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In this manuscript, we investigate the memristor-based implementation of

neuronal ion channels in a mathematical model and an experimental circuit

for a neuronal oscillator. We used a FitzHugh-Nagumo equation system

describing neuronal excitability. Non-linearities introduced by the voltage-gated

ion channels were modeled using memristive devices. We implemented three

basic neuronal excitability modes including the excitable mode corresponding

to a single spike generation, self-oscillation stable limit cycle mode with periodic

spike trains and bistability between a fixed point and a limit cycle. We also found

the spike-burst activity of mathematical and experimental models under certain

system parameters. Modeling synaptic transmission, we simulated postsynaptic

response triggered by periodic pulse stimulation. We found that due to the

charge accumulation e�ect in the memristive device, the electronic synapse

implemented a qualitatively bio-plausible synapse with a potentiation e�ect with

increasing amplitude of the response triggered by a spike sequence.

KEYWORDS

memristor, device, neuron, FitzHugh-Nagumo generator, ion channels, synaptic

potentiation

1 Introduction

Neuromorphic systems reproducing neuronal circuits and functions of the brain

have attracted growing attention of researchers from different fields of science and

technology. Spiking neuronal networks employ memristive devices to implement neuronal

and synaptic components. Engineering of spiking neuronal networks and corresponding

processing functions nowadays look as one of the most intriguing directions in

neuromorphic system development (Makarov et al., 2022; Dalgaty et al., 2024).

Memristors are electronic components based on the resistive switching (RS) effect

(Chua, 2019), possessing at least two stable states that differ in their own resistance—a state

with high (HRS) and low (LRS) electrical resistance. Devices utilizing this effect retain the

acquired information in the form of resistance, the evolution of which is characterized by

the restructuring of the atomic structure in thin insulating (dielectric) layers of nanometer-

scale thickness under the stimulus of an electric field. Employing memristors as elements

in electronic circuits have opened wide possibilities of designing non-linear oscillators

with a variety of complex dynamical modes including chaos and multistability (Minati

et al., 2020; Gokyildirim et al., 2022; Wang et al., 2022; Boudjerida et al., 2023; Chen

et al., 2019; Spagnolo et al., 2022; Corinto and Forti, 2017). Possibility of complex
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non-linear dynamics and unique (biomimmetic) electro-physical

properties with energetic efficiency has made memristors to be the

most promising candidates for constructing biologically plausible

neuron models and neuromorphic computations (John et al., 2022;

Indiveri et al., 2013; Pisarev et al., 2020; Shchanikov et al., 2021).

Specifically, memristors were used to simulate the dynamics of

voltage-gated ion channels of neuron membrane. Implementation

of rather simple potassium channels was discussed in Najem et al.

(2018), Thomas (2013), Yi et al. (2018), and Gonzalez-Raya et al.

(2020). More complex Hodgkin-Huxley neuron model employing

both sodium and potassium channels was realized in Lv et al.

(2016), Jeong et al. (2016), Sah et al. (2014), Gonzalez-Raya et al.

(2019), and Hu and Liu (2019). Our recent study was reported on

memristor-based implementation of FitzHugh—Nagumo (FHN)

spiking neuron model that can reproduce both excitable and

oscillatory neuronal dynamics (Kipelkin et al., 2023).

Synaptic plasticity is one of the fundamental properties of

living neuronal systems responsible for basic cognitive functions

of the brain such as learning and memory (Sun et al., 2024;

Kotaleski and Blackwell, 2010). Signals are transmitted between

neurons via special biological devices called synapses. The strength

of the synaptic connection is defined by complex chemical

molecular transformations that occurs in both presynaptic

(transmitter) neuron and postsynaptic (receiver) neuron (Lynch,

2004). Specifically, long-term changes in the connection strength

are localized mostly in the postsynaptic neuron. When a spike

is transmitted, the postsynaptic membrane, similarly to basic

neuronal excitability, opens its ion channels and ions, particularly

Na+ and K+, cross the membrane generating postsynaptic

potentials (Nadler, 2012). Interestingly, that is, the synapse is

transmitting a series of; each consequent spike may induce voltage

responses of variable amplitudes. If each next spike generates

a stronger response of increasing amplitude, then the synaptic

potentiation takes place (Vyazovskiy et al., 2008). So, the synaptic

connection amplifies its strength. In the opposite case, there is a

synaptic depression. The type of synaptic plasticity is defined by

the neuron type and also by the dynamical characteristics of the

transmitted signals, for example, frequency of spike and/or relative

phase of the spike occurrences.

For neuron models describing ion channels, information

processing and encoding can be described by the dynamics of the

action potential. However, due to the stochasticity and sensitivity

of memristors, which affect dynamic processes, more in-depth

mathematical and experimental studies are needed to control

the behavior of devices and prevent undesirable effects through

operational control.

Based on the above sources and existing problems,

we investigated a 3D model of neuronal excitability,

implemented by two memristor-based FHN generator

circuit. We employed memristive devices with different

electrode compositions Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass and

Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass to mimic ion channels. By

extending the equations and modifying the scheme proposed

earlier (Kipelkin et al., 2023), we presented mathematical and

experimental investigation of the model. Experimental data

obtained as a result of hardware measurements qualitatively

confirm the computational modeling. We also analyzed how the

electronic neuron responded on a spike sequence. Similarly to a

postsynaptic neuron in real neuronal networks, our memristor-

based device demonstrated synaptic potentiation when each next

spike induced the response of growing amplitude.

2 Materials and methods

2.1 Memristive devices

To simulate neuron ion channels, we used two non-volatile

memristive devices of the bipolar switching type having different

electrodes. Figure 1 illustrates the experimental current-voltage

characteristics on a logarithmic scale along the ordinate axis

of the multistable devices Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass and

Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass, respectively, with different metal

contact interfaces that demonstrate reproducible bipolar switches

between the LRS and HRS states.

To create memristive devices on a glass substrate, Torr

International’s 2G1-1G2-EB4-TH1 vacuum film deposition system

and standard photolithography equipment were used. ZrO2 films

were deposited using high-frequency magnetron sputtering from a

target made from a mixture of ZrO2 (0.88 shares) and Y2O3 (0.12

shares) powders at a temperature of 250 ◦C. The metal electrode

layers were then applied using magnetron sputter at direct current

and 200 ◦C. The ZrO2 film has a thickness of 20 nm. The top

electrode was a 20 nm Au film with a 40 nm Ta or Ru sublayer.

The bottom electrode was Pt film with a thickness of 40 nm

and Ti sublayer, that is, 20 nm thick. Detailed information on

the technological processes can be found at Khan et al. (2019),

Gorshkov et al. (2016), Yildirim and Pachter (2019), Mikhaylov

et al. (2015), Mikhaylov et al. (2020), and Baranova et al. (2020).

Identification of electrical parameters in continuous and pulse

modes was carried out using an Agilent B1500A semiconductor

analyzer with a sweeping rate of 7.25 V/s. Connections to contact

pads of the device were carried out using the Everbeing EB-

6 probe station. We used current compliance (CC) of 1 mA.

We took all measurements at room temperature and normal

atmospheric pressure. The voltage offset on the device corresponds

to the potential difference between the top electrode (Au) and the

grounded bottom electrode (Pt).

We used Ru and Ta top electrodes with differences in resistive

switching parameters in our memristive devices. In particular,

the RHRS of the memristive devices on the Ru and Ta electrode

corresponds to ≈ 10 − 12 k�. The RLRS values ≈ 700 � for Ta

and ≈ 200 � for Ru. The process of RS is closely linked to the

diverse materials used for the top electrode, the mechanisms of

switching, and the nature of electronic transport. Various metals

exhibit different oxygen affinities, leading to distinct redox reaction

processes and the formation of defects in metal oxides. We can

estimate the approximate values of switching dynamic ranges using

the values above for the electrode using Ta: RHRS
RLRS

= 20 and for

the electrode using Ru: RHRS
RLRS

= 60. Our experiments indicate that

memristive devices have different resistance values in different

resistive states. This range of values can vary from cycle to cycle as

well as from device to device. The variation in the characteristics

of memristive devices was taken into account as follows. In
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FIGURE 1

Experimental current-voltage characteristics of non-volatile devices. (A) Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass, (B) Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass. Arrows

show the voltage sweep. The number of characteristics taken was 100 pcs. (C) Schematic cross section of the Au(20nm)/Ta(40nm) or

Ru(40nm)/ZrO2(Y)(20nm)/Pt(40nm)/Ti(20nm)/grass memristive device.

our experiments, we observed a random value of the switching

voltage (Vset) during initial measurements. This observed value was

applied to the device in subsequent measurements. Each time a

switching cycle occurred, we introduced a random perturbation to

the Vset threshold. The distribution of this random variable can

be modeled using a normal distribution. This approach is also

applicable to other relevant parameters, including the switching

voltages, memristor resistances in the HRS and LRS, as well as the

potential barriers for ion and electron transport. At the same time,

the devices had reproducible characteristics for neuromorphic

computing, possessing stable and gradual resistive switching of

the bipolar type (Gorshkov et al., 2014; Hu et al., 2024). The

corresponding voltage changes as SET and RESET transitions were

given with interval values for the electrode based on Ru: Vset = 4 V,

Vreset = −2 V, and for electrode based on Ta: Vset = 1 V, Vreset =

−1.4 V. Statistical data on the memristive devices under study are

presented in Supplementary material.

2.2 Mathematical model

The dynamics of neurons was determined by a modified

FitzHugh-Nagumo (mFHN) model. This model is based

on the assumption that ion currents associated with nerve

pulse conduction can be divided into fast-acting and slow-

acting components. These components are responsible for

generation, adhesion, and rest, respectively, of the membrane.

The mathematical description of the model is introduced by the

equations obtained and investigated in Binczak et al. (2006):







·
u = F1,2(u)− ϑ +Wex
·
ϑ = ε · [g(u)− ϑ − η]

, (1)

The fast variable u describes the membrane voltage of the

neuron. ϑ qualitatively describes the dynamics of slow (potassium)

currents. Wex is an external pulse current with a certain duty cycle

(Q) and amplitude (Aex), respectively. Function g(u) is a piecewise

linear function determined by the polarity of the voltage on the

neuron membrane, g(u) = α · u for u < 0 and g(u) = β · u if

u ≥ 0, where α=0.78 and β=1.86 are the constants that determine

the dynamics of the recovery ϑ . ε is the parameter that controls

the level of depolarization and therefore determines the dynamic

model of the neuron, and η is a constant parameter. We have added

a detailed description of the derivation of Equation 1 and placed it

in the Supplementary material.

F1,2(u) = γ1 · I1 · d1 + γ2 · I2 · d2 (2)

The function presented in Equation 2 is a non-linear function

defined as the sum of the product of the current in the

memristor and its active load d (load resistance). Coefficient γ1,2
is determined from the method of the least squares approximation

of current-voltage characteristic and having the dimension V−1.

The indices 1 and 2 denote Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass and

Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass devices, respectively. The current

itself consists of the product of the current density and the fixed

area of the electrodes (Sel) of the memristor, I1 = j1 · Sel.
Mathematical expressions for the current densities were used

in the following form (Chua and Kang, 1976) (Equations 3–5).

j1,2 = x1,2 · jlin1,2 + (1− x1,2) · jnonlin1,2 (3)

{

jlin1,2 = |u| · σ−1
1,2

jnonlin1,2 = |u| · B · exp(b1,2 ·
√
|u| − Eb1,2 )

(4)
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·
x 1,2 =















A · exp(−Em1,2 − δ1,2 · u) · f1,2(x1,2, p), u > Vset

0,Vreset < u < Vset

−A · exp(−Em1,2 + δ1,2 · u) · f1,2(x1,2, p), u < Vreset

(5)

where j1,2 is the current density going through the memristor,

which consists of a linear component (jlin1,2 ) and a non-

linear component (jnonlin1,2 ), σ1,2 is a specific resistance, u is

external voltage acting on the input of device, and B,A, b1,2, δ1,2
are constants determined from experimental data (from the

approximation of the current-voltage characteristics of the

corresponding device). Energy values Eb1,2 , Em1,2 denote effective

barriers for electron jumps and oxygen ion hopping, respectively.

State variable x1,2 has a probabilistic nature describing how current

density can randomly change in the range from 0 to 1. When x1,2
= 1, the memristive device is highly conducting (low resistance

state). When x1,2 = 0, the memristive device is in the high resistance

state, and the change in this quantity (x1,2) corresponds to the drift

velocity of ions in the dielectric layer, exponentially dependent on

the applied voltage to the device.

To correctly implement (Equation 5), we introduced the

window function using (Joglekar and Wolf, 2009).

f1,2(x1,2, p) = 1− (2 · x1,2 − 1)2p (6)

The proposed window function restricts the dynamic

(Equation 6) in an acceptable range, satisfying the boundary

conditions, f (0) = f (1) = 0 for all positive values of p. Equations

describing the variable x1,2 derive from the diverse internal

processes of filament development in our memristive device. A

detailed description of parameters is presented in Mishchenko

et al. (2022), and the values are in Supplementary material.

Summarizing Equations 1–6 we obtained the following 3D

system of differential equations:

·
u = |u|

∑

1,2 γ1,2 · [x1,2 · σ
−1
1,2 + (1− x1,2) · B · exp(b1,2

·
√
|u| − Eb1,2 )] · Sel1,2 · d1,2 − ϑ +Wex

·
ϑ = ε · [g(u)− ϑ − η] (7)

·
x 1,2 =















A · exp(−Em1,2 − δ1,2 · u) · f1,2(x1,2, p), u > Vset

0,Vreset < u < Vset

−A · exp(−Em1,2 + δ1,2 · u) · f1,2(x1,2, p), u < Vreset

Integration of Equation 7 was implemented using a built-in

MATLAB solver of ordinary differential equations based on the

Runge—Kutt (RK4) algorithm with the following fixed parameters:

integration error: ψ = 10−10; constant step: s = 0.02 and initial

conditions (-0.65, 0, 0.00001, 0.00001).

2.3 Experimental model

Figure 2A illustrates experimental circuit simulating a

postsynaptic neuron modeled by mFHN (Gerasimova et al., 2021;

Kipelkin et al., 2023; Binczak et al., 2006). The circuit includes

a counter-parallel connection of two memristors M1 and M2

simulating Na+ and K+ ion channels of neuronal membrane,

respectively (Figure 2A3). The input block (Figure 2A1) of the

circuit consists of a power source, which is a 1.5 Volt battery

(Vbattery), and a potentiometer R1 ∈ [0;150] k�, which is used to

switch dynamic modes. The input block also includes a source of

external stimulus (Vexternal), created by the KEYSIGHT 33600A

random pulse generator, which has a 14-bit capacity and sampling

frequency of 120 MHz. Next, the signal propagates through

the circuit and enters the coupling RL generator (Figure 2A2)

implemented with the MC1458L operational amplifier with a

resistance value of R = R5 and inductance L = C1R4R5. The

output block (Figure 2A4) includes a capacitor Cout , which creates

a voltage drop across the channels, and an adjustable variable

resistor R8 ∈ [0;10] k� which changes the amplitude and duration

of oscillations at the output. The entire process of signal flow can

be considered as the accumulation of potential on the neuron

membrane.

The block diagram of the experimental setup is shown

in Figure 2B. Agilent B1500a analyzer is used to analyze the

characteristics of memristive devices. The signal generated by the

analog neuronal oscillator was recorded on the Cout capacitor

and then read using 1 channel by an ALFATEC S7-334 digital

three-channel oscilloscope with a sampling rate of 5 GHz.

The inbound signal from the external stimulus was displayed

in channel 2.

3 Results

3.1 Simulations of the mathematical model

First, we consider how the memristive neuron modeled by

Equation 7 responded to stimulation pulses of different amplitudes

(Aex). Figures 3A, B illustrate the results of computational

modeling. Increasing of the pulse amplitude upper certain

threshold led to generation of the response pulse. The pulse

shape was qualitatively similar to neuronal excitability mediated by

sodium and potassium transmembrane currents.

With prolonged external stimulus, the neuron switched to

a self-oscillatory mode and generated a periodic sequence of

pulses, qualitatively similar to regular oscillations of the membrane

potential in real neurons of the 3rd excitability class (Izhikevich,

2007). Note that the model dynamics demonstrates the qualitative

match of the main characteristics and properties of the pulses with

biological action potential properties, including the existence of

a threshold leading to an "all-or-none" response, as well as the

presence of refractory periods.

In addition, the amplitude of the external impact determines

one of the three possible dynamic modes of the memristive neuron

including excitable, bistable, or oscillatory ones. According to the

bifurcation diagram in Figure 3C, a region of bistability emerges in

the dynamics of the memristive neuron (Equation 7). Bistability,

in this case, means that, depending on the initial conditions of

the system, for example, (u0,ϑ0, x01, x
0
2), the neuron can either

maintain a resting potential or generate a periodic sequence of

spikes. In other words, in the phase space of the dynamical system

given by Equation 7, a stable fixed point coexists with a stable limit

cycle. We found that for the set of parameters used, the bistability
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FIGURE 2

System for conducting an experiment on non-volatile memristive devices. (A) The experimental mFHN model circuit is based on memristive devices

that simulate sodium and potassium ion channels in biological neurons. Memristor M1 is based on the Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass device, and M2

describes the Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass memristive device. R6 and R7 are load resistances for the corresponding memristive devices.

(B) Schematic illustration of experimental setup recording signals from the memristive neuron electronic circuit. Processing and visualization of the

recorded transient processes is carried out using the OriginPro 2019b software.

FIGURE 3

Results of computational modeling on the response of a memristive neuron to external impulse stimulation. (A) Membrane potential response to a

single subthreshold, threshold, and suprathreshold signals. The threshold value of the membrane potential is −30mV. (B) Type of stimulation of the

membrane potential. The dotted line indicates the pulse generation threshold. Pulse duration in the first three cases was 11 ms. Model parameters: ε

= 0.009, η = 0.1. (C) Bifurcation diagram illustrating the excitable, bistable, and self-oscillatory modes of the memristive neuron, filmed during

forward and reverse passage of external stimulus. The diagram on the left shows an example of a trajectory on the plane (u,ϑ ) for the excited mode

and on the right for the self-oscillating mode.

region appeared in the range of voltages 120 µV ≤ Aex ≤ 200

µV. The excitable mode, in which the resting potential is stable,

and when the threshold is exceeded, one or more pulses are

generated is realized at Aex <120 µV. For Aex > 200 µV, the

resting potential loses stability and self-oscillations emerge in the

system via a subcritical bifurcation scenario. Corresponding stable
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FIGURE 4

Computational modeling of Equation 7 for a constant voltage level stimulation. (A) Bursts composed of three spikes for ε= 0.0028 , η = 0.068 and d1=

875, (B) Bursts composed of six spikes for ε= 0.0049 , η = 0.074 and d1 = 927. The fixed value is d2= 4,300. (C) The form of stimulating the form of

stimulating voltage.

FIGURE 5

Electronic circuit waveforms driven by stimulation square pulses with a given duration and a fixed amplitude of 120 millivolts. (A) Single pulse

response to a short stimulation of 0.074-s duration. (B) Two consequent spikes in response to the 0.18-s stimulus. (C) Multiple spike responses to the

2-s stimulus. (D) The constant level depolarization yields a periodic spike sequence. (E) The experimentally spontaneous spike-burst oscillations for

R1 = 121 k�, R8 = 7.8 k� and 120 mV external stimulation voltage.

limit cycle attracts all trajectories representing only one attractor.

Bifurcation point Aex =120 µV corresponds to the fold limit cycle

bifurcation. In the case of increasing voltage, the 2-fold limit cycle

is divided into robust stable and unstable limit cycles. The unstable

limit cycle disappears at Aex =200 µV via subcritical Andronov-

Hopf bifurcation. According to Izhikevich’s classification,
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FIGURE 6

Mechanism of spike generation. The resting potential is indicated in

black. The depolarization—green. The repolarization—dark red. The

hyperpolarization in blue.

our neural model can be defined as a bistable resonator

(Moehlis, 2008).

Interestingly, the specific parameter range of the model

demonstrated spike-burst oscillations. In the case of ε ∈
[0.001;0.006], η ∈ [0.06;0.08], d1 ∈ [840;985] and for fixed d2
= 4300, we observed the spike-burst dynamics with a different

number of spikes in the burst as illustrated in Figure 4.

3.2 Electronic circuit experimental study

After checking the performance of the generator (using the

system in Figure 2), by calibration, we applied an external unipolar

time-dependent effect to the input and changed the values of the

R1 potentiometers in the range from 0 to 100 k� and R8 from 0 to

5 k�. As a result, we observed a variety of output signals similar

to typical biological neuron responses including both single and

multiple activities with a certain number of spikes, as shown in

Figure 5.

The mechanisms of spike generation in the memristor-based

circuit (Figure 2A) can be qualitatively described similarly to the

processes of depolarization, repolarization, and hyperpolarization

as follows (Figure 6).

The conductive filaments inside the memristive devices were

induced by the same voltage U. The counter-parallel connection of

the devices ensures the flow of current in the opposite direction.

If the voltage U was low enough (under 100 millivolts), then the

current passed through only one memristor (M1). Consequently,

the capacitor (Cout) receiving this current was slowly charging

(hyperpolarization). Gradually increasing the voltage U to a certain

threshold value (∼120 millivolts), the second memristor (M2) also

began to conduct current that went completely to the capacitor

causing a voltage jump (depolarization). In turn, the first memristor

started to discharge the capacitor receiving a strongly negative

current reducing its voltage U to zero (repolarization), after which

the process can start again. This whole process was qualitatively

analogous to the voltage avalanches in biological neurons caused by

the successive opening and closing of the ion channelsNa+ andK+.

With a further increase in the values of potentiometers R1 and

R8, well as the replacement of the load resistance R6 = 700 � (with

fixed R7 = 4.3 k�), the memristive neuron generated spontaneous

spike-burst oscillations (Figure 5E) in response to a constant pulse

of external stimulation. The first spike was caused by external

stimulation, while subsequent spikes were formed spontaneously

due to the intrinsic stochastic nature of the memristive devices and

continue with constant voltage drive. Note that the combination

of two memristive devices working in counter-parallel was crucial

to generate the spike-burst oscillations. If only one memristor was

used, such dynamics was not possible.

3.3 Simulation of synaptic potentiation

In our neuron, two memristive devices simulating sodium and

potassium ion channels determined non-linearity and excitability.

Next, we checked whether such a circuit can generate a variable

response, for example, the synaptic plasticity, on a series of

pulse stimulations. Figure 7 illustrates simulation results of the

memristive device responses on a series of pulse stimulations. A

pulsatile signal was applied on the two counter-parallel memristors

simulating Na+ and K+ ion channels. For relatively low amplitude

of the stimulation pulses, the consequent response pulse had equal

amplitudes. However, for increasing amplitude, we found that each

forthcoming pulse had a larger amplitude than the previous one. In

other words, the effect qualitatively similar to synaptic potentiation

in neurons takes place in the memristive neuron. The memristive

devices simulate the functionality of the postsynaptic part of the

synaptic transmission. The larger the stimulation pulse amplitude,

the higher strength of the potentiation was observed.

The stochastic nature of non-volatile memristive devices

determines the mechanism of synaptic potentiation, which leads

to an increase in the coupling between the memristive devices.

For a qualitative analysis of the phenomenon, we considered

a region of non-linearity in the circuit (Figure 7 input point

1) where a positive square pulse of various amplitudes was

supplied, ranging from 0.2 to 1.3 V and with a duty cycle of

0.3. The input voltage of the memristive devices led to the

appearance of the output current, taking into account the internal

resistance of the devices, the values of which were taken from

points 2 and 3 for the devices Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass

and Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass, respectively. When a

subthreshold voltage of ∼0.2 V was applied, there was no synaptic

potentiation (Figure 7C). The transient current characteristics for

all periodic voltage pulses showed relatively weak activity and

subsequent attenuation in time because the memristive devices

remained in their original state of static conductivity. However, we

can notice that as the voltage increases, there is a gradual increase

in conductivity within the memristive devices that leads to minor

potentiation and an increase in current characteristics over time

(Figure 7D). With a sufficient level of input voltage in memristive

devices, there was a steady trend toward a linear increase in the

temporal characteristics of the current (Figure 7E), associated with

an increase during the synaptic potentiation. We also conducted
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FIGURE 7

Illustration of synaptic potentiation e�ect in the memristive devices. (A) Scheme of the experiment with counter-parallel memristive devices

Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass and Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass. A section of the whole circuit was taken from Figure 2A3. (B) Stimulation signal.

Transient current characteristics with (C) absence, (D) weak, and (E) strong synaptic potentiation of memristive devices at di�erent voltage

amplitudes (shown in the figure). The blue color corresponds to the device Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass, and the red color corresponds to

Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass.

a more in-depth analysis of the postsynaptic nature of memristive

devices, establishing an interesting pattern and presenting it in

Supplementary material.

Next, we investigated whether the entire electronic circuit

(Figure 2A) based on Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass and

Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass demonstrates the synaptic

potentiation. Simulating the corresponding dynamical system

(Equation 7), we found that the effect of synaptic potentiation can

be induced by a sequence of low-frequency spike train as illustrated

in Figure 8.

To illustrate the mechanism of synaptic potentiation, we used

a split time scale derived from device state functions. According

to Figure 8B, we chose a time interval of up to 3 s. In this range,

the devices exhibitedmixed dynamics due to the intrinsic stochastic

nature and manifested through a step-exponential transition from

HRS to LRS. The results of the computational modeling indicated

a change in the shape of the transient characteristics of the

current depends on the type of stimulation. If we used inbound

spikes (Figure 8A) with negative values, the output current has

also of negative values (Figures 8C, D). Note that saturation of

synaptic potentiation was achieved quicker with a decrease in the

frequency of stimulation, but with a less pronounced change in the

conductivity of the devices (Figures 8C, D).

4 Discussion

To highlight the potential of our study, we present a

comparative table that evaluates our proposed model against

(Huang et al., 2021) (The model 1) and (Nabil et al., 2022) (The

model 2), both qualitatively and quantitatively. We compared the

following model parameters (Table 1):

- the structural composition of the insulator used in thememristive

devices;

- mathematical model of a neuron describing the ionic dynamics

of a system;

- the number of adjustable parameters in the modeling

process;

- consideration is given to the internal dynamics of the memristive

devices, including ion and electron transport processes within the

filament;

- the mathematical model is experimentally validated using

electrical circuits and physical memristive devices;

- availability of statistical data on the current-voltage

characteristics of physical memristive devices with different

compliance current values;

- the number of memristive devices used in the model or

circuit;

- the operating voltage range of the memristive device;

As shown in Table 1, the proposed model offers several

advantages. It was more flexible possessing 16 independent

parameters that offered better opportunity for fine tuning the

desired dynamical mode. Next, it permitted an experimental

validation using physical memristive devices supported by

statistical data.We also employed twomemristive devices imitating

different channels making the model more attractive in terms of its
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FIGURE 8

Synaptic potentiation in the memristive neuron model (Equation 7) based on two memristive devices. (A) An example of low-frequency spike activity

with an amplitude of 1 V and a frequency of 3 Hz. (B) The state variable of the memristive devices (Equation 5). The inset shows an enlarged scale.

The jump corresponds to the switching of the memristive device in response to a spike. Comparative characteristics of the potentiation mechanism

at a frequency of (C) 3 Hz and (D) 8 Hz. The yellow color corresponds to the device Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass, and the green color corresponds

to Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass. Detailed information about the figures is in Supplementary material.

TABLE 1 Qualitative and quantitative comparison of the existed neuronal ionic dynamics models.

N Items Our model The model 1 The model 2

1 Insulator structure ZrO2 NbOx VO2

2 Neuron model mFHN SRM neuron LIF

3 Number of model parameters 16 8 11

4 Internal dynamics of the memristive devices Yes No No

5 Experimental validation Yes No No

6 Statistical data Yes No No

7 Number of memristive devices 2 1 1

8 Operating voltage range, V 4 - 7 4 2

biological plausibility. Technically, our model demonstrated wider

voltage range for the memristive devices what was also important

for the model tuning. Finally, we believe that our model could

be an appropriate candidate in the development of large-scale

non-linear oscillators using memristive devices. Further exploring

the model in theoretical part, we will focus on research into

chimera states and analysis of potential chaotic oscillation modes.

In technical development, particular attention will be given to

integrated implementation. This is expected to lead to reduced

energy consumption and increased stability, primarily due to

the miniaturization of microscale memristors and other circuit

components.

5 Conclusion

We proposed a mathematical and experimental

model that simulates neuronal excitability and synaptic

potentiation. The model was implemented by counter-parallel

connection of memristive devices with different electrode

compositions based on Au/Ta/ZrO2(Y2O3)/Pt/Ti/glass and

Au/Ru/ZrO2(Y2O3)/Pt/Ti/glass of the mFHN generator circuit.

The memristive devices had reliable characteristics possessing

stable and gradual bipolar type resistive switching. To describe

the model, we proposed a three-dimensional system of non-linear

equations that describes three dynamic modes corresponding to
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excitable, self-oscillatory, and bistable neuronal dynamics. We

have discovered that the system can demonstrate burst activity

at a certain value of the ε parameter and the inbound external

rectangular signal. A hardware implementation of a postsynaptic

neuron model based on two counter-parallel memristive devices

was developed. We verified computational modeling results

with physical prototype memristive neurons in various modes:

oscillations and multiple spike activity. We found that in addition,

the simulation of neuronal excitability, using two counter-

parallel memristive devices, can also model the effect of synaptic

potentiation. The effect synaptic potentiation is manifested in

the increase of the current amplitude in response to a series of

pulse stimulations with constant amplitude. In other words, the

memristive circuit proposed in the study can reproduce synaptic

plasticity which is the basic feature of connectivity in the brain’s

neuronal circuit responsible for the generation of higher cognitive

functions.
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