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Brain-computer interface (BCI) is a revolutionizing human-computer interaction 
with potential applications in both medical and non-medical fields, emerging 
as a cutting-edge and trending research direction. Increasing numbers of 
groups are engaging in BCI research and development. However, in recent 
years, there has been some confusion regarding BCI, including misleading and 
hyped propaganda about BCI, and even non-BCI technologies being labeled 
as BCI. Therefore, a clear definition and a definite scope for BCI are thoroughly 
considered and discussed in the paper, based on the existing definitions of BCI, 
including the six key or essential components of BCI. In the review, different 
from previous definitions of BCI, BCI paradigms and neural coding are explicitly 
included in the clear definition of BCI provided, and the BCI user (the brain) is 
clearly identified as a key component of the BCI system. Different people may 
have different viewpoints on the definition and scope of BCI, as well as some 
related issues, which are discussed in the article. This review argues that a clear 
definition and definite scope of BCI will benefit future research and commercial 
applications. It is hoped that this review will reduce some of the confusion 
surrounding BCI and promote sustainable development in this field.
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1 Introduction

Brain-computer interface (BCI) is a revolutionizing human-computer interaction with 
potential applications in both medical and non-medical fields, and is a cutting-edge research 
direction (Graimann et al., 2010a; Ramsey and Millán, 2020). Increasing numbers of groups 
are engaging in BCI research and development.

The purpose of developing BCI is to genuinely benefit specific patients and healthy 
individuals, particularly those with severe motor disabilities or severe disabilities, or those 
suffering from severe neuropsychiatric disorders, improving their quality of life or work 
efficiency. The goal of BCI development is not to “control the brain” (manipulate the brain 
activity of patients or healthy individuals, or harm their brains), but to scientifically regulate 
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their brain activity to facilitate effective rehabilitation or enhance 
performance in certain aspects. Under the premise of benefiting from 
the above individuals, BCI-related companies profit from BCI users, 
but should avoid hyping or exaggerating the efficacy of BCIs, which 
could harm the rights and interests of BCI consumers.

However, in recent years, there has been some confusion regarding 
BCI, including misleading and hyped propaganda about BCI (Chen et al., 
2024), and even non-BCI technologies being labeled as BCI. Why does 
this confusion occur? One potential reason is that certain individuals or 
companies may be promoting BCIs to gain fame and profit. Another 
reason might be that some people still do not correctly understand BCIs. 
Additionally, the existing definitions of BCIs are not clear enough, and the 
scope of BCIs is not yet clearly delineated. Regardless of the reason, this 
review believes that it is necessary to thoroughly consider and discuss the 
clear definition and definite scope of BCIs.

A clear definition and definite scope of BCIs are crucial for 
researchers in neuroprosthetics or neurorepair and clinical medical 
practitioners to accurately conduct literature analysis, design research 
topics, and carry out clinical studies and applications related to BCIs. 
This helps prevent underestimating or exaggerating the clinical value 
of BCIs, thereby promoting the sustainable research and effective 
application of BCI technology in clinical settings.

Part 2 of this review provides an overview and commentary on the 
early research, emergence of terminology, and definitions in BCI. Part 
3 considers the clear definition of BCIs and compares it with the 
existing definition of BCI. Part 4 identifies and reviews six key or 
essential components of BCIs, including the central nervous system 
(the user’s brain), BCI paradigms, BCI neural coding, specific 
acquisition technologies for brain signal, computer-based machine 
systems, and online feedback. Part 5 considers the definite scope 
of BCIs.

Part 6 of this review is the discussion and conclusion. Regarding 
the definition and scope of BCIs, as well as some related issues, 
different individuals may have different viewpoints. The discussion 
includes what is the impact of a clear BCI definition on future research 
and commercial applications? Will the definition and scope 
(connotation and extension) of BCI enrich and expand with the 
development of science and technology? What is the difference 
between the terms “brain-computer interface” and “brain-machine 
interface”? What is the difference between dependent BCI and 
independent BCI? What is the difference between endogenous BCI 
and exogenous BCI, among other issues?

2 Early research, emergence of 
terminology, and definitions in BCI

In 1924, Hans Berger, Professor of Psychiatry at the University of 
Jena in Germany, discovered that electrical signals produced by the 
human brain could be recorded from the scalp. After 5 years of further 
study, Berger published the first of 14 articles that established 
electroencephalography (EEG) as a basic tool for clinical diagnosis 
and brain research (Berger, 1929; Wolpaw and Wolpaw, 2012).

In 1938, neurologist Herbert Jasper sent a holiday greeting card to 
Hans Berger, which included an early depiction of what is now called 
a brain-computer interface. It implies, albeit in a fanciful way, that 
EEG signals could also be used for communication (Wolpaw and 
Wolpaw, 2012).

In 1964, neurophysiologist and roboticist Grey Walter 
demonstrated a BCI based on an EEG, marking the early development 
stages of this technology (Graimann et  al., 2010b; Wolpaw and 
Wolpaw, 2012).

Between 1969 and 1971, in the first neuron-based BCI, 
neuroscientist Eberhard Fetz and his collaborators had shown that 
monkeys could learn to use a single cortical neuron to control a meter 
needle to gain food rewards (Fetz, 1969; Fetz and Finocchio, 1971; 
Wolpaw and Wolpaw, 2012).

However, the term brain-computer interface was first used by 
Jacques Vidal in the 1970s. He applied the term broadly, using it to 
describe any computer-based system that produced detailed 
information on brain function (Wolpaw and Wolpaw, 2012). Vidal’s 
system used the visual evoked potential (VEP) recorded from the 
scalp over the visual cortex to determine the direction of eye gaze (i.e., 
the visual fixation point) and thus to determine the direction in which 
the user wanted to move a cursor (Vidal, 1973, 1977). This BCI system 
satisfies the narrower present-day meaning (Wolpaw and Wolpaw, 
2012), and today’s VEP-based BCIs essentially continue this concept.

BCI was defined as a scientific terminology in an original research 
report in 1991 (Wolpaw et  al., 1991). Since 1990s, BCI has been 
defined explicitly as a direct communication and control technology 
between the brain and computer systems. Around the year 2000, BCI 
research, which was initially limited to a few isolated laboratories, 
emerged as a very active and rapidly growing scientific field (Wolpaw 
and Wolpaw, 2012).

Since the term BCI was first used over 50 years ago in 1973, 
although there has been controversy within the BCI research 
community about its definition and scope, there is generally a clear 
consensus that has been broadly accepted and used to this day. 
Compared to the natural outputs of the central nervous system (CNS) 
which include muscle activity and hormones, BCIs give the CNS novel 
outputs that are neither neuromuscular nor hormonal (Wolpaw et al., 
2020). The official definition of BCI established in 2012 is: a BCI is a 
system that records CNS activity and translates it into artificial output 
that replaces, restores, enhances, supplements, or improves natural CNS 
outputs, as shown in Table 1; it thereby modifies the interactions of the 
CNS with the rest of the body or with the external world (Donoghue, 
2002; Wolpaw et al., 2002, 2020; Schwartz, 2004; Dornhege et al., 2007; 
Daly and Wolpaw, 2008; Millán et al., 2010; Wolpaw and Wolpaw, 2012).

The aforementioned definition of BCI emphasizes that it must 
record CNS activity and translate it into novel artificial outputs, 
stressing the purpose of a BCI is for the user to achieve direct 
communication and control with external devices through the BCI, 
emphasizing feedback on changes in sensory input, and particularly 
stressing that BCI changes the natural interaction (output and input) 
between the CNS and its external or internal environment, which is a 
fundamental feature of any BCI. Devices that only monitor brain 
activity without using it to modify the interactions between the CNS 
and its environment are not regarded as BCIs (Wolpaw et al., 2020). 
Additionally, this definition places BCIs within the theoretical 
framework of modern neuroscience. The foundation of this 
framework is the sensorimotor hypothesis, the hypothesis that the 
entire function of the CNS is to translate sensory inputs into motor 
outputs (Young, 1990; Wolpaw, 2002; Wolpaw et al., 2020).

However, with the rapid development of BCI, in this process, 
some members of the public/media/BCI researchers/BCI 
manufacturers/BCI regulators have several inaccurate or erroneous 

https://doi.org/10.3389/fnins.2024.1449208
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2024.1449208

Frontiers in Neuroscience 03 frontiersin.org

conceptions and misleading propaganda about BCI (Chen et  al., 
2024). In particular, as mentioned in the introduction, some 
individuals claim systems that are essentially not BCIs as BCIs. This 
review deems it necessary to thoroughly consider and discuss the clear 
definition, key or essential components, and definite scope of BCI.

3 Clear definition of BCI

Based on the existing definition of BCI (Wolpaw and Wolpaw, 
2012), the review provides the following definition of BCI.

When users actively perform specific mental tasks or receive 
specific external stimuli, signals generated in the CNS (the user’s 
brain) are acquired using specific sensor technology. The features of 
the brain signal, which represent or encode the user’s intentions 
(specific mental tasks or external stimuli), are directly translated into 
communication and control commands for interaction with 
computer-based machine systems. The results of this interaction are 
then fed back to the user online (including neurofeedback), allowing 
the user to actively regulate their mental activity strategies. This 
provides the user with a novel form of human-computer interaction, 
as illustrated in Figure 1 (Luo et al., 2022).

In Figure  1, the preprocessing module, feature extraction 
module, and translation module for the brain signals generated in the 
CNS are typically implemented by a computer-based machine 
system. It is particularly noteworthy that ordinary machine systems 
(machine systems not based on computers) struggle to analyze 
complex brain signals, whereas powerful and flexible computers are 
capable of effectively decoding user’s intentions. Visualization 
displays (such as graphical user interfaces, etc.) and online feedback 
components are also generally implemented by computer-based 
machine systems.

The clear definition of BCI provided in the review differs from the 
existing definition of BCI, as shown in Table 2. The BCI neural coding 
will be described in section 4.3.

In Table 2, BCI paradigms and neural coding are not mentioned 
or highlighted in the existing definition of BCI, which might easily 
lead to misconceptions among some BCI developers and the public, 
causing them to mistakenly believe that BCIs can “read” or 

recognize arbitrary intention of the user. However, BCIs can only 
predict the intentions of the user with a certain degree of accuracy 
and reliability, and these intentions are determined by the BCI 
paradigms and neural coding (Chen et al., 2024). Moreover, the 
performance of BCI systems based on specific acquisition 
technologies for central nervous signals varies, especially as some 
BCI paradigms and neural coding are only present in specific 
acquisition technologies for brain signal. It is important to note 
that some BCI literature separates BCI users from the BCI system, 
but in the BCI definition provided in the review, it is clear that the 
BCI users (their brains) are a key component of the BCI system. 
However, it is inaccurate and even incorrect to exclude the BCI 
user from the BCI definition, separating the BCI system from 
the user.

4 Key or essential components of BCI

The CNS includes the brain and spinal cord, but in the definition 
of BCI, the CNS usually refers to the brain, excluding the spinal cord. 
According to the clear definition of BCI provided in this review, the 
“brain” in BCI must be the CNS (the user’s brain), and the “computer” 
in the BCI system must be a computer-based machine system. In other 
words, a BCI system consists of two essential key parts: the CNS that 
generates brain signals and the computer that analyzes complex brain 
signals. In addition to the brain and computer, an entire BCI system 
also includes BCI paradigms and neural coding, specific acquisition 
techniques for brain signal, and online feedback. Therefore, this 
review clearly states that a BCI system consists of six key or essential 
components, as shown in Table 3.

4.1 Central nervous system (the user’s 
brain)

In Table 3, BCIs utilize brain signals generated by the CNS as the 
primary source for communication and control. Therefore, systems 
that do not use brain signals generated by the CNS as the source of 
control signals are not considered BCIs. Online BCI systems include 

TABLE 1 Potential efficacy of BCI.

Potential efficacy of BCI Brief description

 1) Replacement BCI output could replace muscle control lost to injury or disease (natural outputs) (Wolpaw et al., 2020)

 2) Restoration BCI output could restore lost muscle control, primarily aimed at the rehabilitation sector to recover certain functions of an 

individual (Wolpaw et al., 2020)

 3) Enhancement BCI output could enhance natural CNS output. This is mainly aimed at healthy individuals to enhance normal outputs, achieving 

augmented and expanded functions. For example, BCI could enhance the individual’s normal capacity for continuous attention 

(Wolpaw et al., 2020)

 4) Supplement BCI output could supplement natural CNS output, mainly aimed at healthy individuals to complement normal outputs, adding 

brain-controlled methods as a complement to traditional control methods. For instance, a person who is using a joystick to control 

the movements of a cursor might use a BCI to choose items the cursor reaches. Or a person might conceivably control a third 

(robotic) arm with a BCI (Wolpaw et al., 2020)

 5) Improvement BCI output could potentially improve natural CNS output, used to better natural outputs impaired by trauma or disease. In a person 

who has suffered a stroke that impairs arm function, a BCI might measure activity in the damaged cortical area during attempted 

movements and use it to stimulate muscles or control an orthotic device so as to improve arm movement. With repeated use, this 

strategy might guide activity-dependent plasticity that restores more normal movement control (Wolpaw et al., 2020)
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the brain of the BCI user, and neuroscience focused on the CNS is the 
cornerstone of BCI research.

Why is the CNS, particularly the brain, the core of BCI? The brain 
transmits information through electrochemical signals between 
neurons, and BCI systems capture these signals, which may reflect the 
user’s intentions, such as moving limbs or selecting specific options. 
BCI systems decode these signals and translate them into commands 
for computers or other devices. Users control BCI through specific 
thoughts, intentions, and attention patterns in the brain, specified by 
BCI paradigms and neural coding. The brain’s ability to form new 
neural connections through training and adaptation, known as 
plasticity, allows users to improve their interaction with BCI through 
repeated training, increasing the system’s accuracy and efficiency 
(Grosse-Wentrup et al., 2011). These aspects make the brain the core 
component of BCI. The complexity and diversity of the brain as the 
core of BCI necessitate that BCI systems not only capture and decode 
brain signals but also consider the entire nervous system and its 
interaction with the external environment.

4.2 BCI paradigm

The BCI paradigms in Table 3 refer to a set of specific mental tasks 
or external stimuli that are carefully selected/designed by BCI 
developers under particular brain imaging technologies to represent 
the user’s intentions (Tai et al., 2024), as shown in Figure 2. For a user 
to successfully operate the BCI, they must actively perform the 
designated mental tasks or selectively receive the designated external 
stimuli according to the BCI paradigm to achieve human-computer 
interaction. Otherwise, it would be difficult to successfully operate the 

BCI. In other words, the BCI cannot recognize arbitrary intentions of 
the user.

4.3 BCI neural coding

In Table 3, BCI neural coding refers to the process under a specific 
BCI paradigm where different intentions of the user are “written” or 
encoded into CNS signals, characterized by brain signal features with 
separability. These brain signals, encoded with intentions, can 
be detected by specific brain imaging techniques and subsequently 
recognized by BCI neural decoding algorithms (Tai et al., 2024), as 
shown in Figure 3.

In Table 3, different BCI paradigms and neural coding correspond 
to various structures and functions within the CNS, which determine the 
placement of sensors and the brain function features analyzed. It is 
important to emphasize that BCI paradigms and neural coding are the 
scientific principles of BCIs. Specific mental tasks (such as speech 
imagery and visual imagery) or specific external stimuli (such as visual, 
auditory, and tactile stimuli) associated with BCI paradigms, for example, 
particular sensations, perceptions, imagery, or cognitive activities, induce 
spatiotemporal-frequency patterns of brain signal that are the basis or 
prerequisite for BCI decoding algorithms to recognize user intentions. 
Thus, innovative design of BCI paradigms and modeling of neural 
coding are key and important aspects of BCI research and development.

Although the actual neural coding processes and results within the 
CNS are unknown, researchers can develop models to simulate these 
real coding processes and results. Different coding strategies are used 
in current BCI systems to represent external stimuli or mental activities 
(Tai et al., 2024). The main coding strategies are shown in Table 4. 

FIGURE 1

The schematic diagram of a clear definition of BCI (Luo et al., 2022).
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Through these coding strategies, BCI systems can extract meaningful 
information from complex brain signals and convert it into commands 
that can be used to control external devices or facilitate communication.

4.4 Specific acquisition techniques for 
brain signal

Different brain signal acquisition technologies have varying 
temporal and spatial resolutions, as shown in Figure 4 (Xu et al., 
2022), each with its own advantages and disadvantages, as listed in 
Table  5. As previously mentioned, specific BCI paradigms and 
neural coding are often closely associated with specific acquisition 
technologies for brain signal; for example, certain external stimuli 
can evoke neuroelectrophysiological signals but may not induce 
significant changes in metabolic signals. BCI systems based on 
different acquisition techniques for brain signal exhibit varying 
performance, and specific imaging technologies for brain function 
should be  carefully selected or designed according to the 
particular application.

The signals that BCIs measure are due to the electrophysiologic, 
neurochemical, and metabolic phenomena (such as neuronal action 
potentials, synaptic potentials, release of neurotransmitters, and 
oxygen uptake) that are continually occurring in the CNS. The signals 
are measured by using sensors on the scalp, on the surface of the brain, 
or within the brain to monitor electric or magnetic fields, blood flow, 
hemoglobin oxygenation, or other phenomena. A BCI records these 
brain signals, derives particular measures (or features) from them, and 
translates the features into novel CNS outputs (Wolpaw et al., 2020).

4.5 Computer-based machine systems

“Computer” in the term brain-computer interface has been widely 
recognized and accepted within the BCI research and development 
community. As shown in Figure  1, the BCI system contains a 
computer-based machine system. Why is it emphasized that it 
contains a computer-based machine system? As previously mentioned, 
ordinary machine systems struggle to analyze complex brain signals; 
machines without computer capabilities are ineffective in processing 
and analyzing brain signals (such as EEG) generated by the CNS, 
insufficient for precise control and feedback, and unable to present 
BCI paradigms to users. Compared to ordinary machine systems, 
computers have powerful computational capabilities (fast processing 
speed, multitasking, and high accuracy) and storage capabilities (large 
capacity storage, fast access, and data persistence), enabling them to 
accomplish tasks such as analyzing complex brain signals. An interface 
between the brain and a non-computer machine system (machines 
without computer functions) does not qualify as a BCI.

Non-computer systems (such as traditional experimental equipment 
and manual data processing methods) face several major challenges when 
analyzing brain signals, including signal acquisition and quality control, 
data processing capabilities, complex signal analysis, handling individual 
differences, multi-modal data integration, computational limitations, and 
result interpretation, as shown in Table 6.

4.6 Online feedback

Online feedback is critical for establishing brain-computer 
interaction, turning the BCI into a bidirectional closed-loop system. 
Through feedback, it relays the results of communication or control back 
to the BCI user, enabling them to actively regulate their mental activity 
strategies or choose appropriate external stimuli for stable, accurate, and 
timely performance, as shown in Figure 5. It should be particularly noted 
that in a BCI system, the user does not passively receive feedback.

5 Definite scope of BCI

According to the clear definition of BCIs outlined above, systems 
that do not use brain signals generated by the CNS as the primary 

TABLE 2 Differences between the definition of BCI provided in the review and the existing definition of BCI.

Differences from the existing definition of 
BCI

Brief description

 1) Particular emphasis on or highlight of BCI paradigms A BCI must have BCI paradigms, and they are crucial

 2) Particular emphasis on or highlight of BCI neural coding BCI neural coding captures the user’s intentions, which is a prerequisite for BCI neural decoding of these 

intentions

 3) Particular emphasis on specific acquisition technologies for 

CNS signal

BCI paradigms and neural coding are defined under specific acquisition technologies for CNS signal

 4) Particular emphasis that BCI users are an integral 

component of the BCI system

Successful online BCI operation requires effective interaction between two adaptive controllers. One of 

these is the user’s brain, or the CNS, and the other is the BCI algorithm, which is responsible for processing 

and decoding brain signals (Taylor et al., 2002; Wolpaw et al., 2002, 2020; Krusienski et al., 2012; McFarland 

et al., 2012; Perdikis et al., 2018)

 5) Particular emphasis that the BCI system encompasses a 

computer-based machine system

Machine systems not based on computers struggle to analyze complex brain signals, making it difficult to 

achieve direct interaction with the brain

TABLE 3 Key or essential components of BCI.

Number Key or essential components of BCI

1 CNS (the user’s brain)

2 BCI paradigm

3 BCI neural coding

4 Specific acquisition techniques for brain signal

5 Computer-based machine systems

6 Online feedback
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source for communication or control, do not contain a computer-
based machine system, lack online feedback, and do not achieve 
direct interaction between the brain and external devices, are not 
considered BCI systems. Furthermore, based on the existing 
definition of BCI (Wolpaw and Wolpaw, 2012), if a human-computer 

interaction system does not modify the natural interaction (output 
and input) between the CNS and its external or internal environment, 
it does not qualify as a BCI. Using reverse thinking, it is possible to 
explicitly identify which systems are not BCI systems, as shown in 
Table 7.

TABLE 4 Main coding strategies in BCI systems.

Coding strategies Brief description Application

 1) Rate coding The most common neural coding strategy, based on the frequency 

of neuronal spike discharges (spike rate) over a period to encode 

information

For example, by measuring the frequency of electrical discharges of 

neurons on the scalp, one can estimate the user’s motor direction and 

speed

 2) Temporal coding It is believed that information is encoded not only in the firing 

rate but also in the temporal pattern of neuronal spike discharges

When processing sensory information (such as visual and auditory), 

higher resolution temporal patterns of neuronal discharges can be used

 3) Phase coding Utilizing the relative phase relationships between neural 

oscillations, specific frequency phase changes may encode 

information

In tasks involving memory and attention, EEG phase information can 

be used to understand and track changes in cognitive states

 4) Spatial coding Based on different activity patterns of neural populations in 

different spatial regions to encode different information

In visual processing, the activity patterns of neurons at different spatial 

positions correspond to stimuli in different regions of the visual field, 

and these spatial activity patterns encode visual information

 5) Hybrid coding Combining multiple coding methods above, using multi-

dimensional neural activity to improve the accuracy and efficiency 

of information decoding

Many modern BCI systems use hybrid coding strategies, integrating rate, 

temporal, and phase information to build more robust and accurate 

decoding models

FIGURE 2

BCI paradigms in BCI systems. The diagram also shows the schematic relationship between BCI paradigms and specific brain functions and structures 
(Tai et al., 2024).

FIGURE 3

The schematic diagram of neural coding in BCI (Tai et al., 2024).
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5.1 Systems that do not interact with 
machines possessing computer 
functionalities using brain signals 
generated by the CNS do not qualify as BCI 
systems

As previously mentioned, neural signals generated by the CNS are 
used for interaction, captured and analyzed by hardware and software 
with computer functionalities, to achieve direct interaction between 
the brain and external devices. Therefore, systems that do not interact 
with machines possessing computer functionalities using brain signals 
generated by the CNS are not BCI systems.

A key component of BCIs is the computer; with the development 
of information technology, it is now widely accepted that computer-
based machine systems serve as the systems to decode brain signals. 
Therefore, other interaction systems or interfaces that do not use a 
computer to analyze brain signals are not defined as BCIs. For 
example, the broader scope of brain-apparatus interaction (BAI) 
encompasses many contexts and scenarios that do not fall within the 
scope of BCIs.

5.2 Devices that only monitor brain activity 
without using it to modify interactions 
between the CNS and its environment are 
not considered BCI

As mentioned above, a fundamental feature of any BCI is that 
it modifies the interactions between the CNS and its external or 

internal environment. Typically, these interactions include motor 
outputs to the environment and sensory inputs from the 
environment (Wolpaw et al., 2020). It is important to note that the 
existing definitions of BCI emphasize output, feedback, and the 
modification of natural interactions between the CNS and 
its environment.

As previously mentioned, a key component of BCIs is online 
feedback; the results of decoding brain signals should be fed back 
to BCI users in various forms. This feedback may involve using 
brain signals to operate a computer (Wolpaw, 2007), input text 
(Akce et al., 2014), control other electronic devices (Zhang et al., 
2017), or manipulate robotic arms to perform specific tasks (Gao 
et al., 2017).

However, there are many applications that utilize brain signal to 
gather additional information for clinical diagnosis and provide 
reports to patients. This reporting is vaguely considered a form of 
feedback, which has misled applications of BCIs. For example, 
monitoring EEG signal during sleep and subsequently providing an 
analysis report on sleep quality represents a meaningful application of 
monitoring and analyzing brain signals, but it is not a BCI. There may 
be controversy among scholars regarding this. For instance, some 
literature refers to such systems as passive BCIs and considers the 
transformation from environmental control to scouting brain changes 
as the BCI Copernican revolution (Molinari and Masciullo, 2020). 
However, other scholars argue that applications solely used for 
monitoring and analyzing brain signals to assess brain state changes 
are not BCI systems, as these systems do not achieve direct 
communication and control between the user’s brain and 
external devices.

FIGURE 4

Time and spatial resolution of brain signal used for BCI (Xu et al., 2022). fNIRS, functional near-infrared spectroscopy, MEG, magnetoencephalography, 
fMRI, functional magnetic resonance imaging, ECoG, electrocorticography.
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5.3 Systems that do not use brain signals as 
the primary source for communication or 
control, but instead use other physiological 
signals, are not considered BCI systems

BCI systems must use CNS-generated brain signals as the primary 
driving signals to achieve direct brain-machine interaction (machines 
or devices based on computers). These systems may also incorporate 
other physiological signals from the body, such as electromyography 

(EMG), electrooculography (EOG), electrocardiography (ECG), or 
electrodermal activity (EDA), to supplement their function, thus 
creating hybrid BCI systems that enhance overall system performance 
(Yin et al., 2013; Müller-Putz et al., 2015; Choi et al., 2017), as shown 
in Figure 6 (Tai et al., 2024). The hybrid BCI can be applied to a BCI 
that uses two different kinds of brain signals [e.g., VEPs and 
sensorimotor rhythms (SMRs) (Ma et  al., 2017)] to produce its 
outputs. It is particularly emphasized that hybrid BCI systems must 
use brain signals as the primary means of communication or control, 

TABLE 6 Major challenges faced by non-computer systems in analyzing brain signals over time.

Challenge Brief description

Signal acquisition 

and quality control

 1) Susceptibility to interference: brain signals such as EEG and fMRI are easily affected by external environmental noise, muscle activity, electrical 

interference, etc., which are difficult to eliminate

 2) Weak signal: brain signals are very weak and complex, and traditional equipment may not be able to capture high-quality brain signals

Data processing 

capability

 1) Massive data processing: brain signal data is often massive, and non-computer systems struggle to efficiently process and store this data

 2) Real-time analysis difficulties: non-computer systems find it difficult to perform real-time analysis and feedback of brain signals, leading to poor 

performance in fast-responding application scenarios

Complex signal 

analysis

 1) Feature extraction difficulties: brain signals have a large amount of noise and temporal variability, making it difficult for non-computer systems to 

perform accurate feature extraction and analysis

 2) Pattern recognition and classification difficulties: the pattern recognition and classification tasks of brain signals are complex, and traditional 

equipment finds it challenging to achieve high accuracy and efficiency

Individual 

differences handling

 1) Individual differences: there are significant differences in brain signal characteristics between different individuals, making it difficult for non-

computer systems to adapt and process these differences

 2) Signal variability: brain signals in the same individual may also vary over time and state, making it difficult for non-computer systems to provide 

stable analysis results

Multi-modal data 

integration

Brain signal analysis often requires integrating various types of data (such as behavior data, physiological data). Non-computer systems struggle to 

effectively integrate and utilize multi-modal data

Computational 

limitations

Limitations of traditional methods: traditional analysis methods for brain signals are often complex and challenging, making it difficult for non-

computer systems to perform effective analysis

Result 

interpretation

Result interpretation difficulties: the analysis results of brain signals are often abstract and complex, and non-computer systems lack advanced data 

visualization and interpretation tools, limiting the application and understanding of the results

TABLE 5 Comparison of major brain signal acquisition technologies for BCI.

Specific brain signal 
acquisition technology

Characteristics Advantages Disadvantages

EEG Electrodes placed on the scalp to record neural 

electrical activity, non-invasive

Safe, portable, high temporal 

resolution, low cost

Low spatial resolution, susceptible to 

electromagnetic interference

ECoG Electrodes placed under the dura mater or on the 

surface of the cortex to record neural electrical 

activity, mildly or semi-invasive

High temporal and spatial 

resolution, high signal-to-noise 

ratio

Requires surgery, risk of infection and 

other complications, limited coverage area

Spikes Utilizes microelectrode arrays to record the 

activity of one or several neurons, invasive

Extremely high temporal and 

spatial resolution, can record the 

activity of individual neurons

Highly invasive, requires surgical 

implantation, high operational difficulty, 

limited coverage

MEG Measures magnetic fields produced by neural 

activity, non-invasive

High temporal and spatial 

resolution, not affected by scalp 

and skull impedance, stable signal

Expensive equipment, requires a controlled 

environment (shielded room), complex 

operation, poor portability

fNIRS Light sensors placed on the scalp to measure 

changes in blood oxygenation in brain tissue, 

non-invasive

Safe, portable, low cost Low spatial and temporal resolution, 

susceptible to external interference

fMRI Measures brain activity by detecting changes in 

blood flow and oxygenation, non-invasive

High spatial resolution, can cover 

the entire brain

Low temporal resolution, expensive 

equipment, complex operation, strict 

environmental requirements
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with other physiological signals serving as auxiliary inputs; otherwise, 
they do not qualify as BCI systems.

5.4 Brain-organ interaction systems are not 
considered BCI systems

It is well known that the brain interacts with other organs of the 
body, an interaction often referred to as brain-organ interaction or the 
neuro-endocrine-immune (NEI) network, especially in discussions 
about how the brain and body interact. Brain-organ interaction involves 
the process of bidirectional communication between the brain and other 
parts of the body by the nervous system, endocrine system, and immune 
system (Bartsch et al., 2015). This interaction involves not only efferent 
pathways from the brain to the organs (top-down) but also afferent 
pathways from the organs to the brain (bottom-up). However, brain-
organ interaction systems do not fall within the scope of BCIs; they are 
natural and normal interactions between the CNS and the organs.

5.5 Muscle-machine interface systems 
based on electromyography are not BCI 
systems

A muscle-machine interface (MMI) based on electromyography 
(EMG) uses electrical signals generated by muscle activity to achieve 
communication or control between muscle and machine. EMG signals 
are detected by sensors and then translated into commands to control 
external devices by signal processing algorithms (Dwivedi et al., 2019). 
This interface can be  used in rehabilitation engineering, assistive 
devices, and human-computer interaction, but it does not fall within 
the scope of BCIs.

5.6 Eye-machine interface systems based 
on electrooculography or eye tracking are 
not BCI systems

An eye-machine interface (EMI) based on electrooculography or 
eye-tracking employs the electrical signals generated by the user’s eye 
movements or eye movement patterns to achieve communication or 
control between eye and machine. Electrooculography (EOG) or eye 
tracking technology converts electrooculogram (EOG) signals or eye 
movements into commands to control external devices by monitoring 
eye movements and gaze direction (Zhu et  al., 2024). This type of 
interface can be used for assisted communication, helping users interact 
with the external world by eye movements, but it is not considered a BCI.

6 Discussion and conclusion

6.1 Discussion

For the definition and scope of BCI, different people may have 
different views, which can lead to unclear or ambiguous understandings 
of the definition and scope of BCI. Moreover, different people may have 
different opinions on some issues related to BCI. The discussion 
follows below.

FIGURE 5

The schematic diagram of feedback in a BCI system (Krusienski et al., 2012; McFarland et al., 2012; Perdikis et al., 2018; Wolpaw et al., 2020; Chen 
et al., 2024).

TABLE 7 Some of the non-BCI systems.

Number Non-BCI systems

1 Systems that do not interact with machines possessing computer 

functionalities using brain signals generated by the CNS do not 

qualify as BCI systems

2 Devices that only monitor brain activity without using it to 

modify interactions between the CNS and its environment are 

not considered BCI

3 Systems that do not use brain signals as the primary source for 

communication or control, but instead use other physiological 

signals, are not considered BCI systems

4 Brain-organ interaction systems are not considered BCI systems

5 Muscle-machine interface systems based on electromyography 

are not BCI systems

6 Eye-machine interface systems based on electrooculography or 

eye tracking are not BCI systems
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6.1.1 What is the impact of a clear BCI definition 
on future research and commercial applications?

This review argues that a clear definition and definite scope of BCI 
will benefit future research and commercial applications. (1) It can 
promote consensus in BCI research. It helps establish unified research 
standards, enabling different research teams to better compare and share 
research findings (Pichiorri et  al., 2017). This can accelerate 
technological advancement and drive the development of the BCI field. 
(2) It facilitates interdisciplinary collaboration. BCI technology involves 
multiple fields, including neuroscience, computer science, and 
engineering (Chavarriaga et  al., 2017). A clear definition can help 
researchers from different disciplines establish a common language and 
understanding, thereby promoting interdisciplinary collaboration and 
innovation. (3) It can enhance the interoperability of BCI technologies. 
This enables BCI devices and software developed by different research 
institutions and companies to be more compatible and work together 
more effectively (Müller-Putz et al., 2011), contributing to a more open 
and collaborative ecosystem. (4) It aids the industrialization process of 
BCI. It helps BCI-related companies to better understand market 
demands and technical requirements, thereby formulating more 
effective product development and marketing strategies (Douibi et al., 
2021). It can also reduce the uncertainties associated with BCI 
technology, boosting investor and consumer confidence and accelerating 
the marketization of BCI products. (5) It helps regulate the ethical and 
legal frameworks related to BCI. With the rapid development of BCI 
technology, ethical and legal issues are becoming increasingly prominent 
(Coin et al., 2020). A clear definition of BCI can provide a reference for 
policymakers, helping them formulate corresponding ethical guidelines 
and regulations to protect user rights and social interests.

6.1.2 Will the definition and scope (connotation 
and extension) of BCI enrich and expand with the 
development of science and technology?

With the rapid development of neuroscience, cognitive science, 
psychology, medical imaging, biomedical engineering, information 

technology, and artificial intelligence (AI), especially with the 
advancement of BCIs, the connotations and extensions of BCIs may 
become enriched and expanded. Even though, the essence of BCI 
remains unchanged. To qualify a system as a BCI, it must contain two 
essential key components: the brain and a machine with computer 
functionalities. Moreover, it must primarily utilize brain signals 
generated by the CNS to achieve direct interaction between the brain 
and the machine.

Some researchers are attempting to implant “AI chips” into the 
brain, with electrodes placed into circuits related to epilepsy, to 
continuously monitor the patient’s brain rhythms day and night. AI 
algorithms analyze and predict these rhythms, and if an epileptic 
seizure is predicted, exogenous disrupting rhythms can be initiated to 
directly block the formation of seizures within the epileptogenic focus. 
Is this a BCI? Some believe it is, as this type of system contains brain 
signal collection, coding, and “feedback.” Others argue that it is not a 
BCI because it does not interact with the user; it is an automatic 
system for monitoring and intervening in brain states. This is an 
ambiguous area.

Ambiguous cases of BCI include, but are not limited to, the 
following: (1) Smart hearing aids. These devices can analyze the user’s 
EEG in real-time, adjusting the volume and frequency of auditory 
input to optimize the hearing experience. Some believe this is BCI 
because it reads and responds to brain signals; others argue it is not 
BCI because the user does not actively interact with the system, which 
adjusts automatically. (2) Emotion monitoring devices. Some emotion 
monitoring devices can assess the user’s emotional state through EEG 
and other physiological signals and automatically adjust music, 
lighting, or other environmental factors to improve the user’s mood. 
Proponents argue that this involves the collection and feedback of 
brain signals, while opponents believe that such automatic adjustments 
lack direct interaction with the user and thus do not constitute 
BCI. (3) Sleep quality optimization systems. Certain smart sleep 
systems can assess sleep quality by monitoring the user’s EEG and 
provide personalized suggestions upon waking. Proponents believe 

FIGURE 6

The schematic diagram for hybrid BCI (Tai et al., 2024).
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these systems involve the collection and feedback of brain signals; 
opponents argue this is not BCI because the suggestions are based on 
post-sleep data analysis rather than real-time interaction. (4) 
Intelligent driving assistance systems. Some intelligent driving systems 
can monitor the driver’s attention and fatigue state through EEG, 
issuing alerts or taking safety measures automatically when the driver 
is distracted or fatigued. Proponents argue this involves real-time 
monitoring and feedback of brain signals; opponents argue this is not 
BCI because the system responds automatically rather than being 
controlled by the user.

Moreover, some refer to transcranial magnetic stimulation 
systems guided by EEG as BCIs, but others disagree, citing the lack of 
interaction with users as it is an automatic navigation system. Some 
also categorize systems that detect brain signals as BCIs, such as those 
using P300 to determine if comatose patients are conscious. However, 
others argue that such systems are not BCIs, typically because there is 
usually no interaction with comatose patients.

6.1.3 What is the difference between the terms 
“brain-computer interface” and “brain-machine 
interface”?

What is the difference between BCI and BMI? BCI is often called 
BMI. While BCI and BMI are essentially synonymous terms, systems 
that use externally recorded signals (e.g., EEG) are commonly referred 
to as BCIs, and systems that use signals recorded by implanted sensors 
are often referred to as BMIs (Wolpaw et al., 2020). Some researchers 
believe that BCI and BMI differ in terms of technical implementation 
and application. The technical characteristics of BCI include high 
flexibility and adaptability but high signal noise and lower precision. 
In contrast, BMI has high signal precision and fast response but 
requires surgical implantation, which carries higher risks. Examples 
of BCI systems include EEG-based wheelchair control (Millán et al., 
2010) and EEG-based virtual reality game control (Lécuyer et al., 
2008). Examples of BMI systems include electrode implantation in 
the brain’s motor cortex to control a robotic arm (Hochberg 
et al., 2012).

In general, BCI might be considered the preferable term, because 
“machine” implies a fixed conversion of brain signals into outputs 
(ordinary machine systems lack the flexibility and power of computer 
systems); thus, it does not recognize that the system and the brain are 

partners in the interactive adaptive control that is essential for 
successful BCI (or BMI) function (Wolpaw et al., 2020).

In the existing literature, “brain-computer interface” and “brain-
machine interface” are used interchangeably, appearing to have no 
difference. BMI typically refers to the use of brain signals to directly 
control machines, including robotic arms, electric wheelchairs, and 
even more complex devices, where “machine” often relates to a 
broader range of applications. However, in BMI systems, the 
“machine” is required to effectively analyze complex brain signals and 
usually refers to a machine system with computer capabilities (such as 
single-chip microcomputer, digital signal processors, or embedded 
systems), or a computer-based machine. Without powerful computer 
functions, it might be difficult to analyze brain signals generated by 
the CNS. Essentially, both BMI and BCI systems require computer 
capabilities to process and analyze central nervous signals.

Moreover, some scholars prefer the term “brain-computer 
interaction” (BCI) and highlight the difference from “brain-computer 
interface” (BCI), with the former emphasizing a bidirectional 
interaction, while the latter stresses the interface between the two. Yet, 
other scholars believe there is no fundamental difference, as interface 
also encompasses interaction.

6.1.4 What is the difference between dependent 
BCI and independent BCI? What is the difference 
between endogenous BCI and exogenous BCI?

6.1.4.1 What is the difference between dependent BCI and 
independent BCI?

The terms dependent BCI and independent BCI were coined in 
2002 to define BCIs that differ in their dependence on normal (i.e., 
neuromuscular) CNS outputs (Wolpaw et al., 2002, 2020). Table 8 
compares dependent BCI, independent BCI, and BCIs that fall 
between dependent and independent. Table 9 compares the main 
challenges, benefits, and cases faced by dependent BCIs and 
independent BCIs.

6.1.4.2 What is the difference between endogenous BCI 
and exogenous BCI?

Exogenous stimuli originate from an individual’s external 
environment, such as visual, auditory, and tactile stimuli. These 

TABLE 8 The comparison of dependent BCIs, independent BCIs, and BCIs that fall between dependent and independent.

Type Brief description Example

Dependent BCI A BCI based on VEP is a dependent BCI. VEPs depend on gaze direction, and 

thus on the muscles that move the eyes (Wolpaw et al., 2020). While dependent 

BCI does not provide a new CNS output that is independent of natural outputs, 

it can still be valuable (Sutter, 1992)

The early BCI developed by Vidal used a VEP (Vidal, 1973, 

1977)

Independent BCI An independent BCI does not depend on normal CNS output; muscle activity is 

not needed for generating the brain signals that the BCI measures. For those 

with the most severe neuromuscular disabilities, such as in ALS, independent 

BCIs are likely to be more valuable (Wolpaw et al., 2020)

In BCIs that use SMRs (McFarland et al., 2010), actual muscle 

activity is not needed; the brain signals alone are sufficient, 

even if they do not result in actual movement (Wolpaw et al., 

2020)

BCIs that fall between 

dependent and 

independent

Most BCIs are neither completely dependent nor completely independent 

(Wolpaw et al., 2020). In these types of BCI systems, while the user’s intentions 

are identified by brain signals, gaze fixation or observation to gain feedback 

relies on the muscles that move the eyes

The output produced by a VEP-based BCI may reflect the 

person’s attention rather than merely gaze direction (Allison 

et al., 2008); and many SMR-based BCIs rely on the person 

having sufficient gaze control to watch the results of the BCI’s 

outputs (e.g., cursor movements) (Wolpaw et al., 2020)
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stimuli are received by various sensory organs and transmitted to the 
brain, where they are interpreted and responded to, potentially 
influencing an individual’s physiological and psychological state. 
Exogenous BCIs utilize the brain’s responses to specific external 
stimuli (such as visual, auditory, or tactile stimuli) to identify a user’s 
intentions or brain states and convert these brain signals into 
interaction commands with external devices. This type of BCI 
primarily relies on passively received and processed brain signal 
patterns generated by external stimuli, without requiring the user to 
actively generate brain signals. It is particularly suitable for users who 
are unable to perform physical actions, such as those with severe 
muscle weakness or locked-in syndrome. However, this type of BCI is 
not suitable for individuals with disabilities such as blindness or the 
inability to move their eyes.

Endogenous stimuli originate from an individual’s internal mental 
and cognitive activities, which do not require direct input from the 
external environment. These activities primarily rely on the brain’s 
spontaneous activity and stream of consciousness, such as emotional 
experiences, musical imagination, dreams, memory recollection, self-
reflection, motor imagery, visual imagery, mental arithmetic, and 
speech imagery. Endogenous stimuli are particularly important in BCI 
technology because they allow users to interact with external devices 
through their own thought patterns without any physical action or 
external stimuli.

Endogenous BCIs generate control signals by decoding brain 
signals induced by the user’s spontaneous mental or cognitive 
activities (endogenous mental activities), achieving communication 
or control with external devices. Unlike exogenous BCIs that rely on 
responses to external stimuli, endogenous BCIs do not depend on 
external stimuli and are entirely based on brain signals generated 
internally by the user, such as thoughts, imaginations, or intentions. 

Endogenous BCIs are suitable for users with mobility impairments or 
limited speech capabilities. Limitations, advantages, and applications 
of exogenous and endogenous BCI, as shown in Table 10.

Some argue that exogenous BCIs are not BCIs or BCIs in the true 
sense, whereas endogenous BCIs constitute the genuine BCIs. 
However, others believe that exogenous BCIs also qualify as BCIs. 
Exogenous BCIs are typically dependent BCIs, whereas endogenous 
BCIs are generally independent BCIs; both types of BCIs have 
their value.

6.1.5 Must BCI systems provide real-time 
feedback? Must BCI users perform specific 
mental tasks or receive specific external stimuli?

Some BCI researchers emphasize that BCI systems need to 
provide real-time feedback, as real-time feedback is crucial for user 
learning and control. It allows users to immediately understand the 
results of their brain activity and adjust their mental strategies to 
achieve the desired control effect. However, other researchers believe 
that not all BCI systems require real-time or timely feedback, 
depending on the specific application. Some BCI applications do not 
necessitate real-time or immediate feedback; delayed online feedback 
can also be  sufficient. Furthermore, some researchers argue that 
certain BCI applications may not require online feedback at all, such 
as BCI systems for online real-time monitoring and assessment of 
brain states, which can evaluate and then provide offline feedback to 
users to devise regulation strategies. During monitoring, users are in 
a natural state, without the requirement to perform specific mental 
tasks, and an evaluation report is provided to the monitored individual 
after a period of monitoring (offline feedback). For example, for 
emotional monitoring of specific individuals, an emotional state 
comprehensive report is provided after monitoring for some time.

TABLE 9 Main challenges, benefits, and examples of dependent BCI and independent BCI.

Comparison Dependent BCI Independent BCI

Challenges  1) Neural and muscular function constraints: dependent BCI requires users to 

retain some neural or muscular function. For patients with complete physical 

loss, such as ALS patients, the practical use of dependent BCI is limited. For 

example, BCI based on visual evoked potential (VEP) requires the ability to 

control gaze, which is not suitable for those with complete gaze control loss

 2) Fatigue and noise: long-term use of dependent BCI involving specific 

muscular activity can lead to muscle fatigue and noise. This problem is 

especially pronounced when high-frequency muscle activity is required

 3) Interference from other movements: dependent BCI can be affected by other 

involuntary or voluntary muscle movements, reducing the quality and 

reliability of the system

 1) Signal complexity: independent BCI relies on users’ internal 

psychological activities. These are often complex, noisy, and 

challenging to extract and decode

 2) Training difficulty: users need longer training periods to learn 

how to perform specific brain tasks to effectively use 

independent BCI systems. Initial learning and adaptation may 

be more difficult for some users, and training costs can be high

 3) Individual differences: different users’ brain signals can vary 

greatly, necessitating more personalized system design and 

tuning

Benefits  1) Good usability: for users with some muscular control, dependent BCI can 

be relatively easy to learn and use, allowing them to perform natural actions 

(like moving gaze to select targets)

 2) Stability and reliability: due to the combination of brain signals and 

remaining muscular activity, the system can provide more stable and reliable 

outputs

 1) High autonomy: independent BCI relies on users’ internal 

psychological activities to control brain signals, increasing users’ 

autonomy in situations where external stimuli are absent

 2) Potential wide applicability: independent BCI may 

be particularly suitable for patients with complete physical 

function loss, such as ALS or other neurological disease patients. 

Additionally, it can be used in more environments without being 

restricted to specific stimulus environments

Examples For instance, BCIs based on SSVEP and those based on P300 are dependent 

BCIs, as they rely on the user’s ability to move their gaze to select targets

For example, BCIs based on motor imagery, visual imagery, and 

auditory imagery are independent BCIs, as they do not rely on 

external stimuli
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However, for closed-loop BCI systems, feedback regulation is 
essential, making it a critical component of such systems. In 
comparison to closed-loop BCIs, open-loop BCI systems are relatively 
simpler to implement as they do not require feedback regulation, but 
they struggle to achieve closed-loop regulation, with stability and 
accuracy difficult to converge.

Some believe that if we adopt the definition of BCI given by Vidal 
in 1973 (used it to describe any computer-based system that produced 
detailed information on brain function) (Vidal, 1973, 1977), then 
systems that monitor brain states also qualify as BCI systems and can 
be  classified as passive BCI systems. They argue that passive BCI 
systems have realized a transformation from environmental control to 
scouting brain changes as the BCI Copernican revolution (Molinari 
and Masciullo, 2020).

In a BCI system, online feedback is primarily used to train users 
to control their brain signals to successfully operate the BCI. It should 
be  noted that online feedback is not necessarily neurofeedback. 
However, it is usually neurofeedback, such as visual, auditory, and 
tactile feedback used for brain activity regulation. This feedback helps 
users understand and control their brain states in real-time, thereby 
improving BCI performance. The advantages and disadvantages of 
real-time feedback and several major feedback methods are shown in 
Table 11.

6.1.6 Can neuromodulation technology 
be classified as BCI technology?

Some researchers believe that BCI can also be considered as a 
system to influence CNS activity and behavioral performance by 
injecting physical energy such as transcranial electrical stimulation 
(TES), transcranial magnetic stimulation (TMS), transcranial focused 
ultrasound stimulation (tFUS), or direct brain signal modulation and 

thereby changes the ongoing interactions between the CNS and its 
external or internal environment (He et  al., 2020). These systems 
primarily use external devices to directly or indirectly input electrical, 
magnetic, acoustic, and optical stimuli or neurofeedback to the brain, 
regulating CNS activity. Some researchers refer to these systems as 
input-dominated BCIs, even though the brain response generated by 
neural stimulation can be fed back to the stimulation device to adjust 
stimulation parameters, forming a closed-loop neuroregulation 
(Zhigalov et al., 2016). Compared to input-dominated BCIs, systems 
that output communication and control commands directly from the 
brain to external devices are called output-dominated BCIs (narrowly 
defined BCIs). These systems also provide feedback to the user 
through visual and auditory means to form a closed loop that adjusts 
brain activity signals, thereby enhancing brain-machine interaction 
performance (Allison et al., 2012).

In fact, both output-dominated BCIs and input-dominated BCIs 
can be interactive closed-loop systems composed of online feedback, 
termed interactive BCIs, primarily depending on whether they are 
output- or input-dominated. This depends on the main function of the 
designed BCI. Some researchers have proposed bidirectional closed-
loop BCIs, which include interaction from the brain to external 
devices and from external devices to the brain, classified as interactive 
BCIs (Liu et al., 2016; Park et al., 2017; Shupe et al., 2021).

Some researchers believe that a broad definition of BCIs refers to 
any system in which the brain directly interacts with external devices, 
including the aforementioned output-dominated, input-dominated, 
and interactive BCIs. They argue that the broad definition of BCIs 
encompasses a variety of systems achieved through neural stimulation 
and brain signal reading, suitable for a wide range of adaptive neural 
technologies. These technologies optimize new interactions and 
induce adaptive plasticity of the CNS (Lance et al., 2012). A broad 

TABLE 10 Limitations, advantages, and applications of exogenous BCI and endogenous BCI.

Comparison Exogenous BCI Endogenous BCI

Limitations  1) Dependence on external stimuli: requires specific external stimuli, which 

may not be suitable for some users with sensory impairments (Brumberg 

et al., 2019), especially those with visual or auditory impairments

 2) User fatigue: long-term use of external stimuli may lead to user fatigue, 

reducing the system’s effectiveness (Li et al., 2021)

 3) Signal interference: noise and interference from the external environment 

may affect the brain’s response to stimuli, thus impacting the accuracy of 

the BCI (Zhao et al., 2018)

 1) Complex signals: endogenous brain signals are complex and 

require precise algorithms and equipment for decoding (Han et al., 

2019)

 2) Longer training: users need longer training periods to learn how to 

control endogenous BCI devices (Scherer et al., 2018)

 3) Individual differences: there can be significant differences in brain 

signals between users, necessitating personalized calibration and 

adaptation (Touryan et al., 2014)

Advantages  1) Fast response: by using external stimuli, quick responses and signal 

transmission can be achieved (Marchetti et al., 2012)

 2) Easy to implement: exogenous BCI is relatively easy to achieve and deploy 

(Vargic et al., 2015)

 3) Suitable for rehabilitation: in neurorehabilitation, external stimuli can 

induce brain activity, aiding in the recovery of neural functions (Frolov and 

Bobrov, 2018)

 1) Independence: does not rely on external stimuli, allowing users to 

control the device through specific mental and cognitive activities 

(Xu et al., 2016)

 2) Flexibility: endogenous BCIs can be used in more varied 

environments without being constrained by external conditions 

(Xu et al., 2019)

 3) Personalization: users can train and enhance their BCI control 

capabilities through practice (Ma et al., 2022)

Applications  1) Using visual stimuli, the P300 speller system helps users with disabilities 

who cannot speak or type to input text (Velasco-Álvarez et al., 2019)

 2) Using steady-state visual evoked potential (SSVEP) BCIs to control robotic 

arms (Diez et al., 2013)

 3) Using auditory stimuli BCIs to help blind users or those unable to use 

visual stimuli to select and control external devices (Nijboer et al., 2008)

 1) Using motor imagery BCIs to help paralyzed patients control 

robotic arms or wheelchairs through imagined movements 

(Palumbo et al., 2021)

 2) Using mental task BCIs to control devices (Leeb and Millán, 2013)

 3) Using emotional state BCIs to control game characters or actions in 

virtual reality environments (Abuhashish et al., 2015)
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definition of BCIs provides a wider perspective for research and 
application. However, some researchers argue that generalizing the 
definition of BCIs makes it difficult to determine whether it is 
beneficial or detrimental to the development of BCIs. Conversely, 
narrowly defining BCIs also makes it challenging to assess its benefits 
to development.

Additionally, some researchers argue that it is inaccurate to simply 
categorize neuromodulation (including neurostimulation) 
technologies as BCI technologies. Although BCI and neuromodulation 
share some commonalities (Jackson and Zimmermann, 2012; Carmel 
and Martin, 2014), they exhibit significant differences in several 
aspects. Their commonalities include:

 1) Both involve interventions with the nervous system. 
Neuromodulation achieves functionality by directly or 
indirectly modulating neural activity, whereas BCI 
achieves communication and control by reading central 
neural activity.

 2) Both have medical and rehabilitation applications, particularly 
in neurorehabilitation. Neuromodulation is primarily used to 
treat somatic and mental disorders such as depression, 
Parkinson’s disease, and epilepsy. BCI is mainly used to help 
patients with severe motor impairments or disabilities control 
prosthetics or computers to promote beneficial neuroplasticity.

 3) Some technologies and devices can be cross-used between the 
two. Invasive electrodes can be  used both for deep brain 
stimulation (neuromodulation) and for recording neural 
signals (BCI).

However, BCI and neuromodulation differ greatly in terms of 
primary purpose, definition, principles, implementation methods, 
information flow direction, and application fields, as shown in Table 12.

Additionally, some researchers argue that it is inaccurate to simply 
categorize neuromodulation (including neurostimulation) technologies 
as BCI technologies. Although BCI and neuromodulation do share 
some commonalities (Jackson and Zimmermann, 2012; Carmel and 
Martin, 2014), they exhibit significant differences in several aspects. 
Their commonalities include: (1) Both involve interventions with the 
nervous system. Neuromodulation achieves functionality by directly 
or indirectly modulating neural activity, whereas BCI achieves 
communication and control by reading central neural activity. (2) Both 
have medical and rehabilitation applications, particularly in 
neurorehabilitation. Neuromodulation is primarily used to treat 
somatic and mental disorders such as depression, Parkinson’s disease, 
and epilepsy. BCI is mainly used to help patients with severe motor 
impairments or disabilities control prosthetics or computers to 
promote beneficial neuroplasticity. (3) Some technologies and devices 
can be cross-used between the two. Invasive electrodes can be used 
both for deep brain stimulation (neuromodulation) and for recording 
neural signals (BCI). However, BCI and neuromodulation differ greatly 
in terms of primary purpose, definition, principle, implementation 
method, information flow, and application, as shown in Table 12.

In Table 12, neuromodulation treats neurological diseases such as 
Parkinson’s disease, epilepsy, and chronic pain; restores neural 
functions, such as helping to recover sensory, motor, or cognitive 
functions; regulates mood and cognition, such as treating depression, 
anxiety, and other mood and cognitive disorders; and improves 
quality of life, such as reducing pain, improving sleep quality, and 
enhancing motor control. In Table 12, brain signal acquisition includes 
non-invasive methods (EEG, fNIRS, MEG, fMRI) and invasive 
methods (ECoG, Intracortical Electrodes).

Some researchers have suggested that the electromagnetic fields 
generated by electromagnetic coils can modulate brain neurons. Is this 
interaction? If so, then transcranial direct current stimulation (tDCS) 

TABLE 11 Advantages and disadvantages of real-time feedback and several main feedback methods.

Comparison Advantages Disadvantages

Real-time feedback  1) Immediate adjustment: users can immediately adjust their brain signals 

based on feedback, improving control accuracy and efficiency (Lebedev and 

Nicolelis, 2006)

 2) Fast learning: helps users quickly learn how to produce effective brain 

signals, thus efficiently controlling BCI devices (Lotte and Jeunet, 2015)

 3) Enhanced user experience: real-time feedback can increase user engagement 

and confidence, enhancing the user experience (Faller et al., 2014a)

 4) Improved BCI performance: enables the system to quickly identify and 

correct errors, ensuring more successful operations (Van Gerven et al., 2009)

 1) Technical complexity: implementing real-time feedback 

systems requires advanced hardware and complex software 

algorithms, which can increase system complexity and cost 

(McFarland et al., 2010)

 2) User fatigue: continuous real-time feedback can cause user 

fatigue, especially for those not fully mastering the 

technology (Nijboer et al., 2010)

 3) Data processing speed: real-time processing and feedback 

require fast data processing capabilities, and any delay can 

affect system speed and accuracy (Blankertz et al., 2010)

Visual feedback Users can directly see feedback information on a screen in the form of graphics 

or text (Faller et al., 2014b); simple to implement, suitable for most BCI 

applications (Allison et al., 2011)

Requires users to focus on the screen, which may not 

be suitable for all users or environments (Várkuti et al., 2013); 

in some cases, visual feedback may not provide enough 

information for users to adjust their brain activity effectively 

(Broetz et al., 2010)

Auditory feedback Users can receive feedback information without needing to look at a screen 

(Pfurtscheller and Neuper, 2006); suitable for multi-task environments; can 

convey complex information through sound (Zander and Kothe, 2011)

Requires users to interpret sound feedback, which can 

be difficult to learn (Vidaurre et al., 2011); may not be suitable 

for users with hearing impairments (Nijboer et al., 2008)

Tactile feedback Provides direct physical feedback that users can perceive through touch (van 

Erp and Brouwer, 2014); suitable for environments where visual or auditory 

feedback is not possible (Brunner et al., 2011)

More complex and involves specialized equipment (Horowitz 

et al., 2021); complexity of feedback information may 

be limited by the method of delivery (Hinterberger et al., 2004)

https://doi.org/10.3389/fnins.2024.1449208
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2024.1449208

Frontiers in Neuroscience 15 frontiersin.org

can also be considered a BCI. It is important to note that although 
both BCIs and neuromodulation involve brain-machine interaction, 
they differ. In BCI systems, brain-machine interaction aims to achieve 
communication and control between the user and external devices. 
This system relies on the user’s active participation, controlling the 
device through specific brain activity patterns. In contrast, the 
interaction between the brain and the machine (such as the 
stimulation device) in closed-loop neuromodulation systems aims to 
regulate the user’s neural activity for treating or rehabilitating certain 
diseases, rather than achieving communication and control with 
external devices. Closed-loop neuromodulation systems automatically 
adjust stimulation parameters based on real-time monitored neural 
responses. The user’s role is passive, receiving stimulation rather than 
actively controlling the device.

Additionally, the online feedback in BCI and closed-loop 
neuromodulation systems differs in terms of the content, direction, 
and function of the feedback information, as shown in Figure 7. In 
Figure 7A, the closed-loop neuromodulation system feeds back the 
neural response under neural stimulation to the neuromodulation 
device, with the information flowing out from the CNS to optimize 
neural stimulation parameters. In Figure 7B, the BCI feeds back the 
results of communication and control to the user, with the information 
flowing into the CNS to help the user adjust their mental strategies.

If a certain BCI technology is used to induce neuroplasticity, it can 
be  considered a form of neuromodulation. For instance, 
neurofeedback training systems can promote neuroplasticity, which is 
essentially a type of BCI (Collura, 2014; Jeunet et al., 2019). Some 
researchers believe that BCIs are suitable for a wide range of adaptive 
neurotechnologies that optimize new interactions and often induce 
adaptive plasticity in the CNS, which also helps to optimize 
interactions. Some adaptive neurotechnologies directly act on the 
CNS, such as deep brain stimulation (Pulliam et al., 2020), contrasting 
with BCIs, which enable the CNS to directly interact with the world.

Moreover, some researchers use ultrasound to modulate brain 
activity to improve BCI training performance, demonstrating the 
positive role of neuromodulation in BCIs (Kosnoff et al., 2024). This 
suggests that certain neural stimulation systems (e.g., systems that 
stimulate cortical or subcortical sensory areas) may be incorporated 
into future BCI systems to enhance BCI performance (Bouton, 2020; 
Hughes et al., 2020).

6.1.7 Is brain-apparatus interaction or neural 
interface considered a BCI?

Some scholars have taken a different approach by proposing new 
interaction concepts that include what is already BCI or is not BCI. For 
example, some scholars have proposed the term brain-apparatus 

TABLE 12 Some differences between BCI and neuromodulation.

Comparison BCI Neuromodulation

Purpose To bypass the user’s peripheral nerves and muscle 

system, providing an innovative way for the brain to 

directly communicate and interact with the external 

world, thus enabling reading and understanding of 

brain signals to communicate and control behavior 

(Graimann et al., 2010a)

By regulating the excitation, transmission, and functionality of neural circuits, 

neuromodulation aims to restore or optimize nervous system functions, treating or 

improving various nervous system-related diseases and symptoms, including repairing 

nervous system injuries, restoring neural functions, and enhancing cognitive functions, 

thereby improving life quality (Zheng et al., 2020), focusing more on the regulation of 

nervous system functions to treat diseases (Deer et al., 2014), rather than on communication 

and control behavior

Definition See section 3, paragraph 2 A technology that uses external devices or internal implants, employing methods such as 

electrical stimulation, magnetic stimulation, acoustic stimulation, light stimulation, and 

chemical stimulation to directly or indirectly regulate neural activities, in order to treat or 

improve various nervous system-related diseases and symptoms (Kamimura et al., 2020)

Principle Based on the BCI paradigm of neuroscience (specific 

mental tasks and their associated neurocoding (such as 

time-space-frequency features) and neural decodings 

(Tai et al., 2024)

Utilizing the plasticity of the nervous system, neural circuits and neuromodulation act on 

the nervous system to restore or enhance its functions. This plasticity enables effective 

neuromodulation to restore or enhance neural functions (Amend et al., 2011)

Method Includes BCI paradigm design, neural coding 

modeling, brain signal acquisition, preprocessing, 

feature extraction and classification, and online 

feedback of communication and control results (Allison 

et al., 2012)

Relying on external devices or implants, neuromodulation stimulates the nervous system 

through various methods (such as direct current stimulation (Nitsche et al., 2008), deep 

brain stimulation (Benabid, 2003), spinal cord stimulation (Deer et al., 2014), vagus nerve 

stimulation (Groves and Brown, 2005), magnetic stimulation (Rothwell, 1997), repetitive 

transcranial magnetic stimulation (Lefaucheur et al., 2014), ultrasound stimulation 

(Bystritsky et al., 2011), light stimulation (Wang et al., 2017), and chemical stimulation 

[such as drug delivery systems (Alvarez-Lorenzo and Concheiro, 2014)]

Information flow Mainly transmits information from the brain directly to 

external devices, and also provides feedback

Mainly provides feedback to the brain through external stimulation or implants, which can 

be open-loop or closed-loop, and can also provide information to external devices

Application Has potential medical and non-medical applications, 

including medical, rehabilitation, education, gaming, 

and communication (Ramsey and Millán, 2020), with 

potential applications in many areas

Has many applications, especially in the treatment and management of various nervous 

system diseases and symptoms, such as pain management (Wang and Chen, 2019), motor 

disorder treatment (Dallapiazza et al., 2014) (such as Parkinson’s disease), epilepsy 

treatment (Ryvlin et al., 2021), mental disorders treatment (Lapidus et al., 2014) (such as 

obsessive-compulsive disorder), stroke rehabilitation (Boddington and Reynolds, 2017), and 

chronic pain management (Knotkova et al., 2021)
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interaction (BAI), which includes BCI, attempting to expand the 
application scope of BCI, enabling the brain to interact with a wider 
range of devices and extending to various apparatuses. However, some 
scholars argue that this is a redundant concept or term, as the 
information flow in brain-computer-machine/apparatus systems is 
essentially still BCI. In fact, brain-controlled technology based on BCI 
can control various external devices, including various apparatuses, as 
shown in Figure 8. Examples include brain-controlled wheelchairs 
(Fernández-Rodríguez et al., 2016), brain-controlled robotic arms (Cao 
et al., 2021), brain-controlled mobile robots (Bi et al., 2013), brain-
controlled humanoid robots (Chae et  al., 2012), brain-controlled 
orthoses (Do et al., 2013), brain-controlled smart homes (Qin et al., 
2020), brain-controlled spelling devices (Halder et al., 2015), brain-
controlled prosthetics (Vilela and Hochberg, 2020), brain-controlled 
cursors (one-dimensional, two-dimensional, or three-dimensional) 
(Bradberry et al., 2011), brain-controlled drones (Chiuzbaian et al., 
2019), brain-controlled vehicles (Hekmatmanesh et al., 2021), brain-
controlled assistive devices, and rehabilitation devices (Tariq 
et al., 2018).

If there are no computers in the BAI system, it may be difficult to 
analyze complex brain signals, making it challenging to achieve 
interaction with multiple apparatuses. However, some believe that the 
BAI term expands the boundaries of BCI and has its own research 
content and methods. Others argue that simple BAI is not 
BCI. Different people have different opinions, and the BAI term may 
bring about definitional and categorical ambiguity.

Additionally, a neural interface establishes a direct data 
connection between the biological nervous system and external 
devices (computers or other electronic devices), achieving 

bidirectional data transfer (Hatsopoulos and Donoghue, 2009). 
Does the concept of a neural interface include BCIs? Is BCI a type 
of neural interface? Is the scope of neural interfaces broader than 
that of BCIs? Scholars have differing opinions on these questions. 
Some scholars believe that neural interfaces encompass BCIs, 
with BCI being a form of neural interface, but not all neural 
interfaces are BCIs. The scope of neural interfaces far exceeds 
that of BCIs and includes other types of interfaces, such as neuro-
muscular interfaces and neuro-sensory interfaces. These 
interfaces involve different types of neural system signals and 
processing methods. However, some scholars view neural 
interfaces and BCIs as distinct types of interfaces. Neural 
interfaces aim to establish direct connections between the 
nervous systems of humans or animals (not just the CNS) and 
other nervous systems of the individual or external devices. 
These interfaces can be used to monitor neural signals, transmit 
signals to the nervous system, or both.

6.1.8 Are retinal implants and cochlear implants 
considered BCI?

The retina plays a crucial role in visual processing. Its 
developmental origin is the embryonic neural tube of the brain, 
and it is considered the initial part of the brain responsible for 
perceiving light signals and converting them into neural signals, 
which are then transmitted to the brain’s visual cortex via the optic 
nerve for further processing (Kolb, 2003). Are retinal implants 
considered BCI? Retinal implants are usually not classified as BCI 
because they differ significantly from BCI in terms of signal 
source and transmission path, signal processing and interface 

FIGURE 7

Comparison of online feedback in BCI and closed-loop neuromodulation. (A) Online feedback in closed-loop neuromodulation. (B) Online feedback 
in BCI.
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location, functional goals, etc. (Eckmiller et al., 2005), as shown 
in Table 13.

Although retinal implants are not BCI in the traditional sense, 
they are a type of neural interface because they interact directly with 
the nervous system (the retina and optic nerve). They primarily focus 
on sensory restoration (vision) rather than directly reading and 
decoding neural signals from the brain for control purposes.

Furthermore, the cochlea plays a crucial role in auditory 
processing, responsible for converting sound wave vibrations into 
neural signals, which are transmitted to the brain via the auditory 
nerve for processing (Shamma, 2001). Although the cochlea and the 
brain are closely connected through the auditory pathway, the cochlea 
itself is not part of the CNS but rather a peripheral organ of the 
auditory system (Malmierca, 2015). Are cochlear implants considered 
BCI? Cochlear implants are not classified as BCI as they do not involve 
directly reading and decoding brain signals.

Cochlear implants are neural interface devices used to restore 
hearing function lost due to cochlear damage. They capture sound 
through an external microphone, convert it into electrical signals, and 
then directly stimulate the auditory nerve through an implanted 
electrode array, allowing auditory information to be transmitted to the 
brain. The signal processing occurs at the cochlear level (Zeng 
et al., 2008).

6.1.9 Is BCI the most natural form of 
human-computer interaction? Is it the ultimate 
mode of human-computer interaction?

The natural, normal output of the CNS in healthy individuals 
involves receiving sensory input and producing appropriate motor 
outputs, including muscle activity and hormonal (Wolpaw et  al., 
2020). In contrast, BCIs give the CNS novel outputs that are neither 
neuromuscular nor hormonal. It is a system that records CNS activity 
and converts it into an artificial output, modifying the interactions of 
the CNS with the rest of the body or with the external world (Wolpaw 
et al., 2020). Clearly, BCI systems represent an unnatural, abnormal, 
and novel form of artificial output.

However, some argue that BCI represents the most natural form 
of human-computer interaction and the ultimate mode of such 
interactions. Conversely, others believe this is not the case. There are 
also those who think it is too early to answer these questions.

6.1.10 How to translate the potential efficacy of 
BCI into practical applications?

The potential efficacy of BCI shown in Table 1 have been validated 
in both laboratory and clinical settings, but practical BCIs need to 
bridge the gap from research to real-world applications (Allison et al., 
2012). Currently, the main obstacles to translating the potential efficacy 
of BCI into practical applications include technical challenges, low user 
acceptance, and high economic costs. The specific steps for translation 
can be referenced in Table 14. Additionally, it is recommended to adopt 
a comprehensive evaluation method for translating BCI into practical 
applications: online BCI system usability, user satisfaction, and usage 
(Pan et al., 2024).

Is BCI a practical productivity tool? From the perspective of 
practical application, especially from the angle of actual benefits to 
patients or users, BCI technology is still in its early stages of development 
and is far from becoming a practical productivity tool like AI.

Some suggestions for BCI research or translational 
applications include:

 1) Ensure that patients genuinely benefit from BCI. It should 
be patient-centered and consider the costs they bear.

 2) Ensure responsibility to the public. The public should not 
be misled about their understanding of BCI.

 3) Be accountable to the international organizations or countries 
that provide funding.

Some scientists or organizations hyping BCI may have secured 
substantial funding from international organizations or countries, and 
may ultimately publish many high-impact papers indexed by the Science 
Citation Index and demonstrate many BCI systems. However, the 
research and development that genuinely benefits patients may be scarce.

Neuralink’s innovations in BCI hardware and surgical automation 
have indeed advanced the field. Its high-density electrodes and 
surgical robots offer new possibilities for future BCI applications. 
However, Neuralink’s technology is still in the early experimental 
stages, and its actual effectiveness and long-term stability require more 
clinical trials for validation. Exaggerated publicity may lead to overly 
high expectations from the public and investors, which could 
be  detrimental to the rational and scientific development of 
BCI technology.

FIGURE 8

Brain-controlled technology based on BCI can control various external devices, including various apparatuses.
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6.1.11 Has the maturity of BCI technology 
reached a level that can shape or establish 
industry standards?

BCIs can use different kinds of brain signals recorded in different 
ways from different brain areas. Decisions about which signals recorded 
in which ways from which brain areas should be selected for which 
applications are empirical questions that can only be properly answered 

by experiments (Wolpaw et al., 2020). Therefore, it is challenging to 
form unified standards in BCI development.

Furthermore, some BCI developers believe that from the 
perspective of practicality or real-world applications, the BCI field is in 
its infancy with low level of technological maturity (Ramsey, 2020). 
Many technologies involved in BCIs are immature and have not yet 
reached a stage where they can form clear, compulsory industry 

TABLE 13 Comparison of retinal implants and BCI.

Comparison Retinal implants BCI

Signal source and 

transmission path

Microelectrode arrays are implanted on the retina to capture light signals through an external 

camera. These light signals are then converted into electrical signals to stimulate the 

remaining photoreceptors or ganglion cells on the retina. The signal path involves the 

photoreceptors and optic nerves in the eye, transmitting neural signals to the brain’s visual 

cortex, rather than directly reading signals from the brain to output commands

Signals are directly read from the brain, then 

converted into commands to control external 

devices. The signal source is the cortical areas of the 

brain

Signal processing 

and interface 

location

Signal processing mainly occurs at the retinal level, with the interface location being the 

retina, not the brain cortex

Signal processing and interfaces are usually located 

in the brain cortex or other parts of the brain, 

directly interacting with the CNS

Functional goals The primary goal is to restore visual function, helping patients perceive light and images 

again. It is usually used for patients who have lost vision due to retinal diseases such as 

retinitis pigmentosa or macular degeneration

There are multiple potential applications, including 

communication, controlling prosthetics, etc. The goal 

is to restore or enhance direct communication 

between the brain and external devices

TABLE 14 Specific steps to transform the potential efficacy of BCI into practical applications.

Activity 
content

Current issues Potential solutions Specific steps

BCI demand 

analysis and target 

setting

BCI target users’ demands are diverse and 

complex

Deepen clinical practice to understand the 

needs of users (Kübler et al., 2020). Use 

questionnaires, interviews, and other 

methods to collect user needs data

Identify BCI target user groups (such as ALS 

patients, stroke rehabilitation patients, etc.) and 

application scenarios, and assess their specific 

needs and expectations

BCI technology 

development and 

optimization

Signal processing noise, system response delay, 

user discomfort, and other challenges. Currently, 

the effectiveness, feasibility, and user satisfaction 

of BCI significantly differ from practical 

applications (Kübler et al., 2020)

Use advanced signal processing techniques, 

improve algorithms, and optimize hardware 

design to enhance the user experience. 

Enhance BCI effectiveness, feasibility, and 

user satisfaction

Research and develop new BCI systems, ensure 

their feasibility, reliability, and user-friendliness, 

including hardware (transmission, signal 

processing) and software (algorithms, user 

interface) development

BCI clinical trials 

and validation

BCI clinical trials face high costs, long timelines, 

and ethical review barriers

Collaborate with medical institutions to 

share data resources, adopt simulation 

methods to reduce initial costs and time

Validate the safety and effectiveness of BCI 

through rigorous trials in laboratory and clinical 

environments (Kübler et al., 2020)

BCI user training 

and education

BCI users lack online guidance, and new BCI 

technologies have low acceptance

Design easy-to-understand training 

materials, provide continuous technical 

support and services

Provide detailed usage training and education to 

BCI users to ensure they can proficiently use BCI 

systems

BCI market 

expansion and 

commercialization

The BCI market lacks breadth, competition is 

intense, and price sensitivity is high. Currently, 

the user group is small, and the BCI system cost 

is high

Promote BCI products effectively through 

marketing and advertising, increase product 

recognition, launch various pricing schemes 

to attract new user groups

Formulate market expansion strategies, promote 

BCI products to ensure their feasibility in target 

markets and competitive edge (Pulliam et al., 

2020)

BCI continuous 

improvement and 

feedback

BCI users’ feedback collection is insufficient, 

hindering improvement progress

Use effective feedback collection 

mechanisms, such as surveys, user 

communities; adopt data-driven models to 

accelerate BCI product improvement

Collect user feedback, continuously improve and 

optimize BCI systems, enhance user satisfaction 

and product quality (Kübler et al., 2020)

BCI ethics and 

privacy

BCI technology may involve ethical and privacy 

issues

Establish strict ethical and privacy 

protection systems to ensure data security 

and user privacy

Medical institutions should manage BCI-related 

neural data; privacy protection measures can 

be strengthened to ensure neural data 

confidentiality (Klein, 2020; Zhang et al., 2023)
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standards. For instance, there are no BCI paradigms that are highly 
usable and satisfactory to users; how should standards for BCI 
paradigms be established? There are also no brain signal acquisition 
technologies that have high user satisfaction; how should standards for 
brain signal acquisition be  set? What is the appropriate number of 
electrodes for a practical BCI system? Which brain regions’ neural 
activities should be captured? How should standards for BCI decoding 
algorithms be  formulated? Which individuals are most suitable for 
BCIs? What are the optimal application scenarios for BCIs? How should 
standards for BCI neural feedback be  established? How are the 
underlying scientific and technical issues of these questions resolved? Is 
there sufficient evidence to support them? How far is existing BCI 
technology from practical application?

However, other BCI developers believe that BCI technology is 
continuously making breakthroughs, has advanced to a high level, and 
has reached a high degree of technological maturity, making it ready 
for practical applications and the establishment of industry standards. 
These individuals view BCI technology as highly efficacy, with 
intelligence and broad applications, and a large market potential, and 
they are actively pushing for the establishment of BCI industry 
standards. They are keen on establishing industry standards for BCIs, 
possibly because they stand to profit from doing so.

Some BCI developers think that establishing BCI industry 
standards should be  approached with caution, as standards are 
normative documents within the industry that require compliance. 
Additionally, other BCI developers believe that with the development 
of BCI technology, a broad consensus among peers might be needed. 

BCI research consensus is an initiative that will not impose mandatory 
constraints on all BCI developers, nor will it stifle innovation.

The needs and expectations for the standardization of BCI 
technology vary among different stakeholders, as shown in Table 15. 
Although BCI technology is not yet fully mature and lacks sufficient 
consensus and data to support strict industry standards, some 
successful cases in commercial and medical applications have 
demonstrated the potential and necessity for standardization (Maiseli 
et  al., 2023). Future BCI industry standards will need to strike a 
balance between ensuring innovation and promoting application to 
meet the needs of all stakeholders.

6.1.12 What is a BCI chip? What unique structures 
and functions do BCI chips have?

What is a BCI chip (or on-chip BCI)? What unique materials and 
structures do BCI chips have? What unique functions do BCI chips 
perform? What confidential algorithm codes are included in the BCI 
chip? Can a BCI chip integrate BCI paradigms, brain signal 
acquisition, signal processing, decoding algorithms, and neural 
feedback all on one chip? Can a BCI chip construct a complete BCI 
system? If not, what additional hardware and software are needed?

Opinions vary on these questions. Some believe that BCI chips 
can be manufactured and have potential applications. However, others 
believe that hyping BCI chips might involve exploiting the event of 
import chip restrictions with the aim of gaining benefits and honors. 
Some believe that BCI chips are merely specific to biomedical signals, 
only integrating brain signal acquisition, processing, and decoding 

TABLE 15 Needs and expectations of different stakeholders for BCI technology standardization.

Different 
stakeholders

Perspectives Current situation Examples

BCI researchers 

and developers

Researchers and developers need 

innovation and flexibility in BCI 

technology. They believe that industry 

standards may limit innovation, 

especially in the early stages of 

technological maturity

The complexity and diversity of BCI technology 

mean that there is currently no adequate 

common understanding and data to support 

industry standards (Rashid et al., 2020)

In an open innovation environment, multiple research 

teams have made significant progress in the absence of 

unified standards. For example, various BCI applications 

(such as brain-controlled prosthetics and brain-controlled 

games) have achieved different degrees of success 

(Graimann et al., 2010a; Ramsey and Millán, 2020)

BCI businesses 

and investors

BCI businesses and investors generally 

prefer clear standards to ensure 

market consistency and product 

predictability. This helps reduce 

market uncertainty and increase 

investment returns

Some early-stage BCI companies and 

technology leaders (such as Neurable) have 

demonstrated the potential of BCI technology 

in commercial applications, but the market 

lacks unified standards

Neurable developed a smart headband named Enten, 

which claims to help users focus and is considered a 

successful commercialization example of BCI technology, 

showcasing the potential of BCI in consumer applications 

(Li et al., 2022)

Medical 

professionals and 

patients

The medical field has high demands 

for BCI technology but requires strict 

safety and efficacy standards (Pulliam 

et al., 2020). Medical practitioners 

hope to ensure the safety and 

effectiveness of equipment through 

standardization

In medical applications, BCI technology has 

shown its potential in communication devices 

for ALS patients, such as brain-controlled 

prosthetics, which have demonstrated some 

success (Vaughan, 2020), but there is still a lack 

of widely recognized industry standards

The BrainGate project demonstrated the potential of BCI 

technology in the medical field, helping paralyzed patients 

control computers and machinery through brain signals. 

However, these technologies are still in the clinical trial 

stage and have not achieved a high degree of clinical 

standardization (Zhao et al., 2022)

BCI consumers 

and end-users

General consumers hope that BCI 

devices are simple, easy to use, 

affordable, highly reliable, and safe 

(Kübler et al., 2020). Standardization 

can enhance consumer trust and 

acceptance

BCI products (such as brain-controlled toys 

and gaming devices) have developed to a 

certain extent in the consumer market, but 

issues like technology stability and user 

experience remain

For example, Emotiv launched the EPOC+ headband, a 

successful consumer-grade BCI product. It is applied in 

gaming, education, and research, showcasing the potential 

of BCI technology in the consumer market (Vasiljevic and 

De Miranda, 2020)
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algorithms onto a single chip. Others argue that traditional on-chip 
computers, digital signal processors, and very large-scale integration 
(VLSI) chips can also perform brain signal processing and decoding.

Furthermore, under current technological conditions, the notions 
of “intelligent BCI” or “BCI intelligence” technology do not align with 
the reality of BCI technology systems (Chen et al., 2024). Thus, “smart 
BCI chips” or “BCI intelligence chips” may primarily be hyped as 
future competitive technologies that could be restricted. Currently, 
VLSI technology is evolving towards higher integration, lower power 
consumption, higher performance, more functional integration, and 
broader applications. Is this also the direction in which BCI chip 
technology is headed?

7 Conclusion

This review focuses on some current confusion regarding BCI, 
including misleading and hyped propaganda about BCI, and even 
non-BCI technologies being labeled as BCI. Based on existing 
definitions of BCI, it provides a clear definition of BCIs, the six key or 
essential components, and a definite scope for BCI.

The clear definition of BCIs presented in this paper explicitly 
contains BCI paradigms and neural coding, considering them as the 
scientific principles of BCIs. The spatiotemporal-frequency features of 
brain signals induced by BCI paradigms are the basis or prerequisite for 
BCI decoding algorithms to recognize user intentions, which differs 
from previous definitions. In this review’s BCI definition, it is clear that 
the BCI user is a key component of the BCI system, distinguishing from 
some past BCI literature that separates BCI users from the BCI system.

The clear definition and definite scope of BCIs have practical and 
future significance. Scientifically and correctly popularizing BCIs 
holds profound importance, avoids misleading, and is responsible for 
the public. It helps researchers accurately conduct BCI-related 
research and applications, promoting the sustainable research and 
effective application of BCI technology.
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