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Background: The causal relationship between cathepsins and neurological 
diseases remains uncertain. To address this, we utilized a two-sample Mendelian 
randomization (MR) approach to assess the potential causal effect of cathepsins 
on the development of neurological diseases.

Methods: This study conducted a two-sample two-way MR study using 
pooled data from published genome-wide association studies to evaluate 
the relationship between 10 cathepsins (B, D, E, F, G, H, L2, O, S, and Z) and 7 
neurological diseases, which included ischemic stroke, cerebral hemorrhage, 
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral 
sclerosis, and epilepsy. The analysis employed various methods such as inverse 
variance weighting (IVW), weighted median, MR Egger regression, MR pleiotropy 
residual sum and outlier, Cochran Q statistic, and leave-one-out analysis.

Results: We found a causal relationship between cathepsins and neurological 
diseases, including Cathepsin B and Parkinson’s disease (IVW odds ratio 
(OR): 0.89, 95% confidence interval (CI): 0.83, 0.95, p  =  0.001); Cathepsin D 
and Parkinson’s disease (OR: 0.80, 95%CI: 0.68, 0.95, p  =  0.012); Cathepsin E 
and ischemic stroke (OR: 1.05, 95%CI: 1.01, 1.09, p  =  0.015); Cathepsin O and 
ischemic stroke (OR: 1.05, 95%CI: 1.01, 1.10, p  =  0.021). Reverse MR analyses 
revealed that multiple sclerosis and Cathepsin E (OR: 1.05, 95%CI: 1.01, 1.10, 
p  =  0.030). There is currently no significant relationship has been found between 
other cathepsins and neurological diseases.

Conclusion: Our study reveals a causal relationship between Cathepsins B, D, E, 
and O and neurological diseases, offering valuable insights for research aimed 
at improving the diagnosis and treatment of such conditions.
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1 Introduction

Neurological diseases, which are prevalent chronic disabling conditions, can significantly 
impair cognitive function and are characterized by high rates of morbidity, disability, and 
mortality, especially in low- and middle-income countries. As the population ages, 
environmental pollution increases, lifestyles change, and life expectancy rises, the health 
burden of neurological diseases is expected to rise (Cadilhac and Mahal, 2024; Huang et al., 
2023). Despite substantial investments in disease research, the intricate pathogenesis and 
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prolonged prodromal stages of these diseases impede the progress of 
developing effective treatments and prevention strategies. 
Unfortunately, definitive diagnosis often occurs late in the disease 
progression, resulting in missed opportunities for optimal treatment. 
Therefore, there is an urgent need for advancements in disease 
diagnosis. Biomarkers present a promising option for diagnosing 
neurological diseases due to their wide applicability, non-invasiveness, 
easy accessibility, and quantifiable clinical value, offering significant 
research and application potential (Hansson, 2021).

Cathepsins are a type of lysosomal protease commonly expressed 
in tissue cells and classified based on their proteolytic mechanisms 
into serine proteases, cysteine proteases, and aspartic proteases, 
among others (Yadati et al., 2020). Previous studies have demonstrated 
that cathepsins act as endopeptidases in lysosomal vesicles of normal 
cells, playing a significant role in various physiological processes such 
as cell differentiation, apoptosis, intercellular signaling, and 
maintenance of cell homeostasis (Huertas and Lee, 2022). Studies have 
demonstrated that Cathepsin B plays a crucial role in initiating 
neurodegeneration-related cell death and inflammatory processes 
associated with traumatic brain injury and related neurological 
disorders (Ni et al., 2022; Nakanishi, 2020). Furthermore, Cathepsin 
C promotes the polarization of microglia towards the M1 phenotype, 
thereby exacerbating neuroinflammation through the activation of the 
Ca2+ dependent PKC/p38MAPK/NF-κB signaling pathway (Liu et al., 
2019). It is worth noting that, Cathepsin D is responsible for degrading 
misfolded proteins and regulating the activities of various 
polypeptides, enzymes, and growth factors in conditions such as 
Parkinson’s disease and Alzheimer’s disease (Mijanovic et al., 2021; 
Kang et al., 2021). Several observational studies have demonstrated 
elevated levels of Cathepsins H, L, and S in patients with Alzheimer’s 
disease (Pišlar and Kos, 2014), alongside upregulated levels of 
Cathepsins B and D in individuals with Amyotrophic Lateral Sclerosis 
(Stoka et al., 2023). Additionally, upregulation of Cathepsin E has been 
observed in the context of chronic neuroinflammation and brain 
injury (Ni et al., 2015). Animal studies indicate that Cathepsin H may 
exacerbate neurodegenerative diseases by intensifying 
neuroinflammation and contributing to neuronal death (Fan et al., 
2015). Cathepsins S, K, and V are primarily involved in the remodeling 
of the extracellular matrix, which is closely linked to the 
neurodegenerative process (Stoka et  al., 2016). Furthermore, the 
expression of Cathepsins B, D, and L is upregulated in experimental 
stroke models (Huertas and Lee, 2022), while the expression of 
Cathepsins B, D, and X is increased in animal models of Parkinson’s 
disease (Yusufujiang et al., 2024). The findings indicate a potential 
association between cathepsins and the onset and progression of 
neurological diseases. Nonetheless, conventional observational studies 
may be limited by biases and methodological constraints, hindering 
the establishment of a definitive causal relationship.

Mendelian randomization (MR) is a widely utilized technique in 
genetic epidemiology that employs single nucleotide polymorphisms 
as genetic instrumental variables (IVs) and adheres to the principle of 
independent assortment to investigate the causal association between 
specific traits and particular disease outcomes (Smith and Ebrahim, 
2004). Genetic variation genotypes are determined at conception, 
ensuring random allocation and not being affected by disease 
progression. In contrast to observational studies, MR minimizes 
confounding variables, circumvents biases related to environmental 
or lifestyle factors, and eliminates the impact of reverse causality, thus 

providing a more precise indication of causality (Larsson et al., 2023; 
Smith and Ebrahim, 2003). This study examines the causal relationship 
between cathepsins and neurological diseases by analyzing data from 
a thorough genome-wide association study (GWAS).

2 Methods

As a pooled study analysis of publicly available data from GWAS 
studies, all studies underwent review and approval by the respective 
institution’s ethics review board, and every participant was granted 
informed written consent. As a result, no further ethics approval or 
license was necessary.

2.1 Study design

A two-sample two-way MR experiment was conducted to assess 
the causal relationship between 10 cathepsins and 7 neurological 
diseases. The analysis relied on three key assumptions. Firstly, the 
genetic variation of the chosen IVs was reliably associated with the 
exposure factors. Secondly, these IVs were uncorrelated with potential 
confounding factors. Lastly, IVs only impact the outcome through the 
exposure factor and do not have any direct causal effect through other 
pathways. The experimental design is shown in Figure 1.

2.2 Source of IVs for cathepsins and 
neurological diseases

In this study, The 10 cathepsins (B, D, E, F, G, H, L2, O, S, and Z) 
datasets utilized in this study were derived from two extensive 
proteomics investigations (Folkersen et  al., 2020; Folkersen et  al., 
2017). Statistics on neurological diseases are derived from a series of 
extensive GWAS conducted within European populations (Bellenguez 
et al., 2022; Nalls et al., 2019; International Multiple Sclerosis Genetics 
et al., 2019; van Rheenen et al., 2021; Sakaue et al., 2021). Specific 
details are provided in Supplementary Table S1. These samples were 
obtained from independent GWAS databases to ensure minimal 
overlap and bias. The data used in this study can be obtained from the 
Integrative Epidemiology Unit OpenGWAS project database.1

2.3 Study design and selection of IVs

We selected single nucleotide polymorphisms (SNPs) closely 
related to exposure factors (p < 5 × 10−8) as potential IVs 
(Supplementary Table S2). However, after the data for cathepsins other 
than Cathepsin D were subjected to such stringent criteria to eliminate 
linkage disequilibrium, we found ourselves lacking the necessary IVs 
(less than 3) to perform a comprehensive MR analysis. A significance 
threshold of p value less than 5 × 10−6 was used for the other 9 
proteases to identify SNPs strongly correlated with the exposure under 
study (Wang et al., 2023; Zeng et al., 2024).

1 https://gwas.mrcieu.ac.uk
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Subsequently, screening results underwent evaluation for linkage 
disequilibrium removal (LD r2 < 0.001, distance threshold >10,000 kb). 
To ensure the independence of IVs from potential confounders, 
we referred to the IEU database to eliminate SNPs linked to various 
risk factors such as smoking and alcohol consumption. Furthermore, 
SNPs strongly correlated with the outcome were also excluded. Finally, 
we  calculated the F value for each SNP, identifying SNPs with F 
statistics less than 10 as weak IVs, which were then eliminated to 
mitigate bias (Papadimitriou et al., 2020).

2.4 Statistical analyses

Prior to analysis, we aligned the IVs of the exposure group with 
the effect alleles of the corresponding outcomes. This alignment 
helped in excluding ambiguous SNPs with inconsistent alleles and 
filtering out SNPs with ambiguous minor allele frequencies, thus 
ensuring the accuracy of our analysis. In result analysis, Inverse 
variance weighting (IVW) is the primary method used to assess 
overall causal effects (Burgess et al., 2015). IVW assumes that the 
instrumental variable affects the outcome only through the exposure 
factor. It combines effect estimates from multiple independent studies 
and yields statistically significant results when the p value is less than 
0.05. Weighted median and MR Egger methods are utilized to enhance 
the consistency and robustness of our findings, helping to address the 
limitations of IVW estimates (Bowden et al., 2015; Bowden et al., 
2016). It is important to note that the above two methods can 
be statistically inefficient and influenced by abnormal genetic variation.

Horizontal pleiotropy and heterogeneity can significantly 
influence the reliability of MR analysis outcomes. To enhance the 
credibility and strength of our research findings, we  conducted 
essential sensitivity analyses. Heterogeneity was identified using the 
IVW method, with a Cochran Q-derived p value below 0.05 
suggesting the presence of heterogeneity (Burgess et al., 2013). Given 

that a random effects model is utilized, the heterogeneities mentioned 
have minimal influence on the outcomes of our analysis. As a result, 
our conclusions remain primarily reliant on our main analysis 
method. The MR Egger method was utilized to calculate the intercept, 
where a significance level of p < 0.05 suggested the existence of 
horizontal pleiotropic effects (Verbanck et al., 2018). In cases where 
horizontal pleiotropy was observed in the results, we proceeded to 
employ the MR-Pleiotropy Residual Sum and Outlier test to identify 
and remove any outlier SNPs. Subsequently, a leave-one-out analysis 
was conducted to evaluate the impact of individual SNPs on the MR 
estimates, enhancing the credibility of our study. In this study, odds 
ratios (OR) and 95% confidence intervals (CI) were utilized to evaluate 
causality. An OR value less than 1 indicates the exposure is a protective 
factor for the outcome, while a value greater than 1 suggests it is a risk 
factor. MR analysis was conducted using the ‘TwoSample MR’ package 
in R software (version 4.2.3).

We conducted a Bayesian co-localization analysis of cathepsins 
that are significantly associated with neurological disease using the 
“coloc” R package. This analysis aims to determine whether these 
associations are attributable to a shared causal variant or if they are 
influenced by confounding due to linkage disequilibrium 
(Giambartolomei et al., 2014). In conjunction with previous research, 
we  employed the default parameters p1 = 1E-4, p2 = 1E-4, and 
p12 = 1E-5 for this analysis (Chen et  al., 2023). The posterior 
probabilities derived from the co-localization analysis support one of 
the following five hypotheses: PPH0, where SNPs are not associated 
with any traits; PPH1, where SNPs are associated with gene expression 
but not with neurological disease risk; PPH2, where SNPs are 
associated with neurological disease risk but not with gene expression; 
PPH3, where SNPs are related to both neurological disease risk and 
gene expression, but driven by different SNPs; and PPH4, where SNPs 
are related to both neurological disease risk and gene expression, 
driven by shared SNPs. A posterior probability greater than 0.75 for 
PPH4 is considered to be co-localization evidence with high support. 

FIGURE 1

Flowchart of Mendelian randomization study on the causal relationship between cathepsins and neurological diseases.
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PPH4 values less than 0.75 and greater than 0.5 were considered to 
have medium-support for co-localization evidence (Kia et al., 2021).

3 Results

Cathepsins were utilized as an exposure factor to assess its effect 
on the risk of neurological diseases, with the IVW method employed 
as the primary analytical technique. Univariate MR analysis results 
indicated a correlation between higher levels of Cathepsin B (IVW 
(OR): 0.89, 95% (CI): 0.83, 0.95, p = 0.001) and Cathepsin D (OR: 0.80, 
95%CI: 0.68, 0.95, p = 0.012) with a decreased risk of Parkinson’s 
disease. Conversely, elevated levels of Cathepsin E (OR: 1.05, 95%CI: 
1.01, 1.09, p = 0.015) and Cathepsin O (OR: 1.05, 95%CI: 1.01, 1.10, 
p = 0.021) were associated with an increased risk of ischemic stroke. 
No significant relationship was found between other Cathepsins and 
neurological diseases. Causal relationships were tested for 
heterogeneity and horizontal pleiotropy. The p values for both the 
Cochran Q test and the MR Egger intercept were above 0.05, 
indicating no evidence of heterogeneity or horizontal pleiotropy. 
Additionally, the leave-one-out analysis did not reveal any specific 
SNPs that significantly influenced the results, highlighting the 
robustness of these findings.

In addition to the primary analysis, reverse MR analyses were 
conducted to address potential reverse causality. The findings revealed 
a significant association between multiple sclerosis and elevated levels 
of Cathepsin E (OR: 1.05, 95%CI: 1.01, 1.10, p = 0.030), with no 
evidence of heterogeneity or horizontal pleiotropy (Supplementary  
Table S3). Detailed results are provided in Figures 2–4.

Co-localization analysis revealed that the PPH4 value for 
Cathepsin B (PPH4 = 0.705) demonstrated moderate evidence of 
co-localization with Parkinson’s disease (Supplementary Table S4). In 
contrast, the other cathepsins did not yield satisfactory results. 
Nevertheless, it is important to emphasize that negative results do not 

inherently undermine the findings derived from MR (Zuber 
et al., 2022).

4 Discussion

Nervous system diseases often present with an insidious onset and 
a protracted course, with causes and pathogenesis that remain 
incompletely understood, posing a significant threat to a patient’s 
health and quality of life. Cathepsin is known for its diverse biological 
functions, with past research suggesting potential links to neurological 
diseases through processes like protein decomposition, metabolic 
regulation, and inflammatory response. Through a two-way MR 
analysis of two samples, a potential association between cathepsins 
and neurological diseases was observed. Specifically, Cathepsin B and 
Cathepsin D were found to be protective against Parkinson’s disease. 
Conversely, Cathepsin E and Cathepsin O were found to be  risk 
factors for ischemic stroke. Additionally, reverse MR indicated that 
multiple sclerosis is associated with reduced Cathepsin E levels.

Cathepsin B, a lysosomal hydrolase, plays a significant role in 
lysosomal storage disorders that share similar pathological features 
with Parkinson’s disease (Shachar et al., 2011). Various genetic studies 
on Parkinson’s disease have suggested that both common and rare 
variants in the CTSB gene, which encodes Cathepsin B, may increase 
the risk of developing PD (Chang et  al., 2017; Milanowski et  al., 
2022). Previous research has shown that Cathepsin B is crucial for 
lysosomal degradation of α-synuclein, promoting the clearance of 
fibrillar α-synuclein in dopaminergic neurons and enhancing 
lysosomal function (Jones-Tabah et al., 2023). Additionally, Cathepsin 
B activity may also boost the function of glucocerebrosidase, encoded 
by the glucocerebrosidase gene. Notably, 5 to 10% of Parkinson’s 
disease patients exhibit mutations in the glucocerebrosidase gene 
(Schapira, 2015). This will result in reduced or absent 
glucocerebrosidase activity in macrophages, leading to the 
accumulation of glucocerebrosidase in lysosomes. This accumulation 

FIGURE 2

Forest plots of significant estimates of MR analyses. (A) Cathepsin B on neurological diseases. (B) Cathepsin D on neurological diseases. (C) Cathepsin 
E on neurological diseases. (D) Cathepsin O on neurological diseases. (E) Multiple sclerosis on cathepsins.
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hinders α-synuclein degradation and promotes aggregation, 
ultimately resulting in the loss of cell function (Beutler, 2006). 
Maintaining normal levels of Cathepsin B could potentially have a 
beneficial impact on the treatment of Parkinson’s disease, while low 
levels of Cathepsin B may indicate a higher clinical risk for developing 
the disease.

Cathepsin D, a lysosomal proteolytic enzyme, is highly expressed 
in the brain. Its proteolysis plays a crucial role in the intracellular 

degradation of misfolded or non-functional proteins through 
autophagy or endocytosis, thereby maintaining the stability of nerve 
cells. This stability is particularly important for long-lived post-mitotic 
cells like neurons (Aufschnaiter et al., 2017). Research indicates that 
neurodegenerative diseases such as Parkinson’s disease feature protein 
aggregates of α-synuclein and amyloid precursors, which can result 
from genetic mutations or oxidative damage. Cathepsin D has shown 
effectiveness in degrading these key neuronal proteins (Kang et al., 

FIGURE 3

Scatter plot with forward causality in Mendelian randomization. (A) Cathepsin B on Parkinson’s disease. (B) Cathepsin D on Parkinson’s disease. 
(C) Cathepsin E on ischemic stroke. (D) Cathepsin O on ischemic stroke. (E) Multiple sclerosis on Cathepsin E.

FIGURE 4

Leave-one-out sensitivity analysis with forward causality in Mendelian randomization. (A) Cathepsin B on Parkinson’s disease. (B) Cathepsin D on 
Parkinson’s disease. (C) Cathepsin E on ischemic stroke. (D) Cathepsin O on ischemic stroke. (E) Multiple sclerosis on Cathepsin E.
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2021). A study highlighted a significant interaction between the 
α-synuclein aggregation pathway and the role of lysosomal cathepsin. 
α-synuclein appears to directly inhibit the enzymatic function of 
cathepsin, leading to disruption in lysosomal transport. This 
disruption ultimately decreases the proteolytic activity of cathepsins, 
impacting α-synuclein clearance and potentially initiating a 
detrimental cycle of impaired α-synuclein degradation (Drobny et al., 
2023). On the other hand, in cases where mutations in coding genes 
lead to reduced Cathepsin D enzyme activity in cell lysosomes, 
proteins, and other substances are not properly broken down and 
accumulate within lysosomes throughout the body. This accumulation, 
in the form of lipofuscin, results in neuronal damage (Drobny et al., 
2023; Mijanovic et al., 2021). Therefore, it is essential to investigate the 
strong correlation between Cathepsin D and Parkinson’s disease, as it 
could potentially serve as a promising target for the treatment and 
prevention of this neurodegenerative disorder.

Cathepsin E is an intracellular aspartic protease that belongs to 
the pepsin superfamily. Previous studies have examined its expression 
in neurons and microglia to a certain extent (Chlabicz et al., 2011). 
Upregulation of Cathepsin E is predominantly associated with chronic 
neuroinflammation and brain injury. This upregulation may 
be attributed to the release of TNF-related apoptosis-inducing ligands 
by microglia surface proteolysis, which in turn modulates microglia 
activation via NF-κB, leading to accelerated plaque accumulation and 
deprivation of essential nutrients for cells (Ni et al., 2015). Regulation 
of intracellular levels of Cathepsin E in neurons occurs at both 
transcriptional and translational levels, and increased expression of 
Cathepsin E in damaged neurons and activated microglia in 
pathological brains can result in structural and functional alterations 
in neurons (Harada et al., 2017). Additionally, in the context of lipid 
metabolism and inflammation, cathepsins play a role in the formation 
of necrotic cores and foam cells, contributing to the development of 
atherosclerotic plaques through processes such as extracellular matrix 
remodeling and apoptosis (Ni et al., 2015). The formation of plaque 
plays a crucial role in the development of ischemic stroke. This process 
triggers an inflammatory response around the plaque, leading to 
gradual narrowing of the artery wall. If the thrombus dislodges, it can 
obstruct blood flow to the cerebral arteries, resulting in damage, 
necrosis, and softening of brain tissue (Endres et  al., 2022). The 
upregulation of Cathepsin E may potentially hasten the progression 
of ischemic stroke. However, existing research on the correlation 
between Cathepsin E and ischemic stroke is limited, highlighting the 
necessity for more comprehensive studies to uncover the 
underlying mechanisms.

Cathepsin O is a type of cysteine protease. This type of protease 
is not only involved in intracellular protein degradation, but also 
has multiple functions, such as extracellular matrix protein 
degradation and signal transduction (Vidak et  al., 2019). 
Throughout the progression of atherosclerosis, cysteine proteases 
play a significant role in the remodeling of extracellular matrix 
proteins, ultimately impacting the composition of elastin and 
collagen. Additionally, these proteases have a direct influence on 
the uptake, metabolism, and alteration of lipoproteins by 
macrophages, ultimately leading to the development of foam cells 
that are laden with lipid droplets (Wu et al., 2018). Upon the death 
of foam cells, plaques consisting of cellular debris, cholesterol, 
fibrous tissue proliferation, and calcium deposits are formed, 
ultimately leading to the development of atherosclerosis (Kim, 

2021). As the disease progresses, damage to the vascular 
endothelium leads to the release of cathepsins, which then trigger 
inflammation and immune responses in peripheral blood vessels. 
This process leads to elastinolysis, recruitment of inflammatory 
cells, vascular apoptosis, and angiogenesis, all of which contribute 
to the deterioration of the intravascular environment and hasten 
the progression of ischemic stroke. It is important to note that 
there is a relative scarcity of research on Cathepsin O, and its 
precise role in ischemic stroke remains unclear. Therefore, further 
investigation into the relationship between the two is 
highly warranted.

Reverse MR analysis indicates a correlation between multiple 
sclerosis and increased levels of Cathepsin E. Multiple sclerosis is a 
progressive inflammatory demyelinating disease of the central 
nervous system. Current research suggests that the adaptive 
immune system, particularly T and B lymphocytes, plays a crucial 
role in driving the disease process (Jakimovski et al., 2024). This 
involvement includes atypical macrophages, antibody and 
complement activation, and immune-mediated apoptosis leading 
to damage to myelin and neurons. Cathepsins, as regulators of the 
immune system, have been implicated in immune imbalance 
(Shimizu et al., 2017). Studies have shown increased expression of 
cathepsins in both multiple sclerosis patients and animal models 
(Baeva et  al., 2024; Shimizu et  al., 2017). Inhibiting different 
cysteine cathepsins may have a protective effect. Another hypothesis 
suggests that neuroimmune communication by neutrophil activity 
may have a connection to Cathepsin E (Harada et  al., 2019). 
Neutrophils can trigger mechanical allodynia, and neuropathic pain 
often manifests before neurological symptoms in individuals with 
multiple sclerosis. This leads to the hypothesis that cathepsins could 
play a role in immune processes during the early stages of disease 
progression. However, due to the current lack of relevant studies, 
the exact relationship between these factors remains unclear, 
highlighting the need for further research.

This study investigated the causal relationship between cathepsins 
and neurological diseases. The findings regarding Cathepsin B and its 
association with Parkinson’s disease align with previous MR studies 
(Yusufujiang et al., 2024), thereby reinforcing existing knowledge. 
Importantly, this research expands the disease scope of investigation 
beyond earlier studies. The study also found a causal relationship 
between Cathepsin D and Parkinson’s disease, as well as between 
Cathepsin E and both stroke and multiple sclerosis, and between 
Cathepsin O and stroke. These insights may enhance our 
understanding of cathepsin related neurological diseases and inform 
potential treatment strategies.

This study has several limitations. First, the GWAS data used in 
the study were limited to the European population, which may 
constrain the generalizability of our findings. To enhance the 
strength of the evidence, expanding the study population is 
necessary to assess the generalizability of these findings to other 
ethnic groups such as Asia and Africa. Second, due to database 
constraints, we relaxed the threshold for screening IVs to ensure an 
adequate number of IVs for the study. This may have implications 
for the statistical power of the study, necessitating caution when 
interpreting the results. Lastly, our study is grounded on the 
theoretical link between cathepsin and neurological diseases, which 
calls for more extensive research to elucidate the mechanism of 
action and clinical significance further.
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5 Conclusion

In conclusion, our study identified a causal relationship between 
Cathepsins B, D, E, and O and neurological diseases. This relationship 
may be  linked to the involvement of cathepsins in inflammatory 
response, neuronal protein clearance, and extracellular matrix 
remodeling. To enhance clinical diagnostic and therapeutic 
effectiveness, additional experiments are required to elucidate the 
underlying mechanisms.
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