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Introduction: Parkinson’s disease (PD) is a neurodegenerative movement 
disorder causing severe disability and cognitive impairment as the disease 
progresses. It is necessary to develop biomarkers for cognitive decline in PD for 
earlier detection and prediction of disease progression.

Methods: We reviewed literature which used artificial intelligence-based 
techniques, which can be more sensitive than other analyses, to determine 
potential biomarkers for cognitive impairment in PD.

Results: We found that combining biomarker types, including those from 
neuroimaging and biofluids, resulted in higher accuracy. Focused analysis on each 
biomarker type revealed that using structural and functional magnetic resonance 
imaging (MRI) resulted in accuracy and area under the curve (AUC) values above 
80%/0.80, and that beta-amyloid-42 and tau were able to classify PD subjects by 
cognitive function with accuracy and AUC values above 90%/0.90.

Discussion: We can conclude that applying both blood-based and imaging-
based biomarkers may improve diagnostic accuracy and prediction of cognitive 
impairment in PD.
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1 Overview of Parkinson’s disease and mild 
cognitive impairment in PD

Parkinson’s disease (PD) is one of the most common movement disorders and 
neurodegenerative disorders, affecting millions of adults over 65 years of age (Marras et al., 2018; 
Song et al., 2022). The most common feature of PD is Parkinsonism; symptoms of Parkinsonism 
include bradykinesia, resting tremor, and muscular rigidity. As the disease progresses, the disease 
can affect cognitive function, causing cognitive decline (Mihaescu et al., 2022). This cognitive 
decline can range from mild cognitive impairment (MCI) to dementia (within PD, this is referred 
to as PD dementia or PDD). Litvan et al. (2011) found that 26.7% of PD patients without dementia 
have MCI and that the incidence of MCI increases with disease duration, disease severity, and age. 
Other studies found that 21–24% of PD patients have MCI at time of diagnosis (Lawson et al., 
2017) and over 80% of patients with PD will develop PDD (Hely et al., 2008).
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To diagnose a PD patient as having MCI, a gradual decline in 
cognitive ability must be noted by the patient, informant, or clinician. 
Additionally, cognitive deficits must not significantly interfere with the 
patient’s functional independence must be detectable through either 
a “formal neuropsychological testing or a scale of global cognitive 
abilities” (Litvan et al., 2012). One commonly applied assessment of 
global cognitive abilities in both research and clinical practice is the 
Montreal Cognitive Assessment (MoCA). The MoCA is a one-page 
test out of 30 points, which covers executive function, memory, 
visuospatial ability, language, and attention (Bakeberg et al., 2020). 
The most common presentations of MCI in PD are executive function, 
visuospatial ability, and language (Bakeberg et al., 2020). As there are 
many different presentations of cognitive impairment and multiple 
cognitive assessments may be required to evaluate global cognitive 
performance, MCI can be difficult to detect (Bakeberg et al., 2020). It 
is unclear why some PD patients develop MCI or PDD and others do 
not, and specifically what influences different presentations of MCI 
(Bakeberg et al., 2020). Additionally, the risk of progression from 
PD-MCI to PDD increases as patients age (Bakeberg et al., 2020); early 
detection of MCI is therefore essential. To improve diagnosis of MCI 
in PD, it is necessary to determine what prospective indicators or 
biomarkers have succeeded in prior research for onset of MCI in PD 
(FDA-NIH Biomarker Working Group, 2016).

2 Methodology

We created multiple searches through the PubMed database1 to 
determine the existing research on the use of biomarkers and machine 
learning to detect changes in cognition in subjects with PD. Our first 
search, which resulted in N = 289 English language articles pertaining 
to humans, aimed to provide context and background for the study. 
Only a few articles from this search focused on cognitive impairment 
and PD, which prompted subsequent searches. The second search 
(N = 160 English language articles pertaining to humans) was limited 
to require mention of PD or movement disorders, and the third search 
(N = 104 English language articles pertaining to humans) was further 
limited to articles discussing PD. The search keywords for the three 
searches are described in Table 1. Articles from the second and third 
searches were critically analyzed, and relevant articles were verified for 
scientific integrity by evaluating their place in subsequent literature 
and determining corroboration and support for claims. The inclusion 
criteria for eligible studies were as follows: (1) published in English; 

1 https://pubmed.ncbi.nlm.nih.gov/

(2) is a research article, not a review article; (3) used a sample of 
human subjects, including subjects who were clinically diagnosed 
with PD; and (4) investigated changes in at least one biomarker (i.e., 
neuroimaging, biofluids, or clinical symptoms) to detect cognitive 
impairment in subjects with PD. The articles that passed these 
inclusion criteria were critically investigated and discussed in this 
study (N = 21) (Figure 1).

3 Machine learning techniques

3.1 Metrics

To evaluate the performance of machine learning techniques and 
interpret output, several accuracy metrics are used, including 
sensitivity, specificity, and area under the receiver operating curve 
(AUC). Sensitivity is defined as the “ability of a test to correctly classify 
an individual as diseased,” and is calculated as (# of true positives)/(# 
of true positives + # of false negatives) (Parikh et  al., 2008). In 
comparison, specificity is defined as “the ability of a test to correctly 
classify an individual as disease-free,” and this metric is calculated as 
(# of true negatives)/(# of true negatives + # of false positives) (Parikh 
et al., 2008). A sensitivity of 100% would indicate that the test can 
detect all positive cases, while a specificity of 100% would indicate that 
the test can correctly classify all disease-free cases. These two metrics 
tend to be inversely proportional (as sensitivity increases, specificity 
decreases, and vice versa) (Parikh et  al., 2008). The AUC uses 
randomized thresholds for the variable level required to classify 
subjects as positive to determine sensitivity and specificity. For 
example, a threshold of 0 used for a variable ranging from 0 to 1, 
where subjects above the threshold are classified as positive, would 
result in sensitivity of 100% and specificity of 0%. Inversely, a threshold 
of 1 would result in sensitivity of 0% and specificity of 100%. After 
determining the sensitivity and specificity for the thresholds, the area 
under the curve created by plotting sensitivity and (1-specificity) can 
be used to measure the model performance. As multiple iterations of 
thresholds are used for the AUC, it can be  more accurate than 
sensitivity and specificity (Dennis and Strafella, 2024). The minimum 
sensitivity and specificity additionally depend on the disease 
prevalence. With low prevalence (e.g., 1%), the minimum sensitivity 
and specificity to achieve moderate diagnostic performance (for 
instance, 60% of patients with a positive result are positive) is 99–100% 
(Loh et al., 2021). With high prevalence (e.g., 60%), to achieve high 
diagnostic performance (e.g., 80–95% of patients with a positive result 
are positive), the minimum sensitivity ranges from 80 to 99% and the 
minimum specificity ranges from 70 to 95% (Loh et al., 2021). As most 
research applies data with 40–60% disease prevalence, a threshold of 

TABLE 1 Keywords for PubMed searches.

Search # Keywords

1 (Parkinson’s disease OR movement disorders OR neurodegeneration) AND (neuroimaging OR biomarkers OR biofluids OR blood or cerebrospinal 

fluid) AND (machine learning OR deep learning OR artificial intelligence) AND (mild cognitive impairment OR dementia OR cognitive 

impairment)

2 (Parkinson’s disease OR movement disorders) AND (neuroimaging OR biomarkers OR biofluids OR blood or cerebrospinal fluid) AND (machine 

learning OR deep learning OR artificial intelligence) AND (mild cognitive impairment OR dementia OR cognitive impairment)

3 (Parkinson’s disease) AND (neuroimaging OR biomarkers OR biofluids OR blood or cerebrospinal fluid) AND (machine learning OR deep learning 

OR artificial intelligence) AND (mild cognitive impairment OR dementia OR cognitive impairment)
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80% for sensitivity and specificity would be appropriate to determine 
whether the study achieved high diagnostic performance (Loh et al., 
2021). Based on this, a threshold of 80% for the AUC would also 
be appropriate.

3.2 Models

Training a machine learning-based model and testing the model 
on the same data can lead to inaccurately high model performance, 
and the model may perform well for that testing set but not be able to 
be generalized to other datasets. This is called overfitting; to avoid this 
issue, a training/testing split can be used, where a percentage of the 
data is used for training and the remainder is used for testing. Most 
researchers use 70–80% for training and 20–30% for testing. A 

technique that is commonly applied to avoid overfitting and to create 
a training/testing split is cross-validation, specifically k-fold cross-
validation, where k is an integer (typically 5 or 10) selected by the 
researchers. In this technique, the dataset is split into k groups, and for 
k iterations, models are trained on k-1 groups of data and tested on 
the remaining held-out group. Higher levels of k correspond to more 
groups. Leave-one-out cross-validation (LOOCV) is a version of 
k-fold cross-validation where k is the size of the dataset (Dennis and 
Strafella, 2024). For instance, if there are 100 subjects in a dataset, the 
models would be trained 100 times with a different subject’s data as 
test data per iteration. Both techniques avoid training and testing on 
the same data, which can cause erroneous performance.

Another issue to consider while classifying using machine 
learning techniques is the number of variables (also called features or 
dimensions; dimensionality increases as the number of features 

FIGURE 1

PRISMA diagram for study selection. *We decided to exclude studies using EEG as the main focus investigating the neuroimaging biomarkers was the 
application of MRI and PET. Template from: Page et al. (2021).
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increases) included in the dataset. Many techniques are prone to 
overfitting when numerous features are applied for classification, and 
not all features are important for the model, so techniques for feature 
extraction and selection are necessary. Principal component analysis 
(PCA) is one such technique; it uses multiple iterations to determine 
the pairs of variables that cause the most variance. Pairs with 
eigenvalues (a representation of total amount of variance that can 
be  explained by the variables) >1 are included while the rest are 
excluded. Similar techniques include recursive feature elimination 
(RFE), which sorts variables by utility and removes the variables with 
low rankings, and RRELIEFF, which uses feature weights to detect 
features that are statistically relevant and pass the relevancy threshold 
(Dennis and Strafella, 2024; Ricciardi et al., 2020; Guyon et al., 2002; 
Kira and Rendell, 1992; Ramezani et al., 2021). Elastic Net-Based 
Feature Consensus Ranking (ENFCR) is a feature ranking algorithm 
that employs randomized train/test splitting and multiple ElasticNets 
(a type of generalized linear model discussed later) to select features, 
and then ranks features by selection frequency (Huang et al., 2024; Yu 
et al., 2020). Linear discriminant analysis (LDA) is a statistical-based 
pattern identification method to identify a vector of coefficients for 
the linear classification function, with the aim of maximizing the 
distance between classes and minimizing the distance within classes 
for the features (Ricciardi et al., 2020). This can be applied for both 
feature selection and classification.

Some simple machine learning techniques frequently used for 
classification include linear regression and logistic regression. Linear 
regression uses the input data to plot a linear relationship between 
variables; thus, it is most effective in continuous data with a linear 
correlation. Logistic regression is similar, except it uses a sigmoidal 
curve instead of a linear function (Dennis and Strafella, 2024; Choi 
et al., 2020). Generalized linear models (GLM), such as ElasticNet, are 
an expansion of linear regression, where the function of the outcome, 
or link function, can vary on covariates other than the predictor 
variables (Arnold et al., 2021; Harvey et al., 2022). This allows for 
more accurate model performance.

The neural network is based on a simple machine learning 
algorithm termed a perceptron. This method uses a structure similar 
to logistic regression, except it provides the class associations (e.g., 
PD) and not the probability of a classification (e.g., 70% probability of 
PD). When multiple perceptions are combined, the resulting model is 
referred to as a neural network (NN) or artificial neural network 
(ANN). Most NNs use a feedforward nature, where information flows 
from the input layer to the output layer. Additionally, they typically 
contain one layer of input nodes and one layer of output nodes, with 
simple NNs containing 0–3 hidden layers for classification, and more 
complicated NNs (termed deep neural networks) can have hundreds 
of layers. Convolutional neural networks are a type of NN created 
specifically for image processing, as they use patches of an image as 
input instead of single pixels, which preserves the spatial context. This 
allows for more efficient and accurate classification, since the image 
itself can be  used as input (Dennis and Strafella, 2024; Choi 
et al., 2020).

One technique commonly used in classification that has been 
adapted to improve model performance and accuracy is the decision 
tree (DT). This method works by using the value of an input variable to 
divide the original set of data into subsets, which can then be further 
divided until the subset consists entirely of one class of subjects (i.e., 
PD). J48 is the Java implementation of the C4.5 DT proposed by 

Quinlan (Quinlan, 2014), which creates DTs using information entropy 
(entropy measures the uncertainty associated with a variable). The use 
of information entropy and pruning improves on the original DT 
technique. Because the DT technique can easily lead to overfitting by 
applying too many variables, the random forest (RF) technique has been 
developed as an extension. In this adaptation, multiple DTs are created 
based on different input variables (chosen from a random selection of 
variables), and majority vote is used for the final classification (Choi 
et al., 2020). When the input variable is chosen from all variables, this 
is a variety of RF named bagged trees (Dianati-Nasab et al., 2023). An 
alternative to RF is Cforest, which applies a permutation test for 
significance of variables instead of focusing on maximizing variance 
accounted for or information (Harvey et al., 2022). AdaBoost (ADA-B) 
is an ensemble learning technique similar to RF that determines weights 
for variables and adjusts them across multiple iterations of DTs for the 
best performance (Dietterich, 2000). Another type of DT frequently 
used is the gradient-boosting tree. Gradient boosting is an ensemble 
method of classification based on DTs that adds additional predictors 
by stages. Multiple derivative techniques have been created based on 
this technique, including XGBoost (extreme gradient boosting) and 
LightGBM (light gradient boosting machine) (Gao et al., 2018).

Two instance-based classification algorithms, which compare new 
data instances with data from the training set, that are frequently used 
include k-nearest neighbors (KNN) and support vector machine 
(SVM). KNN uses a pre-defined number k to define groups of k similar 
samples (where similarity is measured by the distance between groups) 
(Amboni et al., 2022). In contrast, SVM works by determining the 
hyperplane (a line in a high-dimensional space) able to separate the 
data into its classes (for instance, PD or HC). If only two variables are 
present, a simple straight line is sufficient, however, as dimensionality 
increases, this divider must consider these additional variables. 
Because of this, using SVM with a high dimensionality dataset can 
be  problematic. The hyperplane is selected so that the maximum 
distance from the data of one class and the hyperplane is used (Dennis 
and Strafella, 2024; Noble, 2006). Multiple kernels are available to 
be  used as basis for the hyperplane, including linear kernels and 
non-linear kernels (gaussian, quadratic, etc.) (Savas and Dovis, 2019). 
Based on the mechanism of the SVM, it can only handle binary 
classification; to classify between n classes, (n-1)! Different SVMs must 
be trained (Dennis and Strafella, 2024; Noble, 2006). SVM Regression 
(SVR) is an adaptation of this technique that is applied in regression, 
instead of classification. Because of the possibility of overfitting while 
using SVM, combining this model with feature selection may improve 
the classification. From this analysis, using a SVM, RF, or NN structure 
for classification combined with a feature selection technique would 
be most appropriate for detecting MCI in PD.

4 Biomarkers able to predict MCI and 
dementia in PD

4.1 Neuroimaging

Numerous studies have explored the application of machine 
learning techniques to detect progression of cognitive impairment in 
PD. A majority of researchers have focused on using neuroimaging as 
a biomarker. Neuroimaging modalities can be classified as structural, 
where the modality reflects structural changes such as atrophy, or 
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functional, where the modality aims to show changes in the function 
of the brain. As both of these imaging types have value in diagnosis 
and prediction, we will review literature on detecting MCI in PD using 
(Marras et  al., 2018) structural and (Song et  al., 2022) functional 
neuroimaging with magnetic resonance imaging (MRI) and 
molecular imaging.

4.1.1 Structural imaging
Diffusion tensor imaging (DTI) is one frequently used type of 

structural MRI for white matter. In Yu et al. (2023), the researchers 
aimed to apply data from DTI to distinguish HC (n = 30), PD with MCI 
(n = 30) and PD subjects with normal cognition (n = 40) from each 
other. Data was split into a training set (70%) and validation set (30%), 
and 10-fold cross-validation was applied. A feature importance analysis 
was completed using Shapley additive explanations (SHAP), a method 
for interpreting the output of the machine learning algorithms (Ning 
et  al., 2022). SHAP found that the most important feature was the 
fractional anisotropy (FA) value of the anterior portion of the right 
inferior fronto-occipital fasciculus (IFOF). The SVM technique was 
used for classification. When the model was applied to differentiate PD 
with normal cognition (NC) from PD with MCI, accuracy, AUC, 
sensitivity, and specificity reached 79%, 0.80, 78, and 75%, respectively. 
The researchers found that the PD-MCI group exhibited significantly 
lower values of FA in segments of the left thalamic radiation and 
bilateral IFOF compared to PD-NC. Additionally, values of MD were 
significantly increased in segments of the bilateral corticospinal tract, 
corpus callosum major, and bilateral superior longitudinal fasciculus in 
PD-MCI. Additional research is required to determine when these 
biomarkers appear in the disease course and whether they should 
be used for MCI or more severe cognitive impairment.

Huang et al. (2024) used longitudinal data to observe differences in 
DTI data between PD subjects with normal cognition who converted to 
MCI (n = 33) and PD subjects who did not convert (n = 57). A total of 
32 clinical and 90,774 neuroimaging-based features were extracted from 
the data. Due to the large number of features, feature selection was 
performed using t-tests (to remove features without significant between-
group differences (p = 0.01)) and the ENFCR algorithm. This resulted in 
nine neuroimaging features and two clinical features. Additionally, 
subjects were split into a training and test set for the feature selection 
(n = 50 for training, n = 40 for testing) and to evaluate the model 
performance (n = 46 for training, n = 44 for testing). Multiple machine 
learning techniques were investigated, including SVM, KNN, Naïve 
Bayes (NB), and LDA. NB uses all the predictor variables in classification 
and assumes that all variables are independent of each other and the 
class. The reported accuracy metrics when clinical data is combined 
with neuroimaging were highest when using LDA (AUC: 0.85; 
Accuracy: 0.85; Sensitivity: 0.86; Specificity: 0.84) or NB (AUC: 0.84; 
Accuracy: 0.85; Sensitivity: 0.83; Specificity: 0.85). Similarly, when 
neuroimaging data was used alone, accuracy metrics were highest using 
LDA (AUC: 0.84, Accuracy: 0.82; Sensitivity: 0.85; Specificity: 0.82) or 
SVM (AUC: 0.83, Accuracy: 0.86, Sensitivity: 0.77, Specificity: 0.88). 
The use of LDA with combined neuroimaging and clinical biomarkers 
led to AUC, sensitivity, and specificity metrics all above 0.80/80%, while 
when biomarkers were used alone, these metrics were lower and, in 
some cases, below the threshold.

Chen et al. (2023) investigated the ability of features extracted from 
DTI to differentiate subjects with PD and MCI (n = 68) from subjects 
with PD and normal cognition (n = 52). From the imaging, 420 features 

were extracted [280 intravoxel (within voxel) and 140 intervoxel 
(between voxels)]. Because of the large feature size, RF feature selection, 
Spearman’s rank correlation analysis, and ShapleyVIC, which uses 
SHAP for variable importance (Savas and Dovis, 2019), were applied to 
determine the most important features. This analysis resulted in seven 
total features (two intravoxel, five intervoxel). Models were create based 
on the intravoxel, intervoxel, and combined features. The machine 
learning techniques applied were RF, DT, and XGBoost. In the intravoxel 
models, RF and XGBoost performed similarly with an accuracy of 
75.00%. DT showed an accuracy of 54.17%. When the intervoxel 
features were used alone, accuracy decreased in comparison to the 
intravoxel features, with an accuracy of 66.67% in RF, 62.50% in 
XGBoost. For DT, the accuracy stayed constant, but the sensitivity 
decreased from 64.29 to 57.14%, and the specificity increased from 
40.00 to 50.00%. In the combined models, RF had an accuracy of 
75.00%, XGBoost resulted in an accuracy of 92.86%, and DT showed an 
accuracy of 66.67%. Using the combined features resulted in the highest 
performance across the model combinations. When XGBoost was 
applied with the intravoxel and intervoxel metrics combined, the 
accuracy was far above 80%. This is a noticeable difference compared to 
when intravoxel or intervoxel metrics were used individually (75.00 or 
62.50% respectively). The findings from Chen et al. (2023) and Huang 
et al. (2024) suggest that combining biomarkers with different purposes 
may improve the ability of the model to diagnose MCI.

Using different structural MRI methodologies Morales et al. (2013) 
investigated the application of T1-weighted structural MRI to 
differentiate PD-NC (n = 16), PD-MCI (n = 15), PDD (n = 14) from each 
other. Stratified k-fold cross-validation was performed with k = 5, and 
four machine learning classification algorithms were compared: NB, 
filter selection Naïve Bayes (FSNB), correlation-based with feature 
subset selection  - Naïve Bayes (CFS-NB), and SVM. FSNB is an 
adaption of NB that tests the independence between the variable and 
the class before using NB for classification. CFS-NB similarly ranks 
features by their correlation to the class and then performs 
NB classification.

When PDD subjects were differentiated from PD-NC subjects, the 
highest performing model was achieved by CFS-NB with an accuracy 
of 97.00 ± 6.74%, sensitivity of 93.33 ± 14.91%, and specificity of 
100.00 ± 0.00%. When NB was used to differentiate PDD from PD-MCI, 
an accuracy of 96.55 ± 7.85%, sensitivity of 92.33 ± 14.91%, and 
specificity of 100.00 ± 0.00% were reported, while when FSNB was 
applied, an accuracy of 96.66 ± 10.33%, sensitivity of 92.00 ± 14.91%, and 
specificity of 100.00 ± 0.00% were reported. When PD-MCI was 
differentiated from PD-NC, the highest performing technique was 
CFS-NB with accuracy of 90.09 ± 8.40%, sensitivity of 93.00 ± 14.91%, 
and specificity of 88.33 ± 16.24%. When all three subject groups were 
differentiated using FSNB, accuracy reached 70.00 ± 26.66%, sensitivity 
reached 70.00 ± 26.66%, and specificity reached 85.56 ± 8.42%. Based on 
this, performance is better when classification is performed separately 
for each comparison (PDD/PD-NC, PDD/PD-MCI, or PD-MCI/
PD-NC) as compared to when models attempt to distinguish all three 
classes (PDD/PD-MCI/PD-NC). Models performed best when PDD 
subjects were differentiated from other subjects, which is justifiable, as 
these subjects had the most severe level of cognitive impairment and 
would have noticeable differences in neuroimaging (Morales 
et al., 2013).

Nguyen et  al. (2020) conducted a longitudinal assessment of 
structural T1-weighted MRI to determine which regions of the brain 
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correlated to MoCA scores in subjects with PD (n = 74) and HC (n = 42) 
and use these features to classify subjects as NC or MCI. Feature selection 
was used through Spearman’s rank correlation (features with p-values 
over 0.05 were removed), and two classifiers were compared: a logistic 
regression model, and a deep learning-based autoencoder model. 
Autoencoders are algorithms that compress the input data and use a 
reduced representation of the input data to minimize loss of information; 
the researchers proposed that a model based on this framework would 
perform with higher accuracy when compared to logistic regression 
(Nguyen et al., 2020). Five-fold cross-validation was used to split the 
data. The features that contributed most to the model included the 
pallidum and right substantia nigra. The highest performances achieved 
by the models were using neuroimaging metrics from year 4; the 
autoencoder performed with 85% accuracy, 100% sensitivity, and 80% 
specificity, while the logistic regression model performed with ~75% 
accuracy, ~55% sensitivity, and ~ 85% specificity. The considerable 
difference between the autoencoder and logistic regression model 
suggests that complexity of a machine learning technique may correlate 
with performance of a model.

Quantitative susceptibility mapping (QSM) (MRI-derived) was used 
by Shibata et  al. (2022) to classify subjects with PD as having MCI 
(Internal Set: n = 61; External Set: n = 22) or NC (Internal Set: n = 59; 
External Set: n = 21). For the machine learning techniques, RF, extreme 
gradient boosting, and light gradient boosting were used. Additionally, 
10-fold cross-validation was applied. In both the internal and external 
sets, the RF model showed the highest performance (Internal: accuracy 
and AUC of 80.0 ± 16.3% and 0.84 ± 0.17; External: accuracy and AUC of 
79.1% and 0.78). These results suggest that QSM can be  applied to 
support diagnosis of MCI in PD.

Ramezani et al. (2021) explored the relationship between a 
combination of neuroimaging (structural T1-weighted MRI), 
clinical, and genetic features (102 features) and global cognition in 
subjects with PD (n = 101). RRELIEFF feature selection was 
applied to the features, which led to the top 11 features being used 
for classification, and nested LOOCV was used for the training/
testing split. Support vector regression (SVR) was used as the 
classifier. The neuroimaging features used were five measures of 
cortical thickness (left entorhinal cortex, right parahippocampal 
cortex, right rostral anterior cingulate cortex, left middle temporal 
cortex, and right transverse temporal cortex) and right caudate 
volume. Other features included sex, MDS Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS) Part III, years of education, 
Edinburgh Handedness Inventory (EHI), and rs894280 (gene). 
These features resulted in a correlation coefficient of 0.54 and mean 
absolute error of 0.39. This indicates that there is a slight 
proportional relationship between the features and cognition, and 
the predictions tend to be  ~0.39 points away from the 
cognitive score.

McFall et al. (2023) explored predicting onset of PDD in a group 
of subjects with PD (n = 48) using multi-modal predictors, including 
neuroimaging (structural MRI), blood-based biomarkers, and clinical 
characteristics. The total number of features from all modalities was 
38. Stratified 3-fold cross-validation was applied. To determine which 
machine learning technique to apply, logistic regression, RF, and 
gradient boosting algorithms were applied. Additionally, Tree SHAP 
was applied as a method for interpreting the output of the machine 
learning algorithms. RF had the highest performance when used for 
classification, resulting in an AUC of 0.85 (95% CI 0.83–0.86) and 

accuracy of 81% (95% CI 80–82%). The variables were sorted in order 
of most to least important, and the top 10 predictors explain 62.5% of 
the model’s decision making. This includes gait, Trail A and B, and the 
volume of the third ventricle. The gradient boosting model 
additionally noted creatinine as an important biomarker. Since the top 
predictors include both clinical, imaging-based, and biofluid-based 
biomarkers, a combination for these biomarkers may be necessary for 
efficient diagnosis. All studies discussed in this section are discussed 
in Table 2.

4.1.2 Functional imaging
Fiorenzato et al. (2024) used functional MRI (fMRI) to distinguish 

PD-NC (n = 52), PD-MCI (n = 46), PDD (n = 20) and HC (n = 35) 
subjects. Feature selection was performed on the fMRI data (originally 
595 features), which lead to 30 selected features for fractional 
amplitude of low-frequency fluctuations (fALFF) and 49 selected 
features for fractal dimension (FD). Multiple machine learning 
techniques were investigated, using five-fold cross-validation, 
including NN, SVM, RF, GradientBoost, and KNN. According to the 
researchers, when using fALFF features, models trained by a vote from 
NN, SVM, and RF classifiers demonstrated the highest accuracy 
(62.2 ± 1.4%) By comparison, when using FD as features, models 
trained using SVM demonstrated the highest accuracy when 
compared to other techniques (76 ± 1.6%), and this accuracy value was 
also much higher than when using fALFF.

Abós et al. (2017) aimed to apply T1-weighted structural MRI and 
resting (rs)-fMRI to detect MCI in PD. The training sample included 
HC (n = 38), PD-NC (n = 43), and PD-MCI (n = 27), while the 
validation sample included PD-NC (n = 17) and PD-MCI (n = 8). 
Feature selection was applied to avoid overfitting through the 
randomized logistic regression algorithm, which combines logistic 
regression with randomization of data, and the LOOCV technique 
(McFall et al., 2023). This technique selected 89 edges as features, and 
21 of these features were selected in at least 80% of the iterations of 
LOOCV. Results from using LOOCV on the training data with SVM 
as the classification algorithm were compared with results using the 
validation sample and SVM, with only the 21 selected features. A 
mean accuracy of 82.6 ± 3.9% and mean AUC of 0.88 ± 0.01 was 
achieved using the first approach (when the PD-NC and PD-MCI 
subject groups were isolated, the mean accuracies were 82.6 ± 3.5% 
and 82.6 ± 4.3%, respectively). In contrast, the second approach 
resulted in an accuracy of 80% (PD-NC: 76.5%, PD-MCI: 87.5%) and 
an AUC of 0.81. Based on this, the first approach should be used in 
the PD-NC group, as this had a higher accuracy, and similarly the 
second approach should be used in the PD-MCI group. This research 
suggests that fMRI can be  used to detect MCI and dementia in 
PD. Additionally, since models created by Abós et al. (2017) performed 
better than models created by Fiorenzato et  al. (2024), and these 
models resulted in accuracy metrics above 80%, the use of multiple 
imaging modalities is further supported.

In Cengiz et  al. (2022) and Marras et  al. (2018) H-magnetic 
resonance spectroscopic imaging (1H-MRSI) was collected with the 
aim of differentiating PD subjects with MCI (n = 34) from NC 
(n = 26), and from HC (n = 16). Multiple machine learning techniques 
were tested for model performance, including KNN, bagged trees, 
and SVM with a fine Gaussian kernel. Results were reported for the 
highest-performing technique, and five-fold cross-validation was 
used to avoid overfitting. Metabolic ratios were used as features in 
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TABLE 2 Main findings from articles using structural imaging.

Paper Population:
Sample size

Machine 
learning 
technique;
cross-
validation, 
training-test 
split;
feature 
selection 
(number of 
features)

Biomarkers Metrics 
collected

Metric values Other 
findings

Yu et al. (2023) HC: 30

PD-MCI: 30

PD-NC: 40

SHAP, SVM;

10-fold cross-

validation,

training: 70%

Validation: 30%; No–

feature importance 

(not reported)

DTI (FA; MD) Accuracy, AUC, 

sensitivity, specificity

79%, 0.80, 78, 75% The most 

important feature 

was the FA value of 

the anterior portion 

of the right IFOF.

Huang et al. 

(2024)

PD-NC: 57

PD-MCI: 33

SVM, KNN, NB, LDA;

Feature selection:

training: 50

testing: 40

Model evaluation:

Training: 46

Testing: 44; yes (90,806 

features to 11 features)

DTI (structural 

connectivity); MDS-

UPDRS III, age

Accuracy, AUC, 

Sensitivity, 

Specificity

Combined Model, LDA: 

85%, 0.85, 86, 84%

Combined Model, NB: 85%, 

0.84, 83, 85%

Neuroimaging—LDA: 82%, 

0.84, 85, 82%

Neuroimaging—SVM: 86%, 

0.83, 77, 88%

Chen et al. 

(2023)

PD-NC: 52

PD-MCI: 68

RF, DT, XGBoost;

None; yes (420 features 

to 7 features)

DTI (intravoxel, 

intervoxel)

Accuracy RF - 75.00%

XGBoost - 92.86%

DT - 66.67%

Morales et al. 

(2013)

PD-NC: 16

PD-MCI: 15

PDD: 14

NB, FSNB, CFS-NB, 

SVM; 5-fold cross-

validation; yes (not 

reported)

T1-weighted structural 

MRI

Accuracy PD-NC/PD-D, CFS-NB: 

97.00 ± 6.74%

PD-MCI/PD-D, NB: 

96.55 ± 7.85%

PD-NC/PD-MCI, CSF-NB: 

90.09 ± 8.40%

PD-NC/PD-MCI/PD-D, 

FSNB: 70.00 ± 26.66%

Nguyen et al. 

(2020)

PD: 116

HC: 42

DL autoencoder, LR; 

5-fold cross-validation; 

Yes (not reported)

T1-weighted structural 

MRI

Accuracy, Sensitivity, 

Specificity

DL: 85100, 80%

LR: ~75%, ~55%, ~85%

Shibata et al. 

(2022)

Internal:

PD-NC: 59

PD-MCI: 61

External:

PD-NC: 21

PD-MCI: 22

RF, extreme and light 

gradient boosting; 

10-fold cross-

validation; no (not 

reported)

QSM (MRI-derived) Accuracy, AUC Internal Set: 80.0 ± 16.3%, 

0.84 ± 0.17

External Set: 79.1%, 0.78

Ramezani et al. 

(2021)

PD: 101 SVR, RRELIEFF; 

Nested LOOCV; Yes 

(102 features to 11 

features)

Features from 

structural T1-weighted 

MRI; clinical features; 

cognition; genetic 

features

Correlation 

coefficient, mean 

absolute error

0.54, 0.39

McFall et al. 

(2023)

PD: 48 RF, LR, gradient 

boosting; 3-fold cross-

validation; no (38 

features)

Features from 

structural T1-weighted 

MRI; clinical features; 

blood-based features;

Accuracy, AUC RF: 81% (95% CI 80–82%), 

0.85 (95% CI 0.83–0.86)

(Continued)
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the machine learning-based models. When fine Gaussian SVM was 
used to differentiate PD-NC and PD-MCI, as it had the highest 
performance out of the classifiers, accuracy, sensitivity, and 
specificity were reported as 77.3, 63.6, and 69.7%. Similarly, when 
bagged trees was used for the HC/PD-NC and HC/PD-MCI 
comparisons, accuracy, sensitivity, and specificity were 86.5, 73.1, 
and 84.6%, respectively, for HC/PD-NC, and accuracy, sensitivity, 
and specificity were 86.4, 72.7, and 81.8%, respectively, for HC/
PD-MCI. The higher performance when differentiating HC from 
PD-NC or PD-MCI as compared to differentiating PD-NC from 
PD-MCI may be supported by differences in biomarkers caused by 
presence of PD. Additionally, the model performance decreased 
when HC was differentiated from PD-MCI, which suggests that 
1H-MRSI imaging of subjects with PD-MCI may be more similar to 
HC than the 1H-MRSI imaging of subjects with PD without MCI.

A recently developed hemodynamic-based technique for 
functional imaging is functional near-infrared spectroscopy (fNIRS). 
Shu et  al. (2024) investigated the use of fNIRS to distinguish PD 
subjects with MCI (n = 20) from HC (n = 34). Graph frequency 
analysis (GFA) was applied to deconstruct the imaging and extract 
features. Specifically, GFA analyzes the graph in the graph frequency 
domain and the graph spectrum of the functional brain networks. The 
two main features extracted were total variation (TV) (n = 18), which 

measures differences of signals for each edge in a specific region, and 
weighted zero crossings (WZC) (n = 6), which quantifies the spatial 
variability of the graph eigenvectors globally. SVM and LOOCV were 
applied for classification. Using TV alone resulted in accuracy and F1 
score of 62.7% and 0.773, while using WZC alone resulted in accuracy 
of 79.6% and F1 score of 0.849. When all features were combined, 
accuracy and F1 score of 83.3% and 0.877 were achieved, which is a 
significant increase from TV or WZC alone and continues to support 
the use of multiple features in creating classification models. Based on 
this, fNIRS may have utility in diagnosing PD and/or MCI.

Various studies have applied positron emission tomography (PET) 
for diagnosing PD, so Choi et al. (2020) aimed to develop a model that 
could be used for identifying conversion from PD to PDD. This model 
was trained on a dataset of subjects with Alzheimer’s disease (AD) 
(n = 243) and HC (n = 393) and tested on a dataset of PD subjects [with 
dementia (n = 13); NC (n = 49)]. The features (n = 128 per subject) 
processed by the model were extracted from FDG PET, and a CNN 
framework was used as the basis for the model. This model resulted 
in an AUC of 0.81 (95% CI 0.68–0.94) when the model was tested on 
data from PD subjects.

As research supports that levels of beta-amyloid-42 (Aβ42) in 
cerebrospinal fluid (CSF) can be used to predict cognitive decline, 
Amboni et  al. (2022) investigated whether Aβ42 PET imaging 

TABLE 2 (Continued)

Paper Population:
Sample size

Machine 
learning 
technique;
cross-
validation, 
training-test 
split;
feature 
selection 
(number of 
features)

Biomarkers Metrics 
collected

Metric values Other 
findings

Abós et al. 

(2017)

HC: 38

PD-NC: 60

PD-MCI: 35

SVM, LR;

LOOCV;

yes (89 features to 21 

features)

Features from T1-

weighted structural 

MRI and RS-fMRI

Accuracy, AUC SVM, LOOCV: 

82.6% ± 3.9%, 0.88 ± 0.01

Almgren et al. 

(2023)

PD: 213 SVR; LOOCV; yes (90 

features to 12 features)

Features from T1-

weighted structural 

MRI; clinical features; 

CSF-based features

N/A N/A The best model 

reported positive 

correlations 

between MoCA 

scores and beta-

amyloid (p = 0.018) 

and negative 

correlations 

between MoCA 

scores and baseline 

cognition 

(p = 0.00004) and 

total tau 

(p = 0.049).

HC, healthy controls; PD-MCI, Parkinson’s disease with mild cognitive impairment; PD-NC, Parkinson’s disease with normal cognition; PD, Parkinson’s disease; PDD, Parkinson’s disease with 
dementia; SVM, support vector machine; KNN, k-nearest neighbors; NB, Naïve Bayes; LDA, linear discriminant analysis; RF, random forest; DT, decision tree; FSNB - filter selection Naïve 
Bayes; CFS-NB - correlation-based with feature subset selection, Naïve Bayes; DL, deep learning; LR, logistic regression; SVR, support vector regression; LOOCV, leave-one-out cross-
validation; DTI, diffusion tensor imaging; QSM, quantitative susceptibility mapping; CSF, cerebrospinal fluid; FA, fractional anisotropy; IFOF, inferior fronto-occipital fasciculus; AUC, area 
under the receiver operating curve.

https://doi.org/10.3389/fnins.2024.1446878
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dennis and Strafella 10.3389/fnins.2024.1446878

Frontiers in Neuroscience 09 frontiersin.org

could be used to differentiate subjects with PD and MCI (n = 33) 
from subjects with PD and no MCI (n = 42). Two sets of features 
were used to create machine learning-based models. The first 
model used clinical characteristics and features from gait analysis, 
and the second models used the top five features from the first 
model and features from PET. Model “2A” comprised of the 
averaged standardized uptake values (SUVs) of all nine regions 
from PET, while Model “2B” comprised of the averaged SUVs of 
the cortical regions alone. LOOCV was used for the second 
models, and 10-fold cross-validation was used in the first model. 
Multiple machine learning techniques were used to create separate 
models, specifically RF, J48, and ADA-B as tree-based algorithms, 
and SVM and KNN as instance-based algorithms. For the first 
model, the highest performing model techniques were SVM and 
RF, with accuracy, sensitivity, specificity, and AUC of 80.0, 72.7, 
85.7%, 0.792 for SVM and 73.3, 66.7, 78.6%, 0.722 for RF. In Model 
“2A,” the highest performers were SVM (72.2, 73.7, 70.6%, 0.721) 
and J48 (72.2, 73.7, 70.6%, 0.621), and in Model “2B,” the highest 
performers were SVM (75.0, 73.7, 76.5%, 0.751) and J48 (69.4, 
68.4, 70.6%, 0.636). In all models, SVM performed with the highest 
performance. However, performance deceased when Aβ42 PET 
features were used as compared to when clinical features were 
applied. When SVM was used as a classifier, Model “2B” performed 
with higher accuracy metrics than Model “2A,” and the model 
using clinical metrics performed with highest accuracy. This 
suggests that combining clinical metrics with the neuroimaging 
metrics may further improve the accuracy metrics. All studies 
discussed in this section are discussed in Table 3.

4.2 Clinical

As symptoms can reflect the state of the disease, some studies 
have explored the use of clinical tests to predict onset of MCI. One 
such study created a model using clinical metrics, such as cognitive 
impairment, tremors, and neuropsychiatric measures to define and 
identify disease stages in PD (Severson et al., 2021). All subjects 
were diagnosed with PD (n = 433), and the sample was split into a 
training (n = 333) and testing (n = 82). Five-fold cross-validation 
was applied to the training data. No feature selection techniques 
were implemented; 82 features were used to determine the 
appropriate stages. As hidden Markov models (HMM), a type of 
computational model, can describe transitions between sequential 
data through forming stages, the researchers created a model using 
this structure to identify eight disease stages of PD. The final stage, 
stage 8, accounted for 56% of cases of MCI and 95% of dementia 
cases. This research suggests that artificial intelligence and machine 
learning techniques may be used to recognize and separate disease 
stages and severity through clinical measures, and that these 
technologies may be  applied to the prediction of worsening 
cognitive impairment.

Brien et al. (2023) applied video-based eye tracking to differentiate 
HC (n = 106) from PD (PD-NC: n = 45, PD-MCI: n = 45, PDD: n = 20) 
and detect PD progression. Two sets of features were extracted for a 
total of 45 features: point estimates (21 features), which were estimates 
of mean values and rates, and functional estimates (24 features), which 

were functional summary features extracted from functional data 
analysis and functional PCA. Functional PCA is another version of 
PCA specifically for functional features. Nested 10-fold cross-
validation was used to create the test set, and the machine-learning 
based model was based on three classifiers: SVM, RF, and logistic 
regression. The probability of PD for each classifier was collected and 
averaged to determine the final probability of PD and classify. The 
sensitivity, specificity, and AUC were 83, 78%, and 0.88, respectively, 
for the classification of HC/PD. The AUC was collected for each subset 
of PD subjects organized by cognitive ability: the HC/PD-NC, HC/
PD-MCI, and HC/PDD classifications achieved AUCs of 0.84, 0.89, 
and 0.95. The increase in AUC as cognitive ability of the PD subjects 
decreased is justifiable, as the differences between HC and PD subjects 
would have arguably become more noticeable.

Harvey et  al. (2022) completed a longitudinal assessment of 
cognitive function in subjects with PD, where clinical, biofluid, and 
genetic data were collected repeatedly. Subjects with PD were 
organized as NC (n = 67), MCI (n = 39), PDD (n = 43), or subjective 
cognitive decline (n = 60). Multiple machine learning techniques were 
assessed: RF, conditional inference forest (Cforest), SVM, and 
ElasticNet. A variable importance assessment was completed through 
RFE to determine which variables contribute to the high performing 
models, and 10-fold cross-validation was applied. When models were 
created to identify MCI converters, the combined model (28 features, 
using Cforest) achieved an accuracy, AUC, sensitivity, and specificity 
of 86.7%, 0.938, 71.9, and 96.1%, respectively. The accuracy, AUC, 
sensitivity, and specificity for the clinical model (11 features, using 
Cforest) were 85.5%, 0.930, 65.6, and 98.0%, respectively. In 
comparison, the accuracy, AUC, sensitivity, and specificity for the 
biofluid-based model (4 features, using ElasticNet) were 68.7%, 0.756, 
62.5, and 72.5%, respectively. For models created to identify PDD 
converters, using the combined model (10 features, using SVM) 
resulted in an accuracy, AUC, sensitivity, and specificity of 81.9%, 
0.862, 47.1, and 90.9%. In comparison, the clinical model (8 features, 
using RF) reached an accuracy, AUC, sensitivity, and specificity of 
80.7%, 0.828, 47.1, and 89.4%. The biofluid model (5 features, 
ElasticNet) reached an accuracy, AUC, sensitivity, and specificity of 
86.7%, 0.835, 47.1, and 97.0%. In models created for MCI, the highest 
performance was achieved by the combined model, although this 
model resulted in lower sensitivity, while in the models created for 
PDD, the highest performance was achieved by the biofluid model, 
with substandard sensitivity. The sensitivity was lower than the 
specificity in all models, which suggests that these biomarkers should 
be used to help rule out chances of conversion rather than diagnose. 
All studies discussed in this section are discussed in Table 4.

4.3 Biofluids

Biofluids have frequently been used to distinguish subjects 
with PD from HC (Kelly et al., 2023), however when focusing on 
detecting MCI in PD, studies tend to focus on neuroimaging-
based or clinical biomarkers instead of biofluid biomarkers. 
Despite this, some studies have explored the application of 
biomarkers common in AD to PD-MCI and PDD. For instance, 
prior research has suggested an association between cognitive 
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impairment and levels of tau and Aβ42 in AD (Chung et al., 2021). 
Based on this, Chung et al. (2021) extracted extracellular vesicles 
from plasma to assess concentrations of Aβ42, tau, and alpha-
synuclein and whether these concentrations could be applied to 
classify cognitive function in PD. The sample included 46 HC and 
116 PD, and subjects with PD were grouped based on their 

cognitive function. The number of subjects in each cognitive 
group was not reported. An artificial neural network (ANN) was 
created based on the age, sex, tau, alpha-synuclein, and Aβ42, and 
four-fold cross-validation was used. The model performed with 
an accuracy of 91.3%, AUC of 0.911, precision of 90.0%, sensitivity 
of 100%, specificity of 60.0%. As there were much fewer HC 

TABLE 3 Main findings from articles using functional imaging.

Paper Population: 
sample size

Machine 
learning 
technique; 
cross-
validation, 
training-test 
split; feature 
selection 
(number of 
features)

Biomarkers Metrics 
collected

Metric values Other 
findings

Fiorenzato et al. 

(2024)

HC: 35

PD-NC: 52

PD-MCI: 46

PDD: 20

NN, SVM, RF, 

GradientBoost, KNN; 

5-fold cross-validation; 

yes (595 features to 79 

features)

fMRI (FD, fALFF) Accuracy fALFF, NN, SVM, 

RF: 62.2 ± 1.4%

FD, SVM: 76 ± 1.6%

Abós et al. (2017) HC: 38

PD-NC: 60

PD-MCI: 35

SVM, LR; LOOCV; Yes 

(89 features to 21 

features)

Features from T1-

weighted structural 

MRI and resting state-

fMRI

Accuracy, AUC SVM, LOOCV: 

82.6% ± 3.9%, 

0.88 ± 0.01

Cengiz et al. 

(2022)

PD-MCI: 34

PD-NC: 20

HC: 16

KNN, bagged trees, 

SVM; 5-fold cross-

validation; No (not 

reported)

3D 1H-MRSI Accuracy, Sensitivity, 

Specificity

PD-NC/PD-MCI, 

SVM: 77.3, 63.6, 

69.7%

HC/PD-NC, bagged 

trees: 86.5, 73.1, 

84.6%

HC/PD-MCI, 

bagged trees: 86.4, 

72.7, 81.8%

Shu et al. (2024) PD-MCI: 20

HC: 34

SVM; LOOCV; No (24 

features)

fNIRS Accuracy, F1 score TV: 62.7%, 0.773

WZC: 79.6%, 0.849

Combined: 83.3%, 

0.877

Choi et al. (2020) AD: 243

HC: 393

PDD: 13

PD-NC: 49

CNN; trained on AD/

HC data, tested on 

PD-NC/PDD data; no 

(128 features)

FDG PET AUC PD subjects: 0.81 

(95% CI 0.68–0.94)

Amboni et al. 

(2022)

PD-NC: 42

PD-MCI: 33

RF, J48, ADA-B, SVM, 

KNN; LOOCV; No (25 

features)

Beta-amyloid-42 PET; 

clinical features

Accuracy, AUC, 

sensitivity, specificity

Clinical features: 

80.0%, 0.792, 72.7, 

85.7%

All PET features: 

72.2%, 0.721, 73.7%, 

70.6

Cortical PET 

features: 75.0%, 

0.751, 73.7, 76.5%

All high 

performing models 

used SVM.

HC, healthy controls; PD-NC, Parkinson’s disease with normal cognition; PD-MCI, Parkinson’s disease with mild cognitive impairment; PD-D, Parkinson’s disease with dementia; AD, 
Alzheimer’s disease; NN: neural network; SVM, support vector machine; RF, random forest; KNN, k-nearest neighbors; LR, logistic regression; LOOCV, leave-one-out cross-validation; CNN, 
convolutional neural network; ADA-B, AdaBoost; FD, fractal dimension; fALFF, fractional amplitude of low-frequency fluctuations; AUC, area under the receiver operating curve.
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TABLE 4 Main findings from articles using clinical features.

Paper Population: 
sample size

Machine 
learning 
technique; 
cross-
validation, 
training-test 
split; feature 
selection 
(number of 
features)

Biomarkers Metrics 
collected

Metric values Other 
findings

Huang et al. 

(2024)

PD-NC: 57

PD-MCI: 33

SVM, KNN, NB, LDA; 

feature selection: 

Training: 50

Testing: 40

Model evaluation:

Training: 46

Testing: 44; yes (90,806 

features to 11 features)

DTI (structural 

connectivity); MDS-

UPDRS III, age

Accuracy, AUC, 

sensitivity, specificity

Combined model, LDA: 

85%, 0.85, 86, 84%

Combined model, NB: 85%, 

0.84, 83, 85%

Neuroimaging—LDA: 82%, 

0.84, 85, 82%

Neuroimaging—SVM: 86%, 

0.83, 77, 88%

Ramezani et al. 

(2021)

PD: 101 SVR, RRELIEFF; 

Nested LOOCV; Yes 

(102 features to 11 

features)

features from structural 

T1-weighted MRI; 

clinical features; 

cognition; genetic 

features

Correlation 

coefficient, mean 

absolute error

0.54, 0.39

McFall et al. 

(2023)

PD: 48 RF, LR, gradient 

boosting; 3-fold cross-

validation; no (38 

features)

Features from 

structural T1-weighted 

MRI; clinical features;

blood-based features;

Accuracy, AUC RF: 81% (95% CI 80–82%), 

0.85 (95% CI 0.83–0.86)

Almgren et al. 

(2023)

PD: 213 SVR; LOOCV; Yes (90 

features to 12 features)

Features from T1-

weighted structural 

MRI; clinical features; 

CSF-based features

N/A N/A The best model 

reported positive 

correlations between 

MoCA scores and 

beta-amyloid 

(p = 0.018) and 

negative correlations 

between MoCA 

scores and baseline 

cognition 

(p = 0.00004) and 

total tau (p = 0.049).

Amboni et al. 

(2022)

PD-NC: 42

PD-MCI: 33

RF, J48, ADA-B, SVM, 

KNN; LOOCV;

No (25 features)

Beta-amyloid-42 PET; 

Clinical features

Accuracy, AUC, 

Sensitivity, 

Specificity

Clinical features: 80.0%, 

0.792, 72.7, 85.7%

All PET features:

72.2%, 0.721, 73.7%, 70.6

Cortical PET features: 

75.0%, 0.751, 73.7, 76.5%

All high performing 

models used SVM.

Severson et al. 

(2021)

PD: 316 HMM; 5-fold cross-

validation; no (82 

features)

Cognitive and motor 

functioning, Hoehn 

and Yahr score, death

The model was able 

to determine eight 

stages of PD, where 

stage 8 is the most 

severe for all but 

one symptoms 

(tremor); stage 5 is 

the most severe 

tremor.

(Continued)
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subjects than PD subjects, the low specificity did not have a major 
effect on the accuracy. An analysis was also completed on the 
effect of each biomarker on the model’s predictions, and the most 
effective biomarkers were tau and Aβ42, with sex, age, and alpha-
synuclein being less important.

Almgren et  al. (2023) investigated the use of multimodal 
features, including CSF-based biomarkers, (such as total-tau, 
phosphorylated-tau, Aβ42, and alpha-synuclein) and MRI-based 
volumetric data to predict cognitive decline in subjects with PD 
(n = 213). Feature selection was applied to reduce the number of 

TABLE 4 (Continued)

Paper Population: 
sample size

Machine 
learning 
technique; 
cross-
validation, 
training-test 
split; feature 
selection 
(number of 
features)

Biomarkers Metrics 
collected

Metric values Other 
findings

Brien et al. 

(2023)

HC: 106

PD-NC: 45

PD-MCI: 45

PDD: 20

SVM, RF, LR; Nested 

10-fold cross-

validation; no (45 

features)

Video-based eye 

tracking

AUC HC/PD: 0.88, HC/PD-NC: 

0.84

HC/PD-MCI: 0.89

HC/PDD: 0.95

Harvey et al. 

(2022)

PD-NC: 67

PD-MCI: 39

PDD: 43

RF, Cforest, SVM, 

ElasticNet; 10-fold 

cross-validation; no 

(not reported)

Clinical features; 

Biofluid features; 

Genetic features; 

Cognition

Accuracy MCI converters, Combined 

model, CForest: 86.7%

MCI converters, clinical 

model, CForest: 85.5%

MCI converters, Biofluid-

Based Model, ElasticNet: 

68.7%

PDD converters, Combined 

model, SVM: 81.9%

PDD converters, clinical 

model, RF: 80.7%

PDD converters, Biofluid-

Based Model, ElasticNet: 

86.7%

Chung et al. 

(2021)

HC: 46

PD: 116

ANN; 4-fold cross-

validation; No (5 

features)

Blood-based 

biomarkers (AB-42, 

tau, a-syn)

Clinical features (sex, 

age)

Accuracy, AUC, 

sensitivity, specificity

91.3% 0.911, 100, 60.0% The most effective 

biomarkers were tau 

and AB-42, with 

sex, age, and alpha-

synuclein being less 

important.

Deng et al. 

(2023)

PD-MCI: 108

PD-NC: 98

ShapleyVIC; N/A

No (41 features)

Blood-based features; 

clinical features; 

Genetic features

N/A N/A The clinical 

variables with the 

most importance to 

PD-MCI were years 

of education, 

hypertension, MDS-

UPDRS Part III 

motor score and the 

blood-based 

variables were 

triglyceride and 

ApoA1.

PD-NC, Parkinson’s disease with normal cognition; PD-MCI, Parkinson’s disease with mild cognitive impairment; PD, Parkinson’s disease; HC, healthy controls; PD-D, Parkinson’s disease 
with dementia; SVM, support vector machine; KNN, k-nearest neighbors; NB, Naïve Bayes; LDA, linear discriminant analysis; SVR, support vector regression; LOOCV, leave-one-out cross-
validation; RF, random forest; LR, logistic regression; ADA-B, AdaBoost; HMM, hidden Markov model; ANN, artificial neural network; CSF, cerebrospinal fluid; AB-42, beta-amyloid-42; 
AUC, area under the receiver operating curve.
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features from 90 features to 12 features. Ten-fold cross-validation 
was applied during the training process, and the most important 
biomarkers were determined by the number of folds that a 
biomarker appeared in. Based on this, the most important features 
were the MoCA, t-tau, p-tau, Aβ42, Geriatric Depression Scale, 
and State Trait Anxiety Inventory (STAI). Of these, statistically 
significant positive correlations were found between MoCA scores 
and Aβ42 (p = 0.018), while statistically significant negative 
correlations were found between MoCA scores and total tau 
(p = 0.049) and STAI (p = 0.042). The correlations between MoCA 
scores and Aβ42 and tau are justifiable, as these proteins are found 
at abnormal levels in Alzheimer’s disease and mild cognitive 
impairment. Additionally, the researchers found that CSF alpha-
synuclein was an important feature, however, it was lower ranked 
as compared to other CSF biomarkers.

Lin et al. (2020) compared results from seven classifiers (NB, 
KNN, SVM, C4.5 DT, classification and regression trees (which 
uses the DT structure), RF, logistic regression) and LDA to 
differentiate PD-NC (n = 57), PD-MCI (n = 29), and PDD (n = 87) 
from each other based on Aβ42, beta-amyloid-40 (Aβ40), 
total-tau, phosphorylated-tau-181 (p-tau-181), and alpha-
synuclein levels in plasma. LDA was able to reduce data 
dimensionality from 5 dimensions to 3 dimensions. LOOCV was 
additionally applied to split the data into a training and test set. 
Analysis revealed that levels of Aβ40 were lower in PD-NC 
compared to HC (n = 97), and levels of total-tau and p-tau-181 
were significantly higher in PD when compared to 
HC. Additionally, alpha-synuclein levels was increased in all PD 
groups when compared to HC and were highest in subjects with 
PDD. The highest accuracy rate was approximately 68%, achieved 
by either NB or logistic regression. This lower accuracy rate 
compared to earlier articles combining biofluids with another 
biomarker (Harvey et al., 2022; McFall et al., 2023) suggests that 
using a combination of features improves the ability of the 
classification models to identify MCI in PD.

In addition, one article focused on ranking a series of blood-
based, genetic, and clinical biomarkers by importance using 
ShapleyVIC-assisted variable selection to determine which 
variables are correlated to MCI in PD (Deng et al., 2023). The 
algorithm found 22 variables, out of 41 analyzed, that had 
significant importance when comparing subjects with PD and 
MCI (n = 108) and subjects with PD and normal cognition 
(n = 98). The clinical variables with the most importance to 
PD-MCI were years of education, hypertension, MDS-UPDRS 
Part III motor score and the blood-based variables were 
triglyceride and ApoA1. Prior research finds that higher levels of 
triglyceride and ApoA1 correlate to increased neuroinflammation, 
and that these levels may be associated with underlying Aβ42/tau 
pathology (Deng et al., 2023; Deng et al., 2022). The findings that 
Deng et al. (2023) reports suggest that levels of triglyceride and 
ApoA1 in blood may be therapeutic targets for MCI in PD.

These findings support the use of Aβ42 and tau for diagnostic 
and therapeutic targets, and that similar biomarkers linked to 
Aβ42/tau pathology should be  investigated further through 
machine learning techniques (Chung et al., 2021; Almgren et al., 
2023; Lin et al., 2020; Deng et al., 2023). All studies discussed in 
this section are discussed in Table 5.

5 Conclusion

Most prior research applying artificial intelligence to detection of 
MCI in subjects with PD focuses on neuroimaging biomarkers 
(n = 15), with structural (n = 10) and functional (n = 6) modalities both 
explored in articles. Similar amounts of research have been reported 
for clinical biomarkers (n = 8) and biofluid biomarkers (n = 6). In 
addition, n = 8 articles (35%) discussed combining biomarker types 
together, with neuroimaging, clinical, and biofluid biomarkers 
discussed in n = 5, n = 8, and n = 5 articles. Most studies were cross-
sectional (n = 14), with n = 7 longitudinal studies. Since diagnosis may 
be supplemented by using multiple data points over a period of time 
to observe change, longitudinal studies may be  more useful at 
determining a biomarker.

Out of all n = 21 articles, n = 17 articles reported metrics that 
can be compared to the 0.80/80% threshold, including sensitivity, 
specificity, and AUC. We noted whether these articles followed 
proper protocol for training and testing the models to determine 
if there was a correlation between an improper modeling protocol 
and metrics below the threshold. Based on this, n = 6 articles used 
both a training/testing split (through cross-validation or manual 
split) and feature selection. 4 (67%) of these articles (Huang et al., 
2024; Morales et al., 2013; Nguyen et al., 2020; Abós et al., 2017) 
reported metrics above 80%, while n = 2 articles’ (Fiorenzato et al., 
2024; Lin et  al., 2020) results were below the threshold for 
successful classification. Of the remaining n = 11 studies, n = 10 
did not apply feature selection and the other n = 1 did not apply 
the training/testing split. The former category contained n = 4 
studies (40%) with metrics above 80% (Harvey et al., 2022; McFall 
et  al., 2023; Shu et  al., 2024; Brien et  al., 2023) and n = 6 with 
substandard results (Amboni et al., 2022; Yu et al., 2023; Shibata 
et al., 2022; Cengiz et al., 2022; Choi et al., 2020; Chung et al., 
2021). It is possible that the n = 1 study not using the training/
testing split (Chen et al., 2023) reported one metric (accuracy) 
above the threshold due to erroneous reporting. Additionally, no 
articles used a training/validation/test split, which splits data into 
three sets instead of two (a training/test split), although n = 2 used 
an external set of data (Shibata et al., 2022; Choi et al., 2020) to 
validate the model performance and improve the model 
robustness. It is common when classification models are tested on 
the same data they are trained on, the results may be flawed, and 
the reporting may be inaccurate. Based on this analysis, metrics 
above the 0.80/80% threshold are correlated to a proper and 
thorough model creation protocol, and it is necessary to properly 
train and test models for a diagnostic algorithm to be identified.

The results from these studies suggest that applying biomarkers 
from different sources may improve the ability of the model to 
detect MCI. Specifically, Aβ42, tau, and alpha-synuclein may 
be used as biofluid biomarkers (Chung et al., 2021; Deng et al., 
2023), and MRI (structural and functional) may be  used as 
neuroimaging biomarkers (Nguyen et al., 2020; Abós et al., 2017). 
However, this analysis is limited, as there are few robust studies 
using artificial intelligence to identify MCI in subjects with 
PD. Because of this, the performance reported in these studies may 
be unreliable. Future directions should involve replication of these 
studies in different datasets to determine if these biomarkers 
are generalizable.
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TABLE 5 Main findings from articles using biofluid features.

Paper Population: 
sample size

Machine 
learning 
technique; 
cross-
validation, 
training-test 
split; feature 
selection 
(number of 
features)

Biomarkers Metrics 
collected

Metric values Other findings

McFall et al. 

(2023)

PD: 48 RF, LR, gradient 

boosting; 3-fold cross-

validation; no (38 

features)

Features from structural 

T1-weighted MRI; 

clinical features; blood-

based features;

Accuracy, AUC RF: 81% (95% CI 80–

82%), 0.85 (95% CI 

0.83–0.86)

Almgren et al. 

(2023)

PD: 213 SVR; LOOCV; yes (90 

features to 12 features)

Features from T1-

weighted structural 

MRI; clinical features; 

CSF-based features

N/A N/A The best model reported 

positive correlations 

between MoCA scores and 

beta-amyloid (p = 0.018) 

and negative correlations 

between MoCA scores and 

baseline cognition 

(p = 0.00004) and total tau 

(p = 0.049).

Harvey et al. 

(2022)

PD-NC: 67

PD-MCI: 39

PDD: 43

RF, Cforest, SVM, 

ElasticNet; 10-fold 

cross-validation; No 

(not reported)

Clinical features; 

biofluid features; genetic 

features; cognition

Accuracy MCI converters, 

Combined Model, 

CForest: 86.7%

MCI converters, 

Clinical Model, 

CForest: 85.5%

MCI converters, 

biofluid-based model, 

ElasticNet: 68.7%

PDD converters, 

Combined Model, 

SVM: 81.9%

PDD converters, 

clinical model, RF: 

80.7%

PDD converters, 

Biofluid-based model, 

ElasticNet: 86.7%

Chung et al. 

(2021)

HC: 46

PD: 116

ANN; 4-fold cross-

validation; No (five 

features)

Blood-based biomarkers 

(AB-42, tau, a-syn) 

clinical features (sex, 

age)

Accuracy, AUC, 

sensitivity, 

specificity

91.3% 0.911, 100, 60.0% The most effective 

biomarkers were tau and 

AB-42, with sex, age, and 

alpha-synuclein being 

less important.

Lin et al. (2020) PD-NC: 57 PD-

MCI: 29

PDD: 87

HC: 97

NB, KNN, SVM, DT, 

CART, RF, LR, LDA; 

LOOCV; yes (5–3 

features)

Blood-based biomarkers 

(AB-40, AB-42, t-tau, 

p-tau-181, a-syn)

Accuracy NB or LR: ~68% Levels of AB-40 were 

lower in PD-NC 

compared to HC. Levels 

of t-tau and p-tau-181 

were significantly higher 

in PD compared to HC.

Alpha-synuclein levels 

were higher in all PD 

groups when compared 

to HC and were highest 

in subjects with PDD

(Continued)
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