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Introduction: Event-Related Potentials (ERPs) are valuable for studying brain

activity withmillisecond-level temporal resolution.While the temporal resolution

of this technique is excellent, the spatial resolution is limited. Source localization

aims to identify the brain regions generating the EEG data, thus increasing the

spatial resolution, but its accuracy depends heavily on the headmodel used. This

study compares the performance of subject-specific and template-based head

models in both simulated and real-world ERP localization tasks.

Methods: Simulated data mimicking realistic ERPs was created to evaluate the

impact of head model choice systematically, after which subject-specific and

template-based head models were used for the reconstruction of the data. The

di�erent modeling approaches were also applied to a face recognition dataset.

Results: The results indicate that the template models capture the simulated

activity less accurately, producing more spurious sources and identifying less

true sources correctly. Furthermore, the results show that while creating more

accurate and detailed head models is beneficial for the localization accuracy

when using subject-specific head models, this is less the case for template

head models. The main N170 source of the face recognition dataset was

correctly localized to the fusiform gyrus, a known face processing area, using the

subject-specificmodels. Apart from the fusiform gyrus, the templatemodels also

reconstructed several other sources, illustrating the localization inaccuracies.

Discussion: While template models allow researchers to investigate the neural

generators of ERP components when no subject-specific MRIs are available, it

could lead to misinterpretations. Therefore, it is important to consider a priori

knowledge and hypotheses when interpreting results obtained with template

head models, acknowledging potential localization errors.

KEYWORDS

Event-Related Potentials, ERP, EEG, source estimation, EEG source localization, head

modeling

1 Introduction

Electroencephalography (EEG) is an essential tool for analyzing brain activity, which

allows researchers to study the neuronal mechanisms at work when executing specific

tasks at a millisecond scale (Luck, 2014). While this technique offers excellent temporal

resolution, its spatial resolution is limited, as the signals are measured at the scalp using a

limited number of electrodes. Moreover, due to volume conduction, the activity recorded
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by each electrode does not represent a single underlying brain

source, but rather a composite of activities from various brain

regions, again limiting the spatial accuracy of EEG. EEG source

imaging was introduced to overcome this limitation as a

computational technique to estimate the electrical neuronal activity

in the brain. This technique identifies the underlying generators of

the electrophysiological activity recorded at the scalp by combining

the EEG signals with structural MR images. During recent decades,

EEG Source Imaging (ESI) has been an important area of research.

However, while it has introduced significant advances in multiple

research domains such as epilepsy (Mégevand and Seeck, 2020) and

sleep (Del Felice et al., 2014; Fernandez Guerrero and Achermann,

2019), the precise localization of the neuronal activity is still a

challenge, and the spatial resolution remains unclear.

Source analysis of EEG data consists of two different processes,

namely a forward model and an inverse model. The forward or

head model describes how a known source of electrical activity

within the brain contributes to the signal observed at each EEG

electrode on the scalp. The inverse model then estimates the

location and the strength of the electrical activity within the brain

based on the EEG signals recorded at the scalp, and relies on
the forward model to obtain an accurate solution. As this is

a non-unique problem, regularization techniques or constraints

are needed to find plausible solutions. Many different techniques

have been proposed for solving the inverse problem, such as

single dipole models, multiple dipole models, including multiple
emitter location and signal parameter estimation (MUSIC)

(Schmidt, 1986), and distributed source estimation methods,

including the minimum norm estimate (MNE), dynamic statistical

parametric mapping (dSPM), standardized low-resolution brain

electromagnetic tomography (sLORETA) and exact low-resolution

brain electromagnetic tomography (eLORETA) (Hämäläinen and

Ilmoniemi, 1994; Dale et al., 2000; Pascual-Marqui, 2002; Pascual-

Marqui et al., 2011). However, the accuracy of the EEG

reconstruction obtained with each of these techniques still depends

on the accuracy of the forward model.

The construction of the forward model is thus a critical
step in the source reconstruction. The model takes into account

the anatomical structure of the head, as well as the electrical

conductivity of the different tissue types. Many different studies
have investigated the effect of the head model on the obtained

localization errors. Vorwerk et al. (2012) and Birot et al. (2014),

for example, have investigated the effect of using different methods

for the creation of the head model, such as boundary element

models (BEMs), finite difference models (FDMs) or finite element
models (FEMs). In other studies, the influence of including more

head tissue compartments in the model was investigated (Vorwerk

et al., 2014; Neugebauer et al., 2017). Recently, Nielsen et al.

(2023) specifically investigated the influence of anatomical accuracy

and electrode positions on the accuracy of the forward solutions.

Other work by Montes-Restrepo et al. (2014) and Montes-Restrepo

et al. (2016), for example, studied the influence of different skull

modeling approaches on EEG source localization, while Stenroos

and Hauk (2013) looked into the robustness of source estimation

in the case of skull conductivity errors. Also the influence of head

tissue conductivity uncertainties on dipole reconstructions has

been investigated (Vorwerk et al., 2019), as McCann et al. (2019)

have shown that the electrical conductivity values assumed for

each compartment likely vary between individuals. It is clear that

the ideal head model for the most accurate reconstruction of the

neural activity is a realistic head model created using the subject’s

individual MRI and accurate electrical properties of the different

tissue types (Akalin Acar and Makeig, 2013; Vorwerk et al., 2018;

Conte and Richards, 2021).

Unfortunately, in many EEG studies the additional acquisition

of MRI data proves difficult. The acquisition of MRI data for

each subject would require more time, research funds, and the

availability of anMRI scanner. Therefore, many studies using ESI to

source localize ERP data use an approximate, average or template-

based head model (Sabeti et al., 2016; Dorme et al., 2023; Criel

et al., 2024). The effect of this simplification has been studied

extensively before. Valdés-Hernández et al. (2009), for example,

investigated the performance of approximate models of the head

in ESI using simulations and showed that the average of many

individual MRI-based models outperforms a randomly selected

individual model. Liu et al. (2023) quantified source localization

discrepancies introduced by using template head models, inexact

electrode locations, and inaccurate skull conductivity for both

younger and older adults using real EEG data. They found that

using template MRIs led to localization discrepancies of up to 2

cm compared to the anatomically accurate subject-specific head

models for both younger and older adults.

However, most studies investigating EEG source localization

accuracy have focused on the localization of a single source

and quantified the localization error associated with each source

modeled within the brain (Vorwerk et al., 2014; Hauk et al.,

2022). This approach is motivated by applications in which the

activity is dominated by a single source, e.g. in the localization

of epileptiform interictal discharges. However, it is known that in

multiple applications of ESI, such as Event-Related Potential (ERP)

research, typically more than one source is involved in the observed

waveform, as more than one brain region is involved in processing

the stimuli. It is therefore important to investigate the effect of

the head model that is used particularly when multiple sources of

activity are present. In a study by Cho et al. (2015), the influence

of imperfect head models on EEG source connectivity analyses

has been studied with multi-source scenarios, where they found

that neglecting the distinction between gray and white matter or

neglecting CSF causes large connectivity errors. However, they only

used a single subject in this study, and they did not yet investigate

the effect of using a template head model.

The objective of this study is therefore to investigate the effect

of using a template head model instead of subject-specific head

models, particularly in the context of Event-Related Potentials

(ERPs) involving multiple brain regions, and to quantify the

localization error associated with this simplification. By using

both simulated and real task data, the aim is to quantify the

localization errors introduced by this simplification and assess the

interpretability of the reconstructed neural activity.

2 Materials and methods

2.1 Participants and data

In this work, the open-source multimodal neuroimaging

dataset VEPCON (OpenNeuro Dataset ds003505) was used

(Pascucci et al., 2022), in which visual evoked potentials were
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recorded while the subjects discriminated faces from scrambled

faces. This dataset has previously been used in different studies, for

example, to improve and validate EEG source imagingmethods and

time-varying functional connectivity methods (Rubega et al., 2019;

Pascucci et al., 2020). The dataset includes raw data, derivatives of

high-density EEG, structural MRI and diffusion-weighted images

(DWI), and single-trial behavior.

The dataset includes the data of twenty participants (3 males,

mean age = 23 ± 3.5) who were recruited from the student

population at the University of Fribourg, Switzerland. In this work,

only the raw high-density EEG, recorded during a face detection

task, and the derivatives of the T1-weighted structural MRI data,

obtained using the Freesurfer software, were used. Subjects for

whom (part of) this data was missing were excluded, resulting in

a total of eighteen participants. The EEG data were recorded at a

sampling rate of 2048 Hz with a 128-channel Biosemi Active Two

EEG system (Biosemi, Amsterdam, The Netherlands) in a dimly

lit and electrically shielded room. More information regarding

the dataset and recording procedures can be found in the data

descriptor provided by Pascucci et al. (2022).

2.2 MRI processing and head model
reconstruction

Preprocessed structural MRI data was included in the open-

source dataset. For each subject, Pascucci et al. (2022) resampled

the T1w images using the Connectome Mapper v3.0.0-beta-RC1

pipeline (Tourbier et al., 2022), and segmented gray and white

matter using Freesurfer 6.0.1 (Fischl, 2012). The structures were

then parcellated into 83 cortical and subcortical areas according

to the Desikan-atlas. Also other parcellations were included in the

dataset, such as the parcellation following the Destrieux atlas.

Multiple approaches were used for the construction of the

forward model, namely the finite element method (FEM) and

the boundary element method (BEM). The FEM method uses a

realistic volume mesh of the head, which is generated from the

MRI segmentation, and results in anatomically accurate models.

The BEM model, on the other hand, relies on the creation of three

BEM surfaces (inner skull, outer skull, and skin) and thus includes

less detailed segmentations in the model.

2.2.1 FEM
Afinite elementmethod (FEM) headmodel was constructed for

each subject in Brainstorm (Tadel et al., 2011), which is documented

and freely available for download online under the GNU general

public license. In the first step, the tetrahedral FEM meshes were

generated using the SimNIBS-charm pipeline (Puonti et al., 2020).

The MRI data was segmented into nine different tissue types:

white matter, gray matter, CSF, compact bone, spongy bone, scalp,

eyes, blood and muscle, after which the meshes representing the

geometry of the head were created. Equivalent current dipoles were

then distributed within the gray matter. The dipoles were spaced

approximately 3 mm apart, resulting in a dense and uniform grid

of dipoles throughout the cortical surface. The forward model

was subsequently generated from the obtained mesh using the

DUNEuro-FEM computation within Brainstorm (Medani et al.,

2023).

Two different forward models were created based on the FEM

meshes. In the first model, the conductivity values for the different

tissue types were based on the weighted average means from the

meta-analysis by McCann et al. (2019): 0.22 S/m for white matter,

0.47 S/m for gray matter, 1.71 S/m for the CSF, 0.006 S/m for

the compact bone and 0.048 S/m for the spongiform bone, 0.41

S/m for the scalp, 0.33 S/m for the eyes, 0.57 S/m for blood and

finally 0.32 S/m for the muscle layer. In the second model, the

default conductivity values as proposed by Brainstorm were used:

0.14 S/m for white matter, 0.33 S/m for gray matter, 1.79 S/m for

the CSF, 0.008 S/m for the compact bone and 0.025 S/m for the

spongiform bone, 0.43 S/m for the scalp, 0.33 S/m for the eyes,

0.33 S/m for blood and 0.33 S/m for the muscle layer (Vorwerk

et al., 2014). By including two models with different conductivity

values, it is possible to investigate the effect of using slightly deviant

conductivities on the reconstructions.

In addition to individual head models, the same approach was

applied to the average MRI, fsaverage, available in Freesurfer. This

template brain is based on a combination of 40 MRI scans of real

brains. More information on the creation of the fsaverage template

and details about the subjects used in this template can be found in

the official Freesurfer documentation (Fischl, 2012).

2.2.2 BEM
For each individual, a three-layered head model was created

using Freesurfer 6.0.1 and MNE-python (Fischl, 2012; Gramfort,

2013). The inner skull, outer skull and outer skin surfaces were

obtained from the dataset and then used as boundaries for the

different compartments, assigning default electrical conductivity

values to the scalp (0.33 S/m), skull (0.006 S/m) and brain (0.33

S/m) compartments of the head model. The same equivalent

current dipole locations as used in the FEMmodels were used here,

i.e. the dipoles were distributed in the gray matter with a spacing of

3 mm. Finally, the boundary element method (BEM) was used to

obtain the EEG leadfield matrix. As before, this approach was also

applied to the average MRI, fsaverage, to obtain the leadfield matrix

for the average head model.

2.3 ERP preprocessing

The high-density EEG data recorded during the face

recognition task was processed using the MNE-python library

(Gramfort, 2013). The data were first downsampled to 250 Hz

and bad electrode channels were automatically detected using the

different noisy channel detection methods in the PREP pipeline

(Bigdely-Shamlo et al., 2015). The electrodes indicated as bad were

excluded from further analysis. The data was band-pass filtered

using a zero phase shift Butterworth filter with half-amplitude

cut-off frequencies of 0.3 Hz and 30 Hz and a 12 dB/octave slope.

The power line noise was then removed using a 50 Hz notch filter.

Independent component analysis was applied for eye blink and

horizontal eye movement artifact rejection. In case bad electrode
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channels were identified and excluded in the first step, these

channels were interpolated at this stage. Subsequently, data were

re-referenced to an average common reference. In the next step,

the data was segmented into epochs going from 100 ms before the

stimulus onset to 500 ms after. Finally, epochs containing artifacts

were rejected using the following criteria: 75 µV maximum

gradient criterion; 100 µV minimal/maximal amplitude criterion;

150µVmaximum difference criterion; 0.5µV low activity criterion

during 100 ms.

2.4 Simulation

Simple ERP waveforms were simulated using half-cycle

sinusoidal waveforms to allow the objective quantification of the

localization error associated with the subject-specific and average

head models. This was done by simulating activity in different

regions of the brain, including noise, and projecting this activity to

the scalp surface using the individual headmodels. For each subject,

80 epochs of 1000 ms were simulated, half of which contained

the ERP waveform as well as pink noise, while only the noise was

included in the other half. In each epoch, a pre-stimulus window

of 200 ms was considered. By including epochs which only contain

noise, and thus simulating two different conditions, it is possible

to investigate the difference between the localizations obtained

for both conditions. This approach helps in reducing systematic

biases in the source reconstruction process. If certain types of

noise or non-specific activity consistently affect the EEG data, this

might lead to similar localization errors across both conditions.

By subtracting one condition from another, these systematic errors

can be reduced, leading to a more accurate estimate of the

neural sources.

Different networks responsible for generating ERP activity were

simulated, each involving four symmetrically active brain regions,

with two regions in each hemisphere. These regions were identified

using the Destrieux cortical atlas parcellations. For each region of

interest (ROI), the center of the parcellation was determined, and

dipoles within a 10 mm radius around this center were selected.

The ERP activity in these selected dipoles was simulated as a 5 Hz

half-cycle sinusoidal waveform lasting 100 ms. A small delay was

introduced across the ROIs: the ERP waveform began in the first

ROI at 100 ms post-stimulus, followed by the second ROI 10 ms

later, and then in the third and fourth ROIs at 120 ms. Additionally,

the signal amplitude in the third and fourth ROIs was reduced to

80% of the amplitude in the first two ROIs. Table 1 provides an

overview of the different ROIs selected for each network. These

networks were designed to investigate localization errors across

different ROIs, as previous studies have shown that localization

errors are typically larger for temporal sources (Cuffin et al., 2001;

Kobayashi et al., 2003). To simulate realistic conditions, pink noise

was added to all epochs. The noise amplitude was adjusted to

achieve different signal-to-noise ratios (SNRs) ranging from -20 dB

to +0 dB. The SNR was defined as the ratio of the peak amplitude

of the ERP component to the peak-to-peak amplitude measured

within the pre-stimulus window. This SNR-range was chosen based

on the VEPCON dataset, where an SNR of about -10 dB was

observed for the N170 component.

After creating the simulated activity in source space, the source

time series were projected to the scalp by applying the subject-

specific FEM forward model created using the individual MRI for

each subject and using the conductivity values based on the meta-

analysis by McCann et al. (2019). This step results in individual

epochs in sensor space, or thus the simulated EEG data.

2.5 Brain activity reconstruction

For the reconstruction of the brain activity, the MNE-

python implementation of the exact Low-Resolution Tomography

(eLORETA) inverse method was used (Pascual-Marqui et al., 2011).

The source reconstruction was done for each epoch separately,

using both the subject-specific head models and the average head

models that were previously constructed using the three different

modeling pipelines. Noise pre-whitening of the leadfield matrix

was applied using the noise covariance matrix before calculating

the inverse solution. Next, the absolute magnitude of the dipoles

or the current source density (CSD) was calculated, disregarding

the orientation information of the dipoles in subsequent analyses.

In a final step, for each subject, each condition and for each head

model, the average response was calculated. In the case of the

simulated data, an evoked response was obtained for the ERP

and the noise condition for each subject and both the subject-

specific and the average head models, while for the experimental

data, an evoked response in source space to the faces and to the

scrambled images was obtained, again for each subject and for both

the subject-specific and the average head models.

2.6 Evaluation of the source reconstruction

2.6.1 Simulated data
Different aspects are taken into account in the evaluation

of the source reconstruction: the correspondence between the

obtained sources and the simulated sources, the localization error

and the spatial dispersion of these reconstructed sources, and

the correlation between the originally simulated activity and the

reconstructed activity.

For each subject, the difference in source space activity between

the ERP and the noise condition is calculated, after which the data is

averaged over the time window of interest, in this case from 100 ms

to 220 ms post-stimulus. The data is then thresholded so that only

the 5% strongest differences between the ERP and noise conditions

remain, after which the remaining active dipoles are grouped into

potential clusters based on the spatial adjacency. Two dipoles are

considered to be adjacent if the distance between both dipoles is

smaller than 5 mm. Finally, only clusters containing at least five

dipoles are retained.

For each of the obtained dipole clusters, the distance between

the center of the cluster and the center of the simulated ROIs is

calculated. Each ROI for which at least one reconstructed cluster

is found within a 3 cm distance is considered a true positive (TP),

while ROIs without a cluster within this distance are considered

false negatives (FN). Similarly, clusters that are not within a 3

cm distance of a simulated ROI are annotated as false positives

(FP). Based on this classification of the clusters, the sensitivity and
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TABLE 1 Overview of the di�erent ROIs used for the simulation of the networks.

Network ROI 1 ROI 2 ROI 3 ROI 4

Temporo-occipital network Occipital pole (lh) Occipital pole (rh) Inferior temporal sulcus (lh) Inferior temporal sulcus (rh)

Fronto-parietal network Inferior frontal gyrus, pars
opercularis (rh)

Inferior frontal gyrus, pars
opercularis (lh)

Supramarginal gyrus (lh) Supramarginal gyrus (rh)

Fronto-occipital network Occipital pole (lh) Occipital pole (rh) Inferior frontal gyrus, pars
opercularis (rh)

Inferior frontal gyrus, pars
opercularis (lh)

Temporo-parietal network Inferior temporal sulcus (lh) Inferior temporal sulcus (rh) Supramarginal gyrus (lh) Supramarginal gyrus (rh)

lh, left hemisphere; rh, right hemisphere.

the precision of the localization are then calculated as respectively

the ratio of the number of TPs over the sum of the TPs and the

FNs and the ratio of the number of TPs over the sum of the

TPs and FPs. These measures are used to quantify the correctness

of the reconstructed activity. To clarify these metrics further, a

figure illustrating the calculation of sensitivity and precision is

provided (Figure 1). As the maximal distance is an important

parameter, also the effect of this parameter was investigated by

including the results of using a maximal distance of 1 cm and 5 cm

in Appendix.

For the calculation of the localization error and the spatial

dispersion, only the true positive ROIs are taken into account. The

localization error is calculated as the Euclidean distance between

the center of the simulated ROI and the reconstructed cluster.

When more than one cluster is within the 3 cm distance of the

ROI, the average of the localization errors is taken into account. The

spatial dispersion, on the other hand, is calculated as the difference

between the total volume of all reconstructed clusters within the

3 cm distance of the ROI and the total volume of the ROI. This

measure is then normalized by dividing by the total volume of the

simulated ROI to take into account differences in the dispersion of

the original activity.

2.6.2 VEPCON data
As no ground truth data exists for the sources underlying

the signals measured during the face task, the evaluation of the

reconstructed activity can only be evaluated descriptively. One

of the ERP components elicited by the faces task that is used

in the VEPCON dataset is the N170. This component is larger

when the eliciting stimulus is a face compared to when the

stimulus is a non-face object, such as a scrambled face or a car

[for a review, see Rossion and Jacques (2012)]. Many researchers

have investigated the sources underlying this component. Using a

dipolar fit method, Taylor et al. (2001) have located the N170 in the

middle part of the fusiform gyrus. This localization corresponds to

the fusiform face area that was identified in fMRI studies (Haxby

et al., 2000), as well as in intracranial EEG studies (Engell and

McCarthy, 2014). Similarly, Henson et al. (2007) found differences

between the localization of faces and scrambled faces in the

anterior fusiform gyrus, with a strong dominance toward the

right hemisphere.

In this work, each of the individual epochs will be source-

localized using both the subject-specific head models and the

average head models. The obtained localization will then be

averaged for each condition separately and, in the case the subject-

specific head model was used, the obtained results will be morphed

to the average head model after which averaging can be applied

over all subjects. The 5% dipoles with the strongest difference in

activation between the two conditions within a time window of 150

ms to 170 ms post-stimulus will then be visualized and compared

to the regions identified in the literature.

3 Results

3.1 Simulated data

The simulated EEG data of the different networks was source

localized for each subject using both the subject-specific and the

template head models, using both of the FEM models and a BEM

model for the reconstruction. Figure 2 shows the simulated data at

the sensor level. In the figure, the symmetric nature of the simulated

data is visible. While in most networks the activity of the different

ROIs of a single hemisphere is blended at the surface, for the fronto-

occipital network a clear distinction is visible between the frontal

and the occipital subcomponents of the simulated ERP waveform,

both when looking at the topography of the obtained signal and

when inspecting the waveform. This effect might facilitate the

source localization compared to the other networks, where the

activity from the different sources is less separated spatially at the

scalp level.

In Figure 3, both the originally simulated data in source space

and the reconstructed activity averaged over all subjects for the

different networks for an SNR level of -10dB are shown. To

reduce systematic biases in the source reconstruction, the difference

between the reconstructed activity for the ERP and noise conditions

is shown. As averaging over subject-specific anatomies is not

possible, the source activity of both the original simulated data and

the subject-specific reconstruction was morphed into the anatomy

of the average head model before averaging. The figure illustrates

the differences between the obtained reconstruction when using the

different models. The results obtained with the two FEM models,

constructed using different conductivity values, are very similar

for most of the networks. While differences in the intensity of

the activity can be observed, the location of the activity averaged

over all subjects is very similar when using the FEM models with

different conductivities. Looking at the different networks, the

figures show that the location of the ROI influences on the accuracy

of the localization. For the temporo-parietal network, for example,

the activity in the temporal lobes is not reconstructed using the
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FIGURE 1

Illustration of the calculation of sensitivity and precision of the source reconstructions for the simulated data. True positives (TPs) are defined as

reconstructed clusters within a 3 cm distance from the center of the simulated ROIs, while false negatives (FNs) are ROIs without a nearby cluster,

and false positives (FPs) are clusters not within 3 cm of any ROI. Sensitivity is calculated as the ratio of TPs to the sum of TPs and FNs, and precision is

calculated as the ratio of TPs to the sum of TPs and FPs.

subject-specific FEM-based models, while it is clearly present

for the temporo-occipital network. The differences between the

subject-specific reconstructions and the template reconstructions

illustrate that for both FEM approaches better results are obtained

using the subject-specific reconstructions. It is clear that while

most simulated are reconstructed, i.e., taking into account some

mislocalizations, alsomany false positive clusters are reconstructed.

Finally, the figure shows that the results obtained using the

BEM models perform quite poorly. Limited differences are found

between the subject-specific reconstructions and the template

reconstructions in this case in terms of the location of the

reconstructed activity. Upward mislocalizations seem to be present

for all of the different networks when using BEM models. The

occipital sources are localized more toward the superior parietal

lobe, for example, while no clear reconstruction can be found for

the temporal ROIs. Finally, the figure also shows that only for

the fronto-occipital network two distinct ROIs are localized per

hemisphere, while only a single spread-out ROIs is reconstructed

per hemisphere for the other networks.

The quantification results of the localization errors associated

with the localizations for the individual subjects are shown in

Figure 4. In this evaluation of the source reconstructions, different

aspects were taken into account: the sensitivity and the precision

of the obtained sources, the localization error and the spatial

dispersion of these reconstructed sources. For each of these

measures, the difference between using the subject-specific and the

average head models was investigated, as well as the differences

between the different modeling approaches. Clusters of activity

were considered correctly localized when the difference between

the center of the reconstructed cluster was within 3 cm of the

center of the simulated ROIs. As this maximal distance is an

important parameter, the results when using a maximal distance

of both 1 cm and 5 cm were included in Appendix. Looking

at the different FEM models, higher sensitivity and precision, as

well as smaller localization errors were found when using the

subject-specific headmodels compared to the template headmodel.

These trends were found for the different simulated networks,

however, some individual differences were observed. For most

subject-specific reconstructions, a sensitivity value of about 0.75

is achieved, meaning that one out of the four simulated ROIs

was not reconstructed for most subjects. The mean sensitivity

obtained using the template-based head models is lower, around

0.5, illustrating that only two ROIs are correctly reconstructed.

The sensitivity of the template-based reconstructions however

increases for all models when increasing the maximal distance to

consider reconstructed activity to 50 mm, indicating that the ROIs

are reconstructed with a large localization error. The precision

of the localizations is quite high for all of the subject-specific

reconstructions, for all networks, indicating that only a limited

number of false positive reconstructed sources were found. Very

low precision values are found however when using the template

head models. This result again illustrates that while the different

ROIs are reconstructed, the localization error associated with them

is too large to consider them as true positives.

Only considering the clusters located closely to the simulated

ROIs, the localization error and the spatial dispersion were

investigated. These results are shown in respectively the third and

the fourth row of Figure 4. It is clear that for both FEM-based head

modeling approaches, the localization error is smaller for subject-

specific reconstructions compared to the template reconstructions.

Surprisingly, higher spatial dispersion is found when using subject-

specific headmodels compared to using the template head models,

meaning that larger volumes of reconstructed activity are found

compared to the simulated data.

Looking at the BEM models, higher sensitivity values are

found when using the template head models compared to the
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FIGURE 2

Overview of the simulated data at sensor level averaged over all subjects. The simulated epochs in the ERP condition at SNR = -10 dB are averaged.

subject-specific head models, while the opposite effect is found for

the precision. A large range of precision values is found when using

the subject-specific head models, indicating that in this case, the

number of false positive reconstructed clusters is very dependent

on the individual subject. As expected based on the results shown

in Figure 3, similar localization errors are found for the subject-

specific and the template-based BEM models. Interesting to note

is that the quantitative results for all template-based head models

in terms of sensitivity, precision, localization error and spatial

dispersion are similar for the two FEMmodels and the BEMmodel,

while different errors are made in terms of the location of the

reconstructed sources (cf. Figure 3).

Finally, also the effect of the SNR of the simulated data on the

reconstructions is quantified in Figure 5. In this figure, the results

obtained for the different networks are aggregated. As before, the

results when using a maximal distance of both 1 cm and 5 cm are

included in the Supplementary material. The figures indicate only

a limited effect of the SNR for most measures. A slight increase in

sensitivity with increasing SNR can be found for the subject-specific

FEM models, as the boxplots indicate that there are fewer subjects

for whom only one or two of the simulated ROIs are reconstructed.

Also, an increasing trend with increasing SNR was found when

looking at the precision. Finally, a limited improvement can be

found in the localization error when increasing the SNR from -20

dB to -10 dB. Further increase of the SNR has almost no effect. The

most prominent conclusions that can be drawn from this figure,

however, are again that for both FEM-based modeling approaches,

the subject-specific head models perform better than the template-

based methods in terms of sensitivity, precision and localization

errors, while the BEM-based modeling approaches perform worse

in the case of subject-specific models but perform similarly when

using template-based models compared to the FEM-models.

3.2 Real task data

The evoked potentials averaged over all subjects are shown

in Figure 6 both for the faces and the scrambled faces. A clear

difference between both conditions was found between 150 ms

and 170 ms after the stimulus onset. The N170 component is

thus clearly present in the data when faces were presented to the

subjects, while it is not in the scrambled faces condition. Figure 7

shows the difference of the obtained reconstructions between both

conditions averaged over all subjects using both the subject-specific

head models and the template head model for the different head

modeling approaches. In the first column of the figure also the

expected reconstructed area, i.e. the fusiform area, is shown. The

figures show that in the case of the subject-specific FEM head

models, most activity is found in the left and right fusiform area

while using the subject-specific BEM model, most activity is found

more occipitally. When using the template head model, on the

other hand, the reconstructed activity is more spread out compared

to the subject-specific reconstructions. In the case of the FEM-

models, activity is found not only in the fusiform area, but also

at the frontal and temporal poles as well as in occipital lobe. In

case of the template BEM models, the largest differences in activity

between both conditions are again found occipitally.

4 Discussion

The goal of this work was to investigate the effect of using

template head models instead of subject-specific head models when

localizing ERPs and to quantify the localization error associated

with this simplification. To this end, both simulated data and real

task data were used. Different activity networks were simulated,

each with four ROIs and specific SNRs using subject-specific head
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FIGURE 3

Overview of the original simulated data and the reconstructed activity averaged over all subjects for the di�erent networks at SNR = -10 dB. For the

reconstructed activity, the di�erence between the ERP- and the noise-conditions is shown. In the case of the simulations and the subject-specific

reconstructions, the source activity was morphed to the anatomy of the average head model before averaging.

models created using FEM. We found that subject-specific head

models perform significantly better than template head models,

and that the modeling approach (FEM or BEM) only has a limited

influence on the accuracy of the results when using template head

models.

4.1 Simulated data

4.1.1 E�ect of template head model vs.
subject-specific models

Looking at the simulations, the results indicate there is a

significant decrease in both the sensitivity and precision when

using template head models instead of subject-specific head models

when using FEM-based head models. Interestingly, when using

BEM models the sensitivity is better when using the template

head model. Also, clear differences in the localization error were

found between the subject-specific and the template FEM models,

as values between ±5-20 mm are found using the subject-specific

headmodels compared to localization errors between ±15-30 mm

are found for the template-based models. These results correspond

with our hypothesis and with results found in literature, as

many researchers report that the ideal head model for the most

accurate reconstruction of the neural activity is a realistic head

model created using the subject’s individual MRI (Akalin Acar

and Makeig, 2013; Conte and Richards, 2021). However, it is also

important to note that, as subject-specific models were used in the

simulations, this is also the case for which the best results were

expected.

Looking at the results at the group level (Figure 3), it is clear

that not all simulated ROIs are present, especially when using

template-based models, and that a localization error is associated

with other reconstructed ROIs. As in most ERP research, the
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FIGURE 4

Results of the quantification of the localization errors for the SNR = -10 dB. In this evaluation the sensitivity and the precision of the obtained

sources, the localization error and the spatial dispersion of these reconstructed sources were taken into account. For each of these measures, the

di�erence between using the subject-specific and average head models is shown for each of the di�erent modeling approaches. Clusters of activity

were considered to be correctly localized when the di�erence between the center of the reconstructed cluster was within 3 cm of the center of the

simulated ROIs.

MRI data of individual subjects is not available, it is important

to take these limitations into account in the interpretation of

obtained results. In cases where no subject-specific data is available,

it might be helpful to use a hypothesis-driven approach to

investigate the cortical generators of a certain ERP component.

This approach can help in identifying FPs and possible FNs in the

reconstructed sources.

4.1.2 E�ect of using di�erent conductivity values
As mentioned in the introduction, studies have shown that

accurate electrical conductivity values for the different tissue types

included in the head model are important for accurate source

localization of the EEG signals (Vorwerk et al., 2019). Furthermore,

McCann et al. (2019) have shown that the electrical conductivities

assumed for each compartment likely vary between individuals. As

the measurement of the electrical conductivities of the different

tissue types in individuals is not feasible, the conductivity values

used in the created headmodels will thus always be (slightly) off. To

investigate the effect of this error on the localization accuracy, two

different FEM models with different conductivity values assigned

to the tissues were used in this work. Differences were found in all

of the measures used in the quantification of the results with the

models using the “true” conductivities giving better results. These
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FIGURE 5

Results of the quantification of the localization errors. In this evaluation the sensitivity and the precision of the obtained sources, the localization

error and the spatial dispersion of these reconstructed sources were taken into account. For each of these measures, the e�ect of both the SNR of

the simulated data and the di�erence between using the subject-specific and average head models is shown for each of the di�erent modeling

approaches. Clusters of activity were considered to be correctly localized when the di�erence between the center of the reconstructed cluster was

within 3 cm of the center of the simulated ROIs.

found differences are however small, both when the subject-specific

and the template-based head models are used.

Furthermore, it should be noted that the subject-specific

FEM model using the “true” conductivities was also used in the

simulation of the data. This model was thus also expected to yield

the best outcome, as an identical transformation was applied to

reconstruct the data. Differences between the simulated data and

the reconstructed activity in this case can thus be attributed to the

assumptions made by the inverse solutions, as this is a non-unique

problem. These results thus indicate that, while it is important to
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FIGURE 6

Visualization of the evoked potentials averaged over all subjects for both the faces and scrambled faces conditions of the face-detection task in the

VEPCON dataset. Also the topography at 160 ms post-stimulus is indicated, as this is considered the peak of the N170 component in the faces

condition.

FIGURE 7

Illustration of the fusiform area and the di�erence in the reconstructed activity between both conditions for the N170 component averaged over all

subjects. For the subject-specific reconstructions, the source activity was morphed to the template head model before averaging. In the case of the

subject-specific head models using FEM-based approaches, activity is found in the left and right fusiform area. When using the template head

models, on the other hand, the strongest di�erence in activity between both conditions is found more occipitally.

use the most accurate conductivity values possible, the effect of

deviations in these values is much smaller than the effect of using

subject-specific vs. template-based head models.

4.1.3 E�ect of FEM vs. BEM models
In this work, different head modeling approaches were used for

the reconstruction of the simulated data, namely two FEM models

with different conductivity values and a BEM model. As discussed

in the previous section, the effect of using different conductivity

values for the different tissue types in the FEM models is more

limited than the use of subject-specific head models. However,

much larger differences are found between the results obtained

using the FEM-based head models and the results using the BEM-

based models. Looking at the subject-specific reconstruction, the

FEM-based models perform better than the BEM-based models

across all measures. This result was expected, as BEM models

are much less accurate than the FEM-based models that were

used because they are unable to take into account cerebrospinal

fluid (CSF). Also the influence of including more head tissue

compartments in the model has been studied extensively before

(Vorwerk et al., 2014; Neugebauer et al., 2017). However, again it

is also important to note that, as FEM models were used in the

simulations, this is also the case for which the best results were

expected.

It is however interesting to note that the quantitative results

obtained using the template-based head models are similar across

the different modeling approaches. For some networks, the

template-based BEM models even perform slightly better than

the template-based FEM models in terms of sensitivity. These

quantitative results were not what was expected based on the

results that were plotted at the group level (Figure 3), where

the localization errors seem larger for the template-based BEM

models compared to the FEM-models. Combining these results

indicates that the localization errors made using the template-

BEM model are less systematic than those made using the

template-FEM models, i.e., the localizations and the associated

errors that are obtained at the individual level are more random

than in the case of the FEM models. This will cause some

of the reconstructed ROIs to cancel out at the group level,
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seemingly indicating that these ROIs were not reconstructed using

these models.

4.1.4 E�ect of the signal-to-noise ratio
While the effect of the SNR is limited in this simulated dataset,

some differences are still observed between the lowest simulated

SNR, -20 dB, and the other SNR levels. For the subject-specific FEM

models, for example, lower precision, higher localization errors and

less spatial dispersion are found for the lowest SNR level compared

to the others, indicating that more FPs are found for the lower

SNRs. It is important to take these results into account when

interpreting findings obtained from real data. In the case of low

SNRs, multiple sources may be reconstructed which are not related

to the true underlying activity of the ERP, even after averaging over

all subjects (cf. Figures S3 to S6 in Appendix). Another possibility is

that due to the larger localization errors and smaller reconstructed

volumes, the obtained sources are not pertained after averaging

over all subjects, giving the impression that this source is not

present in the data. The differences between the averaged results

and the quantifications illustrate the importance of also looking

at the results of the reconstruction at the level of the individual

subject. Furthermore, these results again illustrate that using a

hypothesis-driven approach for interpreting the findings can help.

Othermethods to increase the SNR of the datamight be useful, such

as using averaged data instead of individual trials when possible.

However, more and more interest is found in functional

connectivity analysis in source space to investigate the networks

underlying brain activity. As many functional connectivity

measures focus on spectral features of the data, in this case, a

priori averaging of the epochs is not possible, as high-frequency

information would be averaged out in the data, as well as time- but

not phase-locked activity (Simoes et al., 2003). While researchers

have already investigated the influence of the head model in terms

of neglecting white/gray matter distinction or CSF on EEG source

connectivity analyses (Cho et al., 2015), this work shows that also

the SNR of the data should be taken into account.

4.1.5 E�ect of di�erent networks
Finally, the results show some differences in localization

performance for the different networks that were simulated.

Looking at the averaged reconstructions, it is clear that not all ROIs

were reconstructed for the different networks. When using the

template-based FEM models for the reconstruction of the fronto-

parietal and the fronto-occipital networks, no frontal ROIS were

found in the right hemisphere in the averaged reconstructions.

However, the quantitative results found for these networks indicate

mean sensitivity values of 0.75. One possible explanation for the

absence of the frontal sources could be the reduced amplitude of

the simulated signals in these ROIs compared to the signals in the

respectively parietal and occipital sources.

Looking at the results obtained using the BEM-based head

models, large localization errors were found across the different

networks. For all networks except the fronto-occipital network,

the different ROIs appear to have been localized as single clusters

per hemisphere, indicating that the BEM-based models have more

difficulty separating sources of activity. This seems probable, as

in the simulated ERP-data at the sensor level, also the fronto-

occipital network is the only network in which a clear separation

of the underlying sources could be seen in the topography and

the waveform of the obtained ERP. Furthermore, for the networks

including occipital sources, an upward displacement of these

sources could be seen when using the BEM-based head models.

Similar mislocalization results were also found by Huang et al.

(2016) and Akalin Acar and Makeig (2013), who both identified

larger localization errors for occipital sources when using less

accurate head models. Multiple explanations can be found in

literature for these errors in the localization of occipital sources.

The occipital lobes are complex structures with many folds and

curves with significant inter-subject variability. Using less accurate

head models in this case can thus increase the mislocalization of

the sources. In addition to this, also the occipital bone is in general

thicker with again significant inter-subject variability. Modeling

this using a non-accurate headmodel will again lead to larger errors

in the head model, reducing the localization precision (Michel and

Brunet, 2019).

A limitation of this study was that only a limited number of

ROIs were investigated. As it was shown that the underlying sources

influence the accuracy of the reconstruction, in future work, a more

generalized approach should be developed to investigate the effect

of different networks more systematically. While such approaches

have already been proposed for focal sources (Samuelsson et al.,

2021), this problem is much more challenging when considering

simultaneous activations and remains, to the best of our knowledge,

currently unsolved.

4.2 Real task data

Localization of the high-density EEG data in the VEPCON

dataset, recorded while presenting faces and scrambled faces to

subjects, resulted in different sources using the subject-specific head

models and the average head model. Using the subject-specific

FEM head models, the N170 component was mainly localized to

the left and right fusiform areas. These results correspond to the

sources found in other studies (Rossion and Jacques, 2012), both

using EEG/MEG data (Henson et al., 2007) and fMRI (Haxby

et al., 2000). While the fusiform area is considered the core

generator of the N170, there is evidence suggesting that also the

prefrontal cortex plays a role in the processing of faces and that this

region contributes to the top-down modulation of face processing

(Kornblith and Tsao, 2017; Gazzaniga et al., 2009). There was

however no activation found in this region in this work.

Looking at the results obtained using the template FEMmodels,

again the left and right fusiform areas were found as generating

sources of the N170. However in this case, also multiple other

sources were found, such as the frontal and temporal pole and

the occipital lobe. Finally, using both the subject-specific and the

template-based BEM models, the N170 component was localized

more in the occipital lobe with the activity extending toward the

posterior inferior temporal lobe, rather than in the fusiform area.

As the results obtained using the subject-specific FEM head models

correspond well to results reported in the literature, these results

indicate that while the template-based head model can be used for
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the localization of ERP sources, interpretations should be done

with care, as mislocalizations of the sources and localization errors

can be present. These results show the importance of taking into

account hypotheses and a priori knowledge when interpreting

the source localization results obtained using a template

head model.

5 Conclusion

In this study, the effect of using template head models instead

of subject-specific head models was investigated in localizing

event-related potentials (ERPs) and in quantifying the associated

localization error using both simulated and real data. As expected,

the results indicated that subject-specific head models outperform

template head models in terms of localization accuracy. Using

template head models also increases both false positives and

false negatives in source reconstructions. Also the effect of using

more accurate FEM models compared to simple BEM models

was investigated. As found in previous studies, more anatomically

accurate head models result in better localization performance.

When template-based head models are used however, similar

quantitative results in terms of sensitivity, precision, localization

error and spatial dispersion were found for the FEM- and BEM-

based head models, even though the patterns of mislocalizations

are different. Furthermore, the role of the SNR on the localization

performance was investigated, with the results showing that

low SNRs may lead to larger errors. Finally, the influence

of the simulated network also has a significant effect on the

accuracy of the source localization, with the results indicating

that some regions, such as the temporal and occipital lobes

are more prone to mislocalization when using template head

models.

While template head models offer a practical alternative for

ERP source localization when no subject-specific MRI data is

available, their limitations should be considered, and the results

should be interpreted with caution. A priori knowledge and

hypothesis-driven approaches are crucial for interpreting results

obtained with average head models. Interestingly, however, is

that while creating more accurate and detailed head models

is beneficial for the localization accuracy when using subject-

specific head models, this is not the case for template head

models. As many studies investigating the effect of modeling

approaches for ESI focus on focal sources, it would be

beneficial if systematic approaches to assess the influence

of multiple sources on localization accuracy would become

more prominent.
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