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Spiking Neural Networks (SNNs) are typically regards as the third generation

of neural networks due to their inherent event-driven computing capabilities

and remarkable energy e�ciency. However, training an SNN that possesses

fast inference speed and comparable accuracy to modern artificial neural

networks (ANNs) remains a considerable challenge. In this article, a sophisticated

SNN modeling algorithm incorporating a novel dynamic threshold adaptation

mechanism is proposed. It aims to eliminate the spiking synchronization

error commonly occurred in many traditional ANN2SNN conversion works.

Additionally, all variables in the proposed SNNs, including the membrane

potential, threshold and synapticweights, are quantized to integers,making them

highly compatible with hardware implementation. Experimental results indicate

that the proposed spiking LeNet and VGG-Net achieve accuracies exceeding

99.45% and 93.15%on theMNIST andCIFAR-10 datasets, respectively, with only 4

and 8 time steps required for simulating one sample. Due to this all integer-based

quantization process, the required computational operations are significantly

reduced, potentially providing a substantial energy e�ciency advantage for

numerous edge computing applications.

KEYWORDS

spiking neural network, dynamic threshold adaptation, ANN2SNN conversion, network

quantization, neuromorphic computing

1 Introduction

In recent years, neuromorphic computing based on spiking neural networks (SNNs)

(Bouvier et al., 2019) has attracted more and more attention across computer vision (CV),

automatic speech recognition (ASR) and natural language processing (NLP) tasks. SNNs

are a special type of neural network that operate based on the principles of biological

neural systems (Kasabov, 2019). At the functional level, unlike traditional artificial neural

networks (ANNs) that use continuous-valued activation functions, SNNs employ spiking

neurons that communicate and compute through discrete (0 or 1) spikes. These spikes

represent the neural activity and information transmission in the network. At the structure

level, SNNs are usually composed of LIF neurons (Andrew, 2003), each of which has a

membrane potential which integrates incoming signals from other neurons. When the

membrane potential exceeds a certain threshold, the neuron will generate a spike, and then

propagated to other connected neurons. This spiking behavior allows SNNs to capture rich

spatio-temporal dynamics and feature patterns in data, making them particularly suitable

for processing time-varying signals and sequences.

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1449020
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1449020&domain=pdf&date_stamp=2024-12-17
mailto:cuixx@pku.edu.cn
mailto:wangyuan@pku.edu.cn
https://doi.org/10.3389/fnins.2024.1449020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1449020/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zou et al. 10.3389/fnins.2024.1449020

In general, SNNs can offer several advantages compared to

traditional ANNs. Firstly, they have a more biologically plausible

representation of neural computation, which can lead to better

generalization and adaptability to many complex tasks (Schuman

et al., 2017). Secondly, SNNs are typically more energy-efficient

because they usually communicate through sparse spikes and

compute in an event-driven style (Taherkhani et al., 2020).

This could significantly reduce the amount of data transfer and

computation energy requirements (Bouvier et al., 2019; Schuman

et al., 2017).

However, on the one hand, training SNNs remains a big

challenge due to their discrete and event-driven characteristics.

Traditional gradient-based optimization methods used in ANNs

are not directly applicable to SNNs (Taherkhani et al., 2020;

Tavanaei et al., 2019). Therefore, researchers have developed

specialized learning algorithms and techniques to train SNNs

effectively, such as spike-timing-dependent plasticity (STDP)

(Neftci et al., 2019), surrogate gradient learning (SGL) (Lee et al.,

2019) and ANN2SNN conversion (Dampfhoffer et al., 2023).

Direct SGL algorithms originate from the training strategy of the

recurrent neural networks (RNN) (Hochreiter and Schmidhuber,

1997) and can be directly applied on some complex network

architectures, such as residual neural network (ResNet) (He et al.,

2016) with batch normalization (BN) (Ioffe and Szegedy, 2015).

However, their performance is limited by the fitness of the gradient

FIGURE 1

Quantization error (A) and synchronization error (B) in ANN2SNN conversion. Trainable quantization function (C) and dual-threshold spiking

mechanism (D) for solving the above two problems, respectively.

approximation function, the training process is usually time or

memory-consuming. Local STDP algorithm and its variants are

only suitable for shallow learning and couldn’t achieve end-to-end

training for deep networks. ANN2SNN conversion is a kind of two-

stage SNN modeling method, which can convert a decent ANN

trained with back-propagation (BP) algorithm (Li et al., 2021) to an

equivalent SNN based on the firing rate approximation. However,

these converted SNNs usually suffer from uncertain accuracy loss

(Bodo et al., 2017) when tested on some larger-scale datasets

such as CIFAR-10 (Krizhevsky and Hinton, 2009) or ImageNet

(Russakovsky et al., 2015) within fewer time steps.

On the other hand, only when SNNs are deployed on some

specialized neuromorphic hardware such as TrueNorth (Esser et al.,

2016) and Loihi (Massa et al., 2020) chip, can they really show

the advantages of high energy efficiency. This means the low-

bit quantization of synaptic weights, firing thresholds and leakage

terms of an SNN must be necessary. However, many SNN works

(Dampfhoffer et al., 2023; Li et al., 2021; Bodo et al., 2017) only

concentrate on the improvement of inference accuracy and speed,

but ignore the hardware friendliness of their models. In this article,

we present a delicate SNN architecture with dynamic threshold

adaptation mechanism, to eliminate the common synchronization

errors existed inmany other ANN2SNN conversion works. Besides,

all SNN parameters including membrane potential and firing

threshold can be quantized to integers, which is very friendly
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FIGURE 2

Input image encoding process based on SG spiking algorithm (Zou et al., 2021), where each intensity value will be discretized into a spike sequence

within 4 time steps.

for hardware implementation. Experimental results show that the

proposed spiking LeNet (Lecun and Bottou, 1998) and VGG-Net

(Simonyan and Zisserman, 2014) can obtain more than 99.45% and

93.15% classification accuracy onMNIST (Lecun and Bottou, 1998)

and CIFAR-10 (Krizhevsky and Hinton, 2009) datasets with only 4

and 8 time steps, respectively.

The rest of this article is organized as follows. Section II outlines

the details of the proposed ANN2SNN conversion algorithm,

Section III introduces the parameter quantization and spike input

encoding techniques. Section IV provides the experiment results

and section V draws the conclusion.

2 ANN2SNN conversion

In this section, we would first briefly analyze the two kinds of

common conversion loss among many previous ANN2SNNworks.

And then, a novel dual-threshold spiking approach which is also

called dynamic threshold adaptation, is introduced to eliminate

these errors from the source.

2.1 Conversion loss analysis

Conventional ANN2SNN conversion algorithms such as the

weight normalization (Bodo et al., 2017; Diehl et al., 2015)

and threshold normalization (Xu et al., 2017; Zou et al., 2020)

inevitably suffer from some accuracy loss, due to the commonly

existed quantization error and synchronization error. As shown

in Figure 1A, the quantization error usually includes the rounding

error and clipping error. The rounding error can be further

divided into the ceiling and flooring error depending on the actual

approximation method between the ReLU activation (Glorot et al.,

2011) of ANN neuron and the firing rate of SNN neuron. The

clipping error occurs because when the upper bound of the ReLU

activation function is usually truncated to achieve a fast simulation

within fewer time steps (Chen et al., 2022).

Then, the synchronization error is also called sequential error in

other work (Chen et al., 2022; Hu et al., 2023), which is caused by

the difference of sequential firing mechanism of spikes in SNNs and

static activation propagation in ANNs. Usually, the synchronization

error is accumulated in higher layers at some earlier time steps,

and causes the serious output mismatch between ANNs and their

SNN counterparts. For example, as shown in Figure 1B, if we set

the firing threshold to 1 and use a threshold subtraction scheme

after a spike generation, this SNN neuron will fire for twice. This

means a wrong spike will be generated, which is obviously not

equivalent with the original ANN neuron outputs. This may be

a more fundamental and much tougher problem which needs to

be addressed.

Generally, both quantization error and synchronization error

would degrade the accuracy performance to some extent in many

previous converted SNNs (Diehl et al., 2015; Xu et al., 2017). As far

as we know, the quantization error including the rounding error

and clipping error can be alleviated bymeans of some quantization-

aware training (QAT) methods (Chen et al., 2022; Hu et al.,

2023) and longer simulation time, however the synchronization

error serves as an inherent attribute in ANN2SNN conversion

algorithms, which is key problem to be dealt with.

2.2 Dynamic threshold adaptation

To overcome the effects of the synchronization error, many

researchers have tried various useful ways. For example, Bodo et al.

(2017) and Sengupta et al. (2019) adopt a conventional method
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TABLE 1 Classification accuracy for LeNet of di�erent configurations on MNIST.

Architecture

LeNet Weight quantization Threshold quantization Final accuracy Final time step

ANN × - 99.45% -

X 99.42%

SNN k= 0 × × 99.44% 7

X × 99.40% 6

× X 99.41% 6

X X 99.42% 6

k= 1 × × 99.41% 13

X × 99.40% 11

× X 99.45% 12

X X 99.43% 10

k= 2 × × 99.49% 25

X × 99.42% 22

× X 99.43% 24

X X 99.45% 21

The bold number represents the best in the column.

of increasing simulation time steps to cover up the wrongly fired

spikes. This method could improve the final accuracy to some

extent, but bring longer simulation latency. Zou et al. (2020) and

Meng et al. (2022) regularizes the input spikes of the first SNN

layer to obtain a more uniform spike sequence representation.

However, for much deeper networks, the spiking activities in the

middle layers of SNNs are usually very complicated and exactly

unpredictable and thus these spikes are almost impossible to

be regularized.

In this work, we present a novel dual-threshold spiking

approach together with a median quantization constraint to

eliminate the two errors described above simultaneously. Firstly,

each ReLU output value will be quantized with a hyper-parameter

k called quantization level as Equation (1). It should be noted

this parameter is trainable to minimize the quantization error

and determines the quantization precision of ANN outputs as

in Figure 1C. Then, we can convert this ANN to a firing-rate

based SNN based on the following procedures. As in Equation 2–

4, the converted spiking neuron works as the normal LIF behavior

(Andrew, 2003), but has two thresholds i.e. θ+and θ−, which

determines if a positive or negative spike will be generated

respectively. What’s different is that these two thresholds are

dynamic along with simulation time step t and will be updated

synchronously. This dual-threshold spiking mechanism can be

further elaborated in Figure 1D, where one negative spike is

produced to correct the wrongly fired spike when the membrane

potential Vt falls below the negative threshold θ−.

Quant
(

y
)

=
Round

(

y× 2k
)

2k
(1)

Vt+1 = Vt +
∑

(ot × w) (2)

ot+1 =



























1, if Vt+1 ≥ θ+t
−1, if Vt+1 < θ−t

0, else

(3)

θ+t+1/θ
−
t+1 =











θ+t /θ−t + δ, if ot+1 = 1

θ+t /θ−t − δ, if ot+1 = −1

θ+t /θ−t , else

(4)

δ =

1
2k

×

(

σ
′

+ ǫ

)

γ
(5)

θ+0 =

(

1
2k+1 − β

) (

σ
′

+ ǫ

)

γ
+ µ

′

(6)

θ−0 = θ+t − δ (7)

Besides, the regulating term of two thresholds i.e. δ, and initial

value θ+0 /θ−0 in Equation 5–7 are derived from Equation (1) and the

BN parameters, just like Zou et al. (2023). It should be noted that

this mechanism extends from the previous work (Zou et al., 2023),

but features with following key characteristics:

• More simplified computation and less memory

consumption: The original high-precision shadowmembrane

potential of each spiking neuron in Zou et al. (2023) is

removed in this work. This improvement could significantly

reduce the computational complexity, memory burden of

SNNs and speed up the calculation process.

• Higher biological plausibility: The positive and negative

threshold change synchronously, if a positive (+1) or negative

spike (−1) is generated at time step t, both of the two

thresholds will change accordingly to prevent firing again at

this level. This working mechanism may be more biologically
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plausible because of its similarity to the refractory period

phenomenon (Kasabov, 2019).

Compared with the negative spiking mechanism proposed in

Hu et al. (2023), there are at least following differences: (1) The

signed IF neuron in Hu et al. (2023) needs an auxiliary variable

to record the number of spikes each neuron has fired at the

current time step, while our spiking neurons doesn’t require extra

variable. (2) The threshold (positive and negative) in Hu et al.

(2023) is static along time step, while ours is dynamic and alsomore

biologically plausible.

3 Neural network quantization

In this section, we first introduce the input spike encoding

algorithm, i.e. the conversion process of the static image pixels

to input sequential spikes. Then, an all integer-based parameter

quantization method will be presented to build a hardware-friendly

SNN model.

3.1 Input spike encoding

In general, lots of static data in nature such as image and

text, would be collected and used for ANN training, but must be

converted to spiking signals before it can be fed into SNNs during

inference. In this article, we adopt a constant scatter-and-gather

(SG) encoding algorithm as in Zou et al. (2021) to minimize the

information loss of the input layer between ANN and SNNmodels.

As shown in Figure 2, any intensity value will be processed through

a normal convolutional layer and then discretized into a spike

sequence with only 4 time steps. This skill could further accelerate

SNN simulation (smaller time window) and decrease the total

computation cost. It should be noted that the weight parameters

of this encoding layer are trainable but not quantized, and these

spiking neurons only act as the original LIF behavior (Andrew,

2003) without negative spiking mechanism.

3.2 Parameter quantization

Ultimately, the ultra-high energy efficiency strength of SNNs

comes from two important features: (1) low parameter precision

and (2) sparsity calculation. This means that only when SNNs

are deployed on some dedicated neuromorphic hardware, can they

reach their real low-power potential. However, many SNN works

(Taherkhani et al., 2020; Neftci et al., 2019; Dampfhoffer et al., 2023)

mainly concentrate on the model accuracy improvements but omit

their hardware friendliness. In this article, we present an all integer-

based parameter quantization approach for both synaptic weights

and firing thresholds, which would greatly facilitate the hardware

implementation for the proposed SNN models.

3.2.1 Weight quantization
We adopt a lightweight ternary quantization scheme as in Liu

et al. (2023) for the synaptic weights in convolutional and fully

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1449020
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zou et al. 10.3389/fnins.2024.1449020

TABLE 3 Classification accuracy for VGG-Net of di�erent configurations on CIFAR-10.

Architecture
VGG-Net Weight quantization Threshold quantization Final accuracy Final time step

ANN × - 93.32% -

X 93.29%

SNN k= 0 × × 93.26% 13

X × 93.19% 11

× X 93.12% 12

X X 93.11% 10

k= 1 × × 93.22% 18

X × 93.19% 16

× X 93.20% 17

X X 93.15% 15

k= 2 × × 93.27% 32

X × 93.21% 30

× X 93.29% 32

X X 93.21% 29

The bold number represents the best in the column.

connected layers. As in Equation 8, the floating-point weights will

be quantized to only 0,1 or −1 depending on a specific threshold

= 0.7×|Wf |. Besides, we adopt a straight-through estimator (STE)

function (Bengio et al., 2013) as in Equation 9 to pass the gradients

backwards through the networks. Because both inputs and outputs

of spiking neurons are in the form of spike sequence (0,1 or−1), the

multiplication-addition (MAC) calculations in these layers could

be implemented by only bit-operation such as XNOR-popcount in

Courbariaux et al. (2016). As a typical quantization aware training

(QAT) approach, the ternary weights in ANNs are trainable and

will be unchanged when converted into the SNN version. This

quantization process for weight would significantly increase the

simplicity of massive spike integration calculation.

WT =















1, if WF > 0.7× |WF|

0, if |WF| ≤ 0.7× |WF|

−1, if WF < −0.7× |WF|

(8)

∂L

∂WF
=

∂L

∂WT
×

∂WT

∂WF
≈

{

∂L
∂WT if |WF| ≤ 1

0 if |WF| > 1
(9)

3.2.2 Threshold quantization
As shown in Equations 5–7, each SNN neuron has two firing

thresholds θ+0 , θ−0 and one regulating term δ. These parameters

consist of the mean µ, variance σ , scaling γ and shift β terms

in BN (Ioffe and Szegedy, 2015) layers, which are originally all

floating-point numbers. Here, we firstly scale the weights WT

and firing thresholds θ+0 , θ−0 by 10,000× and then use a Round

function as in Equation 10 to quantize them into all integers for

hardware-equivalent mapping. It should be mentioned that the

quantization test for firing threshold is very rare in many previous

SNN works. Based on our multiple experimental tries, we found

these parameters are not sensitive to the choice of quantization

function including Floor, Round and Ceil, etc. We will discuss the

effects of quantization for these parameters in the next section.

Quant(θ+0 /θ−0 /δ) = Round
(

θ+0 /θ−0 /δ × 10000
)

(10)

4 Result and discussion

In this section, we firstly test the proposed ANN2SNN

conversion method on both MNIST and CIFAR-10 dataset and

present the experimental results including the inference accuracy

and speed, together compared with several state-of-the-art works

of similar network sizes. Then, we carry out an estimation of

spiking sparsity and synaptic operations (SOPs) of the proposed

spiking models, to verify their great energy efficiency. All models

are trained using standard ADAM (Krizhevsky and Hinton, 2009)

rule with an initial learning rate set to 0.01 and we don’t use

any data augmentation other than a standard random image

flipping and cropping for CIFAR-10. It should be noted our

ANN2SNN conversion method can be compatible with many other

optimization and regularization skills (Cheng et al., 2017) and some

advanced architectures like ResNet (Li et al., 2022) for further

better performances. More details are available from our online

Python implementation code (https://github.com/edwardzcl/All_

INT_SNN).

4.1 Experiments on MNIST

MNIST handwritten digit dataset (Lecun and Bottou, 1998)

has been widely applied in image classification field, which was
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TABLE 4 Comparison for the proposed spiking VGG-Net on CIFAR-10 with other works.

References Network
structure

ANN (full
precision)

SNN (all integer for ours and high precision for others) Accuracy loss

T = 4 T = 8 T = 16 T = 32 T = 64 T≥ 128

Li et al. (2021) VGG-16 93.51% - - - 91.82% 92.57% 93.21% 0.30%

Meng et al. (2022) ResNet-20 93.18% - - 89.17% 91.91% 92.68% 92.92% 0.26%

Zou et al. (2023) VGG-11 92.66% 91.29% 92.88% 92.65% 92.64% 92.64% 92.64% 0.02%

Deng and Gu (2021) VGG-16 95.60% - 91.41% 93.64% 94.81% - - 0.79%

Gao et al. (2023) VGG-16 92.09% - - 92.29% 92.29% 92.22% 92.24% −0.15%

Bu et al. (2022) VGG-16 94.02% - 80.28% 90.35% 93.10% 93.32% 93.68% 0.34%

Yousefzadeh et al.

(2019)

ResNet-20 92.74% - 66.24% 87.22% 91.88% 92.57% 92.73% 0.01%

Tong et al. (2022) ResNet-20 91.77% 83.75% 89.55% 91.62% 92.24% 92.35% - −0.58%

k = 0 (This work) VGG-11 93.32% 92.05% 93.15% 93.11% 93.11% 93.11% 93.11% 0.21%

The bold number represents the best in the column.

TABLE 5 Comparison for the proposed spiking VGG-Net on CIFAR-100 with other works.

References Network
structure

ANN (full
precision)

SNN (all integer for ours and high precision for others) Accuracy loss

T = 4 T = 8 T = 16 T = 32 T = 64 T≥128

Li et al. (2021) VGG-16 70.21% - - - 64.53% 67.14% 68.99% 1.22%

Li et al. (2021) MobileNet 73.23% - - - 40.06% 62.81% 69.41% 3.82%

Li et al. (2021) ResNet-20 68.40% - - - 65.14% 67.63% 68.28% 0.12%

Meng et al. (2022) ResNet-20 70.15% - - 59.61% 66.24% 69.14% 69.99% 0.16%

Gao et al. (2023) ResNet-20 77.16% - - - 51.27% 70.12% 75.81% 1.35%

Gao et al. (2023) VGG-16 77.89% - - - 7.64% 21.84% 55.04% 22.85%

Gao et al. (2023) MobileNet 73.23% - - - 1.28% 4.88% 39.39% 33.84%

Bu et al. (2022) VGG-16 72.47% - 58.58% 66.32% 71.71% 72.68% 72.85% −0.38%

Yousefzadeh et al.

(2019)

ResNet-20 70.43% - 23.09% 52.34% 67.18% 69.96% 70.51% −0.08%

[42] ResNet-20 69.94% 34.14% 55.37% 67.33% 69.82% 70.49% - −0.55%

k = 0 (This work) VGG-11 67.40% 54.27% 60.85% 64.42% 65.21% 65.21% 65.21% 2.19%

The bold number represents the best in the column.
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collected from the postal codes including a training set of 60,000

examples, and a test set of 10,000 examples. Each example is

an individual 28 × 28-pixel grayscale image, labeled 0∼9. For

this task, we adopt a classical 6-layer LeNet architecture (Lecun

and Bottou, 1998), i.e., 32C5-2P2-64C5-2P2-1000FC-10FC where

C, P and FC denoted convolution, pooling and fully connected

layer respectively and 32C5 represents a convolution layer with

32 output channels and 5×5 kernel size. It should be noted

that the input layer and output layer are not quantized and

used for the spike encoding and loss calculation respectively.

We firstly conduct an ablation study on the quantization level

k based on a choice of {0,1,2} as well as the weight, threshold

quantization process. These parameter configurations determine

the quantization precision of an SNN model and how many

spikes each neuron will fire, which is related to total power

consumption and latency in network. As shown in Table 1, all

predictions stabilize quickly, and there is only little impact on

the final stable accuracies for different configurations, except

for the final stable time steps. The proposed quantization has

almost no effect on model accuracy, but higher quantization

levels will bring longer simulation time. To our surprise, the

SNN with k=2 can achieve an accuracy that is comparable

to its full-precision ANN counterpart. For a comparison, we

summarize our results (for k=0) and other state-of-the-art works

in Table 2. It shows that the spiking LeNet with both weight

and threshold quantization is nearly lossless with its ANN

counterpart (smallest accuracy loss), and can even achieve great

accuracy and speed advantages among many other works with

full-precision parameters.

4.2 Experiments on CIFAR-10

CIFAR-10 (Krizhevsky and Hinton, 2009) is regarded as

a more challenging real image classification dataset, which

consists of total 60000 color images with 32×32 pixels. This

dataset is divided into 50000 training images and 10000 test

images with 10 classes. For this task, a VGG-Net (Simonyan

and Zisserman, 2014) variant with 11 layers (96C3-256C3-2P2-

384C3-2P2-384C3-256C3-2P2-1024C3-1024FC-10FC) is designed.

No extra data augmentation technique is used other than

standard random image flipping and cropping for training.

Test evaluation is based solely on central 24 × 24 crop from

test set.

Similarly, we give the ablation study results of different

quantization configurations in Table 3 and compare the

performance results with other works in Table 4. It also

shows that higher quantization levels could bring slightly

better accuracy while longer simulation time steps. Besides, the

reported inference accuracy and speed of spiking VGG-Net in

Table 4 indicates that our proposed conversion and quantization

method can still maintain excellent performance (accuracy vs.

speed) with the smallest accuracy loss for deeper VGG-Net

with more than 10 layers and complex BN operations (Ioffe

and Szegedy, 2015). Compared with many other high-precision

SNN works, our proposed spiking models are all integer-based
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FIGURE 3

Spiking activity of LeNet (A) on MNIST and VGG-Net (B) on CIFAR-10.

FIGURE 4

Computational operations (SOPs) of LeNet (A) on MNIST and VGG-Net (B) on CIFAR-10.

and show strong potential for direct implementation on some

dedicated hardware.

4.3 Experiments on CIFAR-100 and
ImageNet

CIFAR-100 (Krizhevsky and Hinton, 2009) is just like the

CIFAR-10 but more challenging. It has 100 classes containing

600 images each. There are 500 training images and 100 testing

images per class. ImageNet (Russakovsky et al., 2015) is a much

larger dataset, which consists of more than one million image

samples and falls into 1000 categories. To verify the effect of our

conversion algorithm on these two datasets, we adopt the VGG-11

(the same as the network for CIFAR-10) and a 29-layer MobileNet-

V1 (43) for experiment running, respectively. Similarly, we do not

use any other optimization techniques for training and the test

evaluation is based solely on central crop from test set. It should

be noted we train MobileNet-V1 on ImageNet dataset for only 60

epochs, because it needs quite long simulation time and vast parallel

computing resources. The experimental results on these two large-

scale datasets are summarized in Tables 5, 6, and some comparison

data of (Gao et al., 2023; Bu et al., 2022) are collected from self-

implementation results (Li et al., 2021). It can be seen that the

accuracies of both the proposed spiking VGG-Net and MobileNet

could achieve much faster convergence along early time steps,

when compared with other works respectively. This phenomenon

may be attributed to our good solution of synchronization error

which is discussed in Section 2.1. The final accuracy is slightly
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damaged because our ANN counterparts are trained using some

basic optimization techniques and fewer epochs.

4.4 Energy e�ciency

As shown in Figure 3, we count the average amount of positive

and negative spikes for one sample simulation of the spiking

LeNet (total 10,728 neurons) on MNIST and VGG-Net (total

280,832 neurons) on CIFAR-10 except for the first input layer

and last classification layer. It can be seen that for networks

with higher quantization levels, higher spike activities occur while

the negative/positive ratio slightly increases. For example, as

quantization level k varies from 0 to 2, the spike amount on CIFAR-

10 for one sample simulation increases from 147,976 to 363,385

(averagely), and the negative/positive ratio of spikes increases from

0.23 to 0.25 (nearly). Overall, there are only about 0.5, 0.74, and

1.3 spikes per neuron with respective kε{0,1,2}. In contrast, the

negative/positive ratio of spikes in spiking LeNet (nearly 0.15–0.2)

is relatively smaller than VGG-Net (nearly 0.23 to 0.25), which

means the negative spikes play a key role in deeper networks with

higher quantization levels.

Furthermore, we compare the amount of needed

computational operations in above spiking models and their

ANN counterparts in Figure 4. For our proposed SNNs with

ternary synaptic weights and integer thresholds, there is no need

for any high-precision multiplication, only a low-bit SOP, i.e.,

addition is required when there is a pre-synaptic spike coming.

In contrast, for ANNs running on traditional CPUs or GPUs,

massive matrix MAC will be performed. Here, we hypothesize that

a high-precision MAC is equivalent to 4 low-bit SOPs. In fact, the

power and area cost of a floating-point multiplication are always

much more expensive than that of several integer-based additions

in most of hardware systems (Hu et al., 2023; Courbariaux et al.,

2016; Howard et al., 2017). As shown in Figure 4, it can be seen

that our proposed SNNs with quantization level kε{0,1,2} consume

nearly 7.2, 3.7, and 1.9 times fewer computational operations for

LeNet and 5.9, 3.8, and 2.2 times fewer for VGG-Net compared to

their ANN counterparts, respectively. These results prove that the

converted SNNs can achieve much higher energy efficiency than

ANNs, while maintaining comparable accuracy.

Furthermore, because our proposed spiking models run with 0

or ±1 weights and spikes, integer threshold and leakage variables,

these integer-based operations could be replaced by the efficient

bit-operation such as XNOR-popcount, which is introduced in the

binary neural networks (BNNs) (Courbariaux et al., 2016) and

ternary neural networks (TNNs) (Liu et al., 2023). Even though

the computing cost and latency of SNNs may be greater than these

two kinds of special ANN-domain models (Tavanaei et al., 2019),

the high-accuracy and spatio-temporal processing abilities on some

more complex applications still make them the first choice. Of

course, a more fair or in-depth comparison between BNNs/TNNs

and SNNs may be a perennial topic and will be considered in the

future works.

5 Conclusion

In this work, we introduce a novel dynamic threshold

adaptation technique into traditional ANN2SNN conversion

process to eliminate common spike approximation error,

and further present an all integer-based quantization method

to obtain a lightweight and hardware-friendly SNN model.

Experimental results show that the proposed spiking LeNet and

VGG-Net can obtain more than 99.45% and 93.15% accuracy

on MNIST and CIFAR-10 dataset with only 4 and 8 time

steps, respectively. Besides, the captured spiking activity and

computational operations in SNNs indicate that our proposed

spiking models can achieve much higher energy efficiency

with comparable accuracy than their ANN counterparts.

Finally, our future works will concentrate on the conversion

and quantization methods for some special architecture,

such as ResNet, RNN and transformer-based models. More

importantly, try to map these models onto some dedicated

neuromorphic hardware is more rewarding, this will bring

a real running performance improvement for some edge

computing applications.
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