theta power values. Panel C shows the power spectra for wet (left) and dry (right) EEG at channel 
FCz (wet) and 3Z (dry) EEG.

TABLE 1 Bland–Altman bias with 95% confidence interval and effect size 
for wet vs. dry comparison for resting-state connectivity.

Frequenz Bias (95% CI) d

Phase-lag index

Delta (0.5-4 Hz) 2.11 e-2 (1.12e-2; 3.03e-2) −0.55 (moderate)

Theta (4-8 Hz) 0.44e-2 (−0.21e-2; 1.09e-2) 0.20 (small)

Alpha (8-13 Hz) -1.97e-2 (−2.97e-2; −0.96e-2) 0.70 (moderate)

Beta (13–20 Hz) −0.40e-2 (−0.66e-2; −0.13e-2) 0.54 (moderate)

MST-Diameter

Delta (0.5-4 Hz) 2.53e-2 (0.86e-2; 4.20e-2) −0.83 (large)

Theta (4-8 Hz) 1.19e-2 (−0.83e-2; 3.21e-2) −0.21 (small)

Alpha (8-13 Hz) 1.09e-2 (−0.80e-2; 2.99e-2) −0.21 (small)

Beta (13–20 Hz) 0.13e-2 (−1.44e-2; 1.69e-2) −0.03 (negligible)

MST, minimum spanning tree.
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EEG. Although this difference was smaller for dry compared to wet 
EEG, our results show that with appropriate task design, including 
sufficiently long baseline windows and a large number of trials to 
increase SNR, dry EEG provides a promising tool to investigate 
pathologically relevant changes in both time and frequency domain, 
not only in resting-state but also in response to cognitive stimuli.

In resting state, we extend previous studies by assessing brain 
network connectivity. Notably, differences between wet and dry EEG 
emerge in lower frequency bands, such as delta (0.5–4 Hz) and theta 
(4–8 Hz). This finding aligns with studies showing significant 
differences in resting-state power in these frequencies due to artifacts 
in dry EEG data (Hinrichs et al., 2020; Heijs et al., 2021). In our study, 
MST-Diameter showed more reliable results in dry EEG compared to 
wet EEG than PLI, although MST parameters are derived from PLI. A 
plausible explanation for this discrepancy is that absolute measures of 
PLI might differ, i.e., the amount of phase coupling might differ to 
some extent for slow frequencies, yet their order in a network remains 
rather unaffected, rendering the MST structure consistent across 

methods. Despite these differences, most variations between wet and 
dry EEG fall within the limits of agreement. Furthermore, effect sizes 
for the difference between wet and dry EEG range from negligible to 
moderate for all frequencies except delta.

4.1 Limitations and future directions

While our findings extend the comparability of dry EEG with wet 
EEG, whether the SNR of dry EEG is sufficient to detect more fine-
grained condition and/or group differences, especially for 
connectivity measures, remains to be investigated. Lower SNR in dry 
compared to wet EEG is a common issue (Mathewson et al., 2017; 
Hinrichs et al., 2020; Heijs et al., 2021), even though previous studies 
have already rejected more trials (Hinrichs et al., 2020; Heijs et al., 
2021). The lower SNR in dry compared to wet EEG could result from 
reduced skin-to-electrode contact (Clements et al., 2016), making it 
more susceptible to movement artifacts (di Fronso et  al., 2019). 

FIGURE 5

Bland Altman plots show the level of agreement between wet and dry EEG for resting-state connectivity. Bland Altman plots show the difference 
between wet and dry EEG (y-axis) in the corresponding measure plotted against the mean between wet and dry EEG (x-axis) of the corresponding 
value as approximation of the true value (Altman and Bland, 1983) for each participant. Panel A shows the difference in PLI averaged across all 
electrodes between wet and dry EEG for each participant plotted against the mean PLI in wet and dry EEG (x-axis) as approximation of the true value 
for alpha (8-13  Hz), beta (13-20  Hz), delta (0.5-4  Hz), and theta (4-8  Hz) frequency (from left to right). Panel B shows the difference in MST-Diameter 
derived from PLI between all channel pairs between wet and dry EEG plotted against the mean MST-Diameter of the both systems for alpha (8-13  Hz), 
beta (13-20  Hz), delta (0.5-4  Hz), and theta (4-8  Hz) frequency (from left to right). The scatterplots show individual participants. Dotted lines represent 
the bias and lower (−) and upper (+) limit of agreement as indicated, with 95% confidence intervals indicated by shaded gray areas. The lower and 
upper limits of agreement are determined as the values falling within 95% around the mean difference. PLI, phase lag index. MST, minimum spanning 
tree. –LOA, lower limit of agreement. +LOA, upper limit of agreement.
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Indeed, our data contained many jump artifacts resulting from 
sudden impedance changes likely caused by low skin-to-electrode 
contact. Yet, other studies have found comparable signal quality 
between wet and dry EEG. However, significantly more channels 
were rejected in these studies, possibly providing better signal quality 
in the remaining data (Kam et al., 2019; Fiedler et al., 2022). Despite 
the potentially reduced signal quality, dry EEG offers two significant 
advantages, especially in clinical settings: faster application (Fiedler 
et al., 2015; di Fronso et al., 2019; Hinrichs et al., 2020; Heijs et al., 
2021; Fiedler et al., 2022) and greater comfort for the participants 
(Hinrichs et al., 2020; Fiedler et al., 2022). Additionally, dry EEG has 
been proposed for use in home settings (e.g., Kam et  al., 2019; 
Hinrichs et al., 2020), appealing for longer-term clinical or research 
monitoring. Future research can build on our findings to investigate 
cognitive ERPs eliciting robust experimental condition or group 
differences with dry EEG in ecologically valid settings and vulnerable 
groups where high-density wet EEG might not be feasible, such as 
delirious patients. Thus, the faster, more convenient application of 
dry EEG could enhance the understanding of the mechanisms 
underlying various psychiatric and neurological conditions, 
providing crucial insights for developing more effective interventions 
or treatments.

5 Conclusion

In sum, our study showed that MMN can be detected using 
dry EEG in time- and frequency domains, although ERP 
characteristics might differ when assessed with dry compared to 
wet EEG. Additionally, we  showed that assessing resting-state 
connectivity with high-density dry EEG is a promising tool for 
investigating disease-related changes in brain networks, but the 
reliability of the results depended on the specific measure and 
frequency used. Nevertheless, resting-state connectivity and 
time- and frequency representations of cognitive ERPs obtained 
with dry EEG could be  used in future studies to advance 
understanding of the neurophysiological mechanisms of 
psychiatric and neurological conditions where high-density wet 
EEG is not possible.
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