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The affective Brain-Computer Interface (aBCI) systems strive to enhance prediction 
accuracy for individual subjects by leveraging data from multiple subjects. However, 
significant differences in EEG (Electroencephalogram) feature patterns among 
subjects often hinder these systems from achieving the desired outcomes. Although 
studies have attempted to address this challenge using subject-specific classifier 
strategies, the scarcity of labeled data remains a major hurdle. In light of this, 
Domain Adaptation (DA) technology has gradually emerged as a prominent 
approach in the field of EEG-based emotion recognition, attracting widespread 
research interest. The crux of DA learning lies in resolving the issue of distribution 
mismatch between training and testing datasets, which has become a focal point 
of academic attention. Currently, mainstream DA methods primarily focus on 
mitigating domain distribution discrepancies by minimizing the Maximum Mean 
Discrepancy (MMD) or its variants. Nevertheless, the presence of noisy samples 
in datasets can lead to pronounced shifts in domain means, thereby impairing 
the adaptive performance of DA methods based on MMD and its variants in 
practical applications to some extent. Research has revealed that the traditional 
MMD metric can be  transformed into a 1-center clustering problem, and the 
possibility clustering model is adept at mitigating noise interference during the data 
clustering process. Consequently, the conventional MMD metric can be further 
relaxed into a possibilistic clustering model. Therefore, we construct a distributed 
distance measure with Discriminative Possibilistic Clustering criterion (DPC), which 
aims to achieve two objectives: (1) ensuring the discriminative effectiveness of 
domain distribution alignment by finding a shared subspace that minimizes the 
overall distribution distance between domains while maximizing the semantic 
distribution distance according to the principle of “sames attract and opposites 
repel”; and (2) enhancing the robustness of distribution distance measure by 
introducing a fuzzy entropy regularization term. Theoretical analysis confirms 
that the proposed DPC is an upper bound of the existing MMD metric under 
certain conditions. Therefore, the MMD objective can be effectively optimized 
by minimizing the DPC. Finally, we propose a domain adaptation in Emotion 
recognition based on DPC (EDPC) that introduces a graph Laplacian matrix to 
preserve the geometric structural consistency between data within the source and 
target domains, thereby enhancing label propagation performance. Simultaneously, 
by maximizing the use of source domain discriminative information to minimize 
domain discrimination errors, the generalization performance of the DA model 
is further improved. Comparative experiments on several representative domain 
adaptation learning methods using multiple EEG datasets (i.e., SEED and SEED-IV) 
show that, in most cases, the proposed method exhibits better or comparable 
consistent generalization performance.
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1 Introduction

Within the research domain of affective computing (Mühl et al., 
2014), Automatic Emotion Recognition (AER; Dolan, 2002) has 
garnered extensive interest and attention from researchers in the field 
of computer vision (Kim et al., 2013; Zhang et al., 2017). To date, 
numerous emotion recognition methods based on 
Electroencephalogram (EEG) have been successively proposed 
(Zheng, 2017; Li X. et al., 2018; Pandey and Seeja, 2019; Jenke et al., 
2014; Musha et al., 1997). From the perspective of machine learning, 
EEG-based AER tasks can be formulated as classification or regression 
problems for processing (Kim et al., 2013; Zhang et al., 2017). In such 
tasks, state-of-the-art AER techniques often involve training classifiers 
on data from multiple subjects to achieve precise emotion recognition. 
However, classifiers that rely on specific subjects typically exhibit 
limited generalization capabilities due to significant variations in 
emotional expression patterns across different subjects (Pandey and 
Seeja, 2019). By optimizing feature representations and learning 
models (Li et al., 2018a, 2018b, 2019; Du et al., 2020; Song et al., 2018; 
Zhong et al., 2020; Zheng and Lu, 2015a, Zheng et al., 2015b), the 
accuracy of emotion recognition has been significantly improved. 
Given the inherent individual differences in EEG-based AER, applying 
the learned classifiers to unseen subjects may yield unsatisfactory 
results based on qualitative and empirical observations (Ghifary et al., 
2017; Lan et al., 2018; Jayaram et al., 2016; Zheng and Lu, 2016; Wang 
et al., 2022). To address this issue, one potential solution is to adopt 
subject-specific classifiers, but this approach is often impractical due 
to the scarcity of training data. Furthermore, even if this approach is 
feasible in certain scenarios, fine-tuning the classifier to maintain its 
good recognition performance is indispensable, partly because EEG 
signals from the same subject can change over time (Zhou et al., 2022). 
To tackle these challenges, the Domain Adaptation (DA) learning 
paradigm has emerged and has been widely and effectively applied 
(Patel et al., 2015; Dan et al., 2022; Tao et al., 2017, 2021, 2022; Zhang 
Y. et  al., 2019). This paradigm aims to enhance the learning 
performance of the target domain (where labeled samples are scarce 
or absent) by transferring and leveraging prior knowledge from other 
related but differently distributed domains (i.e., source or 
auxiliary domains).

To achieve effective knowledge transfer across different 
professional domains, the crux lies in ensuring similarity or 
consistency in data distributions between the source domain and the 
target domain. Since the discrepancies in data distributions are 
particularly pronounced and more complex in sentiment analysis and 
other emotionally related fields, a significant challenge is posed for 
Domain Adaptation (DA) learning at present. Currently, a commonly 
adopted approach in the field of DA learning is to address distribution 
differences by identifying features (or samples) that remain constant 
across different domains (Pan and Yang, 2010; Patel et al., 2015). In 
order to more effectively leverage these domain-invariant features, 
traditional shallow DA models have gradually evolved into deep DA 
models. These deep DA models (Long et al., 2015, 2016; Chen et al., 
2019; Lee et al., 2019; Ding et al., 2018; Tang and Jia, 2019) with their 

profound feature transformation capabilities have made notable 
advancements in adaptive learning. Although deep DA models can 
mitigate the impact of distribution differences between domains when 
dealing with large datasets, they have not yet fully resolved the issue 
of domain shift. Deep DA methods exhibit robust performance. The 
specific mechanisms underlying these effects remain unclear, since 
these advantages may stem from various factors such as deep feature 
representations, model fine-tuning, or adaptive regularization. More 
importantly, the learning outcomes of these methods still lack 
adequate explanation and validation at both theoretical and 
practical levels.

To better characterize the generalization capability of shallow DA 
algorithms, existing theoretical research on DA has proposed [i.e., the 
generalization error bound (Ben-David et al., 2010)] for DA by the 
following inequality:
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Based on Equation 1, it can be seen that the upper bound of the 
expected error ( )e h  of the target hypothesis h is mainly determined 
by three aspects: the expected error ( )e h  of the source domain 
hypothesis, the distribution discrepancy ( ),d     between the 
source and target domains, and the discrepancy in the labeling 
functions between the two domains. Therefore, to reduce the DA 
generalization error, in addition to retaining the discriminative 
information of the source domain (the first aspect), it is also necessary 
to consider reducing the distribution discrepancy between domains 
(the second aspect) and the discrepancy in the labeling functions 
between domains (the third aspect). Accordingly, current mainstream 
DA methods can be  divided into those based on distribution 
alignment (including instance weighting and feature transformation) 
and those based on classifier model alignment (Gretton et al., 2007; 
Chu et al., 2013; Pan et al., 2011; Long et al., 2013; Luo et al., 2020; 
Baktashmotlagh et al., 2013; Ganin et al., 2016; Kang et al., 2022; Liang 
et al., 2019; Tao et al., 2012; Tao et al., 2015; Tao et al., 2016; Tao 
et al., 2019).

To address the challenges posed by domain distribution shift, 
early research endeavors adopted an instance weighting strategy. 
This strategy involves calculating the probability of each sample 
belonging to either the source or target domain, referred to as the 
instance’s membership weight, and subsequently mitigating the 
domain shift issue by re-weighting the samples. Among these 
techniques, the Maximum Mean Discrepancy (MMD; Gretton 
et  al., 2007) has been widely applied due to its simplicity and 
effectiveness. However, its optimization process is often isolated 
from the training of the classifier, making it difficult to achieve 
simultaneous optimization of both. In response to this limitation, 
Chu et  al. (2013) proposed a domain-adaptive classifier that 
integrates instance weighting. In order to further transcend the 
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constraints imposed by the assumption of conditional distribution 
consistency in instance weighting methods, feature transformation 
methods have become a focal point of research in recent years 
(Pan et al., 2011; Long et al., 2013; Luo et al., 2020; Baktashmotlagh 
et al., 2013; Kang et al., 2022; Liang et al., 2019). For instance, Pan 
et al. (2011) introduced the Transfer Component Analysis (TCA) 
method. This approach aims to minimize the MMD distance 
between the source and target domain distributions by learning a 
transformation matrix while preserving the original variance of 
the data. Unfortunately, it does not take into account the semantic 
consistency alignment across different domains. To address this, 
Long et al. (2013) proposed the Joint Domain Adaptation (Joint 
DA, JDA) method, which not only considers feature distribution 
alignment but also accounts for conditional distribution 
alignment, and initializes the category labels of the target domain 
using pseudo-labels. More recently, Luo et al. (2020) presented a 
unified domain adaptation framework, DGA-DA, that synthesizes 
the ideas of TCA and JDA. This framework introduces a strategy 
of inter-domain dissimilar exclusion and retains the geometric 
structure information of domain data, thereby effectively 
facilitating the propagation of target labels. Most existing affective 
models are based on deep transfer learning methods utilizing 
domain-adversarial neural networks (DANN; Ganin et al., 2016), 
as seen in studies (Li et al., 2018c; Li et al., 2018d; Du et al., 2020; 
Luo et al., 2018; Sun et al., 2022). DANN aims to find a shared 
feature representation for both source and target domains with 
indistinguishable distribution differences while maintaining the 
predictive capacity of the features on source samples for specific 
classification tasks. Additionally, the framework preserves the 
geometric structure information of domain data to ensure 
effective target label propagation. Baktashmotlagh et al. (2013) 
introduced the Domain Invariant Projection (DIP) algorithm. 
This algorithm applies a polynomial kernel to the MMD metric, 
aiming to construct a compact shared feature space and minimize 
the intra-class scatter through a clustering-based method.

A comprehensive review of the current state of Domain 
Adaptation (DA) research reveals that Maximum Mean 
Discrepancy (MMD) is a widely employed measure of distribution 
distance in the field of feature transformation. Traditional 
MMD-based DA methods primarily focus on reducing the 
distribution discrepancies between different domains. However, 
these methods often overlook the statistical (clustering) structure 
of the target domain data, which can adversely affect the inference 
of target domain labels. To address this issue, Kang et al. (2022) 
proposed an unsupervised DA method known as the Contrastive 
Adaptation Network. This approach hypothesizes the labels of the 
target domain through clustering and utilizes contrastive difference 
metrics in multiple fully connected layers to adjust the feature 
representations, aiming to minimize intra-class domain differences 
and maximize inter-class domain differences. During the training 
process, the hypotheses of target labels and feature representations 
are iteratively optimized in a cross-manner to enhance the model’s 
generalization capability. Concurrently, inspired by clustering 
methods, Liang et  al. (2019) developed an effective Domain 
Invariant Projection Ensemble method. This method leverages 
clustering principles to seek the optimal projections among various 
categories within the domain, thereby narrowing the semantic gap 
between domains and enhancing the cohesion of intra-domain 

categories. Nevertheless, these methods essentially remain within 
the scope of MMD-based feature transformation DA methods.

It is worth noting that existing MMD-based methods did not fully 
consider the impact of intra-domain noise when measuring domain 
distribution distance. In real scenarios, noise inherently exists in 
domains. The intra-domain noise can lead to mean-shift problems on 
distance measure by traditional MMD methods and their variants. 
This phenomenon to some extent is affecting the generalization 
performance of MMD-based DA methods (Tao et al., 2023).

Fortunately, the proposed possibilistic clustering models 
(Krishnapuram and Keller, 1993; Dan et  al., 2021) offer a 
comprehensive solution to the aforementioned issues. Unlike hard 
clustering models, possibilistic clustering effectively suppresses noise 
interference during the data clustering process (Dan et al., 2021). 
Inspired by this, the traditional MMD metric is relaxed into 
one-center center objective to tackle the mean shift problem of 
domain distributions in noisy environments. The possibilistic 
one-center center model with a fuzzy entropy regularization term is 
reconstructed. Then, we propose a distributed distance measure with 
Discriminative Possibilistic Clustering (DPC) criterion, and further 
develop a domain adaptation in Emotion recognition based on DPC 
model (EDPC). EDPC mainly comprises two jointly optimized 
components: DPC and classifier. First, DPC seeks a shared latent 
space to achieve discriminative alignment of overall domain 
distribution and inter-domain semantic distribution, the samples 
adhering to the principle of attract each other with similar class and 
repulse each other with different class. Clustering membership is 
adopted to indicate the likelihood of each sample being consistent 
with the overall domain distribution. It aims to suppress the impact 
of noisy data during domain matching and enhance the robustness 
and effectiveness of domain distribution clustering metrics. Second, 
in the classifier model learning phase, a graph Laplacian regularization 
term is introduced to preserve the local geometric structure of sample 
in the latent domain space to improve the performance of domain 
label propagation. Finally, we  gain superior knowledge transfer 
performance by maximizing the utilization of source domain 
discriminative information minimizing the discriminative error in 
the target domain. The EDPC method will be evaluated in emotion 
recognition. Compared to other state-of-the-art methods, this 
approach demonstrates significant performance improvements in 
most cases. The major novelties of the proposed EDPC are 
summarized as follows:

	 1	 To address the noisy problem in existed methods, we establish 
a robust distributed distance measure with Possibilistic 
Clustering by relaxing the traditional MMD metric criterion 
into a possibilistic one-center center model. From a theoretical 
point of view, we proposed measure method serves as an upper 
bound to the traditional MMD metric under certain conditions.

	 2	 The samples follow the principle of “attract each other with 
similar class and repulse each other with different class,” 
we extend and establish a robust distributed distance measure 
with Discriminative Possibilistic Clustering (i.e., DPC) metric 
criterion. Based on this, we  seek to optimize a domain-
invariant subspace that achieves joint alignment of overall 
domain distribution and inter-domain semantic distribution.

	 3	 We propose a unified domain adaptation Emotion recognition 
model based on DPC (i.e., EDPC). An iterative optimization 
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algorithm is provided. We  finally prove its consistent 
convergence and propose a generalization error bound for the 
model based on Rademacher complexity theory.

	 4	 Extensive experiments on six real-world datasets validate the 
robust effectiveness of the proposed method.

2 Proposed method

In DA learning, the source domain is defined as { }
1

,
ns s

i i
i

x y
=

= , 

where the sample set is defined as 1 , ,s s s d n
nX x x × = … ∈   , and the 

corresponding class labels are defined as { } { }1, ,y 0,1T n Cs
nY y ×= … ∈ . 

Here, { } { }1, , 0,1T n Cs
nY y y ×= … ∈  is a one-hot encoded vector; if ˆix  

belongs to the j-th class, then 1j
iy = . The unlabeled target domain is 

defined as { } 1
ˆ

mt
j

j
x

=
=

, where the sample set and unknown sample 

labels during training are 1 ,ˆ ,ˆ ˆt t t d m
mX x x × = … ∈   , 

{ }1, , Tt m C
mY y y ×= … ∈ , respectively. We  further 

define ˆ ,ˆ ˆs t d NX X X × = ∈    and ,s t N CY Y Y × = ∈   , where 
N n m= + . Let sµ  and tµ  be the mean values of the samples in the 
source and target domains, respectively. Our work has the 
following assumptions:

	 1	 The source domain distribution   and the target domain 
distribution  are different, but they share the same feature 
space , i.e., ( ) ( )≠     and =   , where 

, ∈     are the feature spaces of the source domain and 
the target domain, respectively.

	 2	 The class-conditional probability distributions between 
domains are different but they share the same label space  , 
i.e., ( ) ( )≠        , where , ∈     are the label 
spaces of the source domain and the target domain, 
respectively.

The rest of this section is organized as follows. In Subsection 2.1, 
we give the general formulation of the proposed method. We describe 
the details of the general formulation in Subsection 2.2 about 
discriminative possibilistic clustering (i.e., DPC) formulation and 
Subsection 2.3 about the classifier in emotion recognition with 
DPC. The final detail formulation is showed in Subsection 2.4.

2.1 General formulation

To effectively align domains’ distribution and achieve maximum 
knowledge transferring, this paper seeks to optimize a domain-
invariant subspace d rP ×∈ , where r is the subspace dimension and 
making P be an orthogonal subspace (i.e., TP P I= , r rI ×∈ is the 
identity matrix). In other words, Our work is to achieve 

( )( ) ( )( )P P≈     and ( )( ) ( )( )P P≈         in the 
optimized domain-invariant subspace P.

For the problem of DA in complex structures and noisy 
environments, we aim to improve the robustness of distribution 
distance metrics for DA and enhance generalization in the target 
domain. Based on the DA generalization error theory (Ben-David 

et  al., 2010), we  explore to achieve the following two core 
objectives: First, we  construct a robust distribution distance 
metric that can resist the impact of noise for addressing the issue 
of domain mean-shift. The differences of domains distribution 
can be  selectively corrected. Second, we  effectively perform 
semantic reasoning in the target domain by maintaining the 
geometric structure consistency of samples in domain and 
connecting the discriminative information of the source domain 
and minimizing the discriminative error in the target domain. The 
a highly generalizable target domain classifier be  constructed. 
Therefore, our general framework can be described as following:

	

( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

,P, , min ,

P , ˆ

.

ˆ

ˆ P P ,Pˆ

.

ˆ
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s t s t
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T

Y W R f P Y

s t P P I

X

X X X Xλ

λ

α β

Θ =

+ Ω − Ω

= 	

(2)

where the first term is the empirical risk function of the decision 
function ( )( )ˆWf P X  on the domain sample, W  represents the 
model parameters, and ( ).R  is the empirical loss function. It can 
be chosen according to different application needs. The second term 
is a regularization term that measures the semantic distribution 
discrepancy between   and   in the domain-invariant 
subspaceP. λ denotes the clustering membership degree. The last 
term aims to enhance the discriminative ability for the second term. 
The orthogonal constraint TP P I=  serves as a regularization 
constraint on P. It does not need to be described in the objective 
function. Two hyper-parameters (i.e., 0α ≥  and 0β ≥ ) are used to 
measure the semantic distribution discrepancy and the inter-classes 
distribution discrepancy of the two domains, respectively. 
Therefore, the subspace P, the membership degree λ, and the 
decision function ( )Wf ⋅  can be  learned simultaneously during 
optimizing the Problem 2.

2.2 Discriminative possibilistic clustering 
formulation

The rest of this subsection is organized as follows. In 2.2.1, we give 
the motivation of the proposed method DPC and proof the MMD 
metric can be relaxed and modeled as a special one-center clustering 
problem. We then explain all details of DPC metric in 2.2.2.

2.2.1 Motivation
In a certain Reproducing Kernel Hilbert Space (RKHS)  , the 

original space data is transformed into feature representations in the 
RKHS through a nonlinear mapping : d Hφ → . The corresponding 

kernel function is defined as ( ) ˆ.,. : X̂ XK × →  , where 

( ) ( ) ( ), ,ˆ ˆ ˆ ˆx x xK xφ φ=     , 1 2 Xˆ ˆ ˆ,x x ∈ . Here, ( )x̂φ  is a feature 

mapping function that maps samples from the original space to a 
high-dimensional or even infinite-dimensional space (i.e., the RKHS 
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). For uniform representation, the mapping result is defined 
as following:

	
( )

, linear kernel mapping
,. , non linear kernel mappiˆ n

ˆ
g

x
x

xk


= 
 -

where ( ) ( ) ( ) ( )1 2,. , , ,ˆ , , ,ˆ ˆ ˆ ˆ ˆ ˆ T
nk x x x x xk k k x x=  …    is called the 

empirical kernel mapping [32]. Then sX and tX  respectively represent 
the unified representation of linear kernel mapping and nonlinear 
kernel mapping of ˆ sX  and ˆ tX . Accordingly, X ,Xs tX  =  

.

Therefore, we  try to learn a DA learning machine 
( )( ) ( )'ˆ ˆT xf Wxφ φ= . Thus, the formal description of Problem 2 can 

be rewritten in Equation (3):
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β
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(3)

In classical DA research, a commonly adopted strategy to address 
the domain mean-shift problem is to reduce the distribution distance 
between the source domain and the target domain in a certain latent 
feature space. This involves identifying a feature descriptor space, 
where MMD is a frequently used method to measure the distribution 
difference between two domains. MMD utilizes the framework of 
RKHS to effectively quantify the gap between two distributions [as 
described in references (Bruzzone and Marconcini, 2010; Gretton 
et al., 2010)]. It is assumed that there exists a set   containing all 
domain-invariant transformation matrices P (i.e., 

{ }|r TG P P P I= ∈ ==  ) in this framework. The maximum empirical 
mean discrepancy between the source domain distribution  and the 
target domain distribution  can be defined in Equation (4):

	
( ) ( ) ( )
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1 1

1 1,
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According to Hoeffding’s inequality theorem, when the domain 
sample size is sufficiently large (or approaches infinity), the expected 
difference and the empirical mean difference are approximately (or 
equal). To illustrate the generalized connection between the traditional 
MMD criterion and the mean clustering model, the following theorem 
is presented:

Theorem 1. The MMD metric can be relaxed and modeled as a 
special one-center clustering problem, where the clustering center of 
the one-center is µ  and the sample clustering membership is the 
vector ς .

Proof: From the definition of empirical MMD, we  have (let 

( )XX P←  for simplify):
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where the cluster center is defined as ( )s 1 tµ δµ δ µ= + − , 0 1δ≤ ≤
; when n = m,1 let 0.5δ = ; the sample membership of the one-center 
center { } 1

N
k kς ς ==  is defined in Equation (6):
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By analyzing Equation 5, it can be inferred that the one-center is 
µ  actually constitutes an upper bound of the traditional MMD metric. 
It means that the MMD metric can be simplified to a special form of 
the one-center objective function. In this case, it is possible to 
minimize the MMD between different domains by optimizing this 
special clustering objective.

According to Theorem 1 and the explanation in Baktashmotlagh 
et al. (2013), it can be recognized that the MMD metric standard for 
domain distribution is essentially related to the clustering model. It is 
possible to more effectively achieve distribution alignment between 
different domains promote domain adaptive learning by clustering 
domain data. It should be noted that traditional clustering models are 
usually sensitive to noise (Krishnapuram and Keller, 1993), which 
limits MMD-based DA methods and make them prone to domain 
mean-shift issues in noisy environment. To address this challenge, 
we further explore more robust clustering methods and propose a new 
discriminative domain distribution distance metric criterion in 
following subsection.

1  When n m≠ , we can draw an equal number of samples from the source 

domain and the target domain, respectively.
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2.2.2 Discriminative possibilistic clustering

2.2.2.1 Possibilistic clustering
Recently proposed probabilistic clustering methods have been 

proven to effectively mitigate the negative impact of noise on clustering 
results (Dan et al., 2021). In light of this, this section extends the original 
one-center method to the realm of probabilistic one-center. Then 
we propose a Possibilistic Clustering distribution distance metric in 
domain-invariant subspace P, namely PC. We  extends the hard 
clustering approach of MMD to a soft clustering form by incorporating 
the concept of possibilistic clustering entropy. In this framework, each 
sample determines its contribution based on its distance from the 
overall domain mean (that is, the greater the distance of the data sample, 
the lower its contribution, and conversely, the more likely it is considered 
as noise). In this way, PC allows for the attenuation of the impact of 
mean-shift caused by noise during domain alignment through 
adjustment. Therefore, the formula for the possibilistic clustering 
distribution distance metric can be defined as follows:

	

( ) ( ) ( ) 2

1
, , P

. .,0 1, 1, ,

N
s t b

kk H
k

k

PC X X x P

s t k N

λ λ µ

λ
=
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≤ ≤ = …

∑

	

(7)

where [ ]1, , Nλ λ λ= …  is the possibilistic clustering membership 
vector, the parameter b is the weight exponent of kλ is used to adjust 
the uncertainty or degree of samples belong to multiple categories. To 
avoid trivial solutions, we set 2b =  in the subsequent formulas. The 
detailed introduction to different values of b is referred to 
(Krishnapuram and Keller, 1993). According to Equation 7, 

( ), ,s tPC X X λ  is a possibilistic one-center objective function (with 
the cluster center being µ). When 2

kkλ ς= , ( ), ,s tPC X X λ  represents 
the aforementioned special form of one-center. Next, we verify that 
the proposed ( ), ,s tPC X X λ  is an upper bound of the traditional 
MMD metric at a certain condition by the following theorem:

Theorem 2. When the possibilistic clustering membership 
satisfies 1 ,1k r

λ  ∈   

 ( 1, ,k N= … ), the possibilistic distribution distance 

metric ( ), ,s tPC X X λ  is an upper bound of the traditional 
MMD metric.

Proof: Combining Equations 5 and 7, we can obtain:
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(8)

According to the value range of kς , when ( )1 ,1k rλ  ∈  
 and 

( )r min ,n m= , the second inequality in Equation 8 holds true and the 
conclusion is proved.

Guided by Theorem 1 and Theorem 2, we are able to reconstruct 
the traditional MMD metric into a function that targets 1-center 

probabilistic clustering. From this new perspective, we can gain a 
profound understanding that the objective of probability distribution 
distance measure is not only to facilitate effective adjustment of feature 
distributions across different domains but also to mitigate the negative 
transfer effects induced by intra-domain noisy data during the 
training process.

In the PC described in Equation 7, its primary objective is 
centered on reducing the statistical distribution discrepancy 
between the source domain and the target domain. However, this 
method fails to adequately emphasize the importance of preserving 
the semantic structural information of instances during the process 
of domain distribution matching. This approach may compromise 
the ability to distinguish between categories within the domains. To 
preserve the distinctiveness of the statistical distribution structures 
between domains, we further propose a Discriminative PC model 
(i.e., DPC). This model aims to implement discriminative statistical 
distribution alignment between the source and target domains 
while adjusting the semantic distribution through a clustering 
hypothesis based on likelihood.

The samples adhere to the principle of “attract each other with 
similar class and repulse each other with different class.” DPC criterion 
aims to achieve dual objectives: first, it reduces the distribution bias of 
similar samples within different domains, thereby minimizing 
semantic differences between domains; second, it increases the 
distribution gap between different classes of samples within different 
domains by enhancing the differentiability of domain samples.

2.2.2.2 DPC with Intra-class alignment
In the PC model shown in Equation 7, the process of domain 

distribution alignment does not consider the semantic structure 
information of samples. This oversight may compromise the local 
discriminative structure between different categories within the 
domain. To address this issue, Tao et al. (2016) proposes further 
considering the semantic distribution structure between domains 
during the alignment process and evaluating the contribution of each 
sample to semantic matching. Hence, we have the following DPC 
framework with semantic registration functionality by extending the 
PC model:
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(9)

where ( )s, ,1c c t cµ δµ δ µ= + − , , ,
0 1

1 cnC
s

s c i c
c i

x
n

µ
= =

= ∑∑ , 

, ,
0 1

1 cmC
t

t c j c
c j

x
m

µ
= =

= ∑∑ , 0,1,2, ,c C= … , C is the number of classes in the 

target domain, cn  is the number of samples in the c th−  class of the 
source domain, cm  is the number of samples in the c th−  class of the 

target domain, 
0

C
c

c
n n

=
= ∑ , and 

0

C
c

c
m m

=
= ∑ . When 0c = , ,s cµ  and ,t cµ  

represent the mean of the entire source domain and the entire target 
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domain, respectively. Equation 9 is the form of feature distribution 
alignment. When [ ]1,2, ,c C∈ … , ,s cµ  and ,t cµ  represent the mean of 
the corresponding classes in the source domain and target domain, 
respectively. ,k cλ  is the matching contribution value of kx  belonging to 
the c th−  category in the domain.

To enhance the robustness and effectiveness of the possibilistic 
clustering distribution distance measure method in handling noisy data, 
a fuzzy entropy regularization term, which is related to the parameter 

,k cλ , is introduced based on Equation 9. With this improvement, the 
DPC for semantic alignment can be redefined as following:
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(10)

where the parameter β  serves as an adjustable balancing factor, 
aimed at ensuring that the value of the relevant data ,k cλ  remains at a 
high level to avoid obtaining trivial solutions that lack discriminative 
power. The improved DPC model now becomes a function that 
monotonically decreases as the value of ,k cλ  decreases. This model uses 
the second term in Equation 10, namely fuzzy entropy, to mitigate the 
adverse impact of noisy data on the model’s classification decisions. An 
increase in fuzzy entropy signifies an enhancement in the discriminatory 
information content of samples, which plays a positive role in 
strengthening the robust effectiveness of distribution distance measures. 
Furthermore, the introduction of a fuzzy entropy-regularized possibility 
distribution distance measure model can effectively limit the influence 
of noisy data in domain distribution alignment, reducing the interference 
of noise or outlier data in the domain adaptation learning process. For 
more details and empirical analysis on how fuzzy entropy improves 
robustness, refer to the discussion in reference (Gretton et al., 2010).

2.2.2.3 DPC with Inter-class discrimination
The intra-class alignment neglects inter-class discrimination. 

We therefore add an additional inter-class repulsion term into the 
DPC model to increase the inter-class distance across domain. It 
enhances the semantic discriminatory of samples in the domain-
invariant subspace and improves the robustness and effectiveness of 
domain adaptation learning. Specifically, let ( ) ( )( )P ,Ps t

rep X XΩ  
be the inter-domain different classes repulsion term, which is defined 
as the total difference between the mean of each class cL  and the mean 
of all other classes ( ) { } { }{ }: 1, ,Ccc cc cL ∈ … −  (excluding class c). That is:
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where,
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2.3 Induction Learning

The DPC criterion effectively addresses the challenges of 
domain distribution alignment and noise interference. Building 
upon this, we  dedicate to achieving two core objectives in the 
process of target domain knowledge inference: (1) maintaining the 
consistency of geometric structures between the source domain 
and the target domain, ensuring that label information for 
neighboring samples remains consistent; and (2) striving 
simultaneously to minimize the structural risk loss between the 
source domain and the target domain. Through the description of 
the target task, the general form of the target risk function can be 
described in Equation (12):

	 ( )( )( ),W Y WR f P X Y = Ω +Ω 	
(12)

where YΩ  represents the joint knowledge transfer and label 
propagation loss, which preserves the geometric structure 
consistency of the sample in both the source and target domains, 
and WΩ  includes the structural risk loss terms of the source 
domain and target domain. Next, we  will design these two 
terms separately.

2.3.1 Label Propagation
Firstly, we define the undirected weighted graph on the entire domain 

as ,MG X= , and let N NM ×∈  be the weight matrix and 0ij jiM M= ≥ .  
The calculation method for ijM  is defined in Equation (13):
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(13)

where ( )k mx Ne x∈  indicates that kx  is a neighbor of mx , σ  
controls the local influence range of the Gaussian kernel function and 
is also a hyper-parameter. The larger σ , the greater local influence 
range. Conversely, the smaller local influence range. When σ  is fixed, 
the value of ijM  decreases monotonically as the distance between ix  
and jx  increases.

By combining source domain knowledge transfer and the graph 
Laplacian matrix (Long et  al., 2013; Wang et  al., 2018), label 
propagation modeling is performed as:
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( )min tr Y LYT

Y
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(14)

where [ ]Y Y ;Y N C
s t

×= ∈ , Yt  is the label matrix of the target 
domain. If a sample in the target domain is unlabeled, the 
corresponding label value in Yt  is all zeros. Ys  is the label matrix 
of the source domain. N NL M D ×= − ∈  is the Laplacian graph 
matrix (Long et  al., 2013) and D  is a diagonal 
matrix with 

1

N
ii ij

j
D M

=
= ∑

.

2.3.2 Design of Structural Risk
In our method, the source domain classifier sf  and target domain 

classifier tf  are defined as ( )' T s
s s sf W X b= +  and 'T t

t t tf W X b= + , 
where sb ( tb ) is the bias term for the source domain (target domain), 
and o

sW  ( '
tW ) is the parameter for the source domain (target domain). Let 

,o
s ss W bW  =  

 , ,1s sXX  =  
 , ,o

t t tW W b =  
 , and ,1t tX X =  

 . 

Then, the two classifiers can be  rewritten as T s
s sW Xf =  
  and 

T t
t tW Xf =  
 . Let ,s tW W W =  

   and ,s tX X X =  
   . By combining 

the two classifiers into a single classifier, we get: ( ) ˆ TF W WX= .
According to the least squares loss function, the problem of 

minimizing structural risk for both domains can be described as:
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(15)

where the first term is the structural risk loss term with 

ky Y∈ . The second term is the constraint of the classification 
model. The features can be selected by applying 2,1l  regularization. 
It can effectively control the model complexity to a certain 
extent for preventing the target classification model from 
over-fitting.

Since the classification task ensures the reliability of 
predictions through the dual prediction of the label matrix Y  and 
the decision function W , combining Equations 14 and 15 
constitutes the target classification function. We can describe it 
as following:
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2.4 Final formulation

Combining the intra-class attraction term in Equation 10, the 
inter-class repulsion term in Equation 11, and the induction learning 
in Equation 16, the final optimization formulation of the EDPC 
method can be described as following:
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where ρ , α , θ , and β  are the balance parameters.
Once all model parameters are obtained, knowledge inference in the 

target domain can be achieved. By maximizing the use of discriminative 
information from the source domain, the two classifiers sf  and tf  are 
linearly combined, and this linear fusion model is used for target domain 
knowledge inference. The fusion form can be written as follows:

	
( ) ( ) ( )( )arg max 1 ,t t t

i s i t i
jj

fj y x xfυ υ= = + − 

where [ ]0,1υ ∈ is an adjustable parameter that balances the two 
classifiers. To emphasize the importance of discriminative information 
from the source domain as prior knowledge, we  let 0.9υ =  based 
on experience.

3 Optimization

The optimization problem of EDPC is a non-convex problem with 
respect to ,k cλ , P, W, and Y This paper adopts an alternating iterative 
optimization strategy to solve these parameters, ensuring that each 
optimization variable has a closed-form analytical solution.

3.1 Update ,k cλ  as given W, P, and Y

Since the third and fifth terms in Equation 17 do not involve the 
calculation of ,k cλ , the optimization solution of EDPC is described 
as follows:
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Theorem 3. The optimal solution to the original optimization 
problem of the objective function (18) is:
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(19)
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Proof: Taking the partial derivative of Equation 18 with respect to 
the variable ,k cλ  and setting it to zero, we get:
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By combining like terms and rearranging Equation 20, the 
solution for ,k cλ  can be  obtained as Equation 19, thus proving 
the theorem.

According to Theorem 3, the matching contribution of any sample 
can be derived from Equation 19.

3.2 Update W as given Y , P, and ,k cλ

Since the first to third terms in Equation 17 do not involve the 
calculation of W , the optimization solution formula for EDPC is 
described as follows:
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(21)

where, N Cλ ×∈ and each element is 2
,k cλ . ,k cλ  represents the 

membership value of kx  belonging to the c-th category.
Theorem 4. The optimal solution to the original optimization 

problem of the objective Function (21) is:

	 W AY= 	 (22)

where ( ) 1T TA P XX P U PXλ ρ
−

= + .

Proof: According to Equation 19, let 2 0P
W

∂ =∂
 and solve for 

W , that is

	 ( )2 2 W 2 0TP X X Y UWW λ ρ∂  = − + = ∂   	
(23)

where, 2,1W
UW

W

ρ∂
=

∂
, where U  is a diagonal matrix with 

diagonal elements ( )1 , 1, ,ii
i

U i d
w

= = … , and iw  is the i-th row 

vector of matrix W . By rearranging Equation 23, the analytical 
solution for W can be derived as given in Equation 22.

3.3 Update Y  by fixing W, P, and ,k cλ

Since the first, second, and fifth terms in Equation 17 do not 
involve the calculation of Y, and substituting the result W AY=  into 
Equation 17, and the constraint YYT I=  can reduce the interference 
information in the obtained label matrix Y , the objective form for 
optimizing and solving Y is represented as:
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(24)

where, L TH B Bα λ= + , AT TB P X I= − . The optimization 
Problem (24) is a standard singular value decomposition problem. Y  
consists of the eigenvectors of matrix H , so the optimal solution for 
Ycan be obtained by solving the singular value decomposition of 
matrix H .

3.4 Update P by fixing W, Y , and ,k cλ

From Equation 17, it can be seen that the optimization solution 
for EDPC can be described as:
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Theorem 5. The optimal solution to the original optimization 
problem of the objective Function (25) is:
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where ϖ  is the balancing parameter of the constraint term TP P I= .
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Proof: According to Equation 25, let 4 0P
P

∂ =∂
, solve forP, it is 

shown in Equation (27):
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The solution for P can be obtained as Equation 26, thus Theorem 
5 is proved.

4 Algorithm

4.1 Algorithm description

In the context of unsupervised domain adaptation where the 
target domain lacks labeled data, achieving semantic alignment 
between domains relies on initial label information from the target 
domain. The initial label information of the target domain samples can 
be obtained through the following three strategies (Liang et al., 2019): 
(1) by a random method; (2) by setting all labels to zero; (3) by 
performing clustering on the target domain data using a model 
trained from the source domain data. Strategies (1) and (2) are cold 
start methods. Strategy (3) is a warm start method, which is usually 
more beneficial for the subsequent learning process. Therefore, 
we choose the third strategy to initialize the prior information of the 
target domain, thereby initializing ,k cλ , W, P, andY . EDPC utilizes 
an iterative optimization strategy, which is a common approach in 
multi-objective optimization. The iterative process of the algorithm 
will stop when the following conditions are 
met: ( ) ( )1 1 1 1

, ,,P ,W ,Y ,P ,W ,Yz z z z z z z z
k c k cλ λ ε− − − −Θ −Θ < , where 

( ), ,P ,W ,Yz z z z
k cλΘ  represents the value of the objective function at 

the z-th iteration, and ε  is a predefined threshold. The complete 
learning process of the proposed method is given in Algorithm 1.

4.2 Generalization Analysis

Rademacher complexity is an effective measure of a function 
set’s capacity to fit noise (Ghifary et al., 2017; Tao and Dan, 2021). 

Therefore, we will derive the generalization error bound for the 
proposed method using Rademacher complexity. Let 

{ }:H = →   be a set of hypothesis functions in the RKHS H  
space, where is a compact set and   is a label space. Given a loss 
function ( ), :loss +⋅ ⋅ × →   and a neighborhood distribution 
  on  , the expected loss between two hypothesis functions 

,h h H∈  is defined as:

ALGORITHM 1 : Domain adaptation learning 
based on EDPC

Input: The source domain data ,s sX Y
  
 
  



, the target domain 

data ˆ tX , unknown target domain labels Yt  (initialized via 
clustering), and parameters , , , ,ρ α ϑ β ϖ , the threshold for iteration 
termination ε , and the maximum number of iterations Z .

Output: The contribution matrix λ, which represents the matching 
contributions of each instance at the mean points of various categories 
in the overall domain; the shared subspace P; the decision function W 
on the source and target domain datasets; and the label matrix Y.

Procedure:

	 1	 Initialize the label values for the unlabeled data in the 
target domain.

	 2	 Calculate the mean values ,t cµ  and ,s cµ  for different 
categories in the target domain and source domain, 
respectively, where 0,1,2, ,c C= … .

	 3	 Then calculate the mean values cµ  for different categories in 
the overall domain as ( ), ,

1
2c s c t cµ µ µ= + .

	 4	 Obtain the initial values 0
,k cλ  for ,k cλ  using Equation 19.

	 5	 Obtain the initial values 0W  for W using Equation 22.

	 6	 Obtain the initial values 0Y  for Y using Equation 24.
	 7	 Obtain the initial values 0P  for P using Equation 26.
	 8	 Compute the value of the objective 

function ( )0 0 0 0
, ,P ,W ,Yk cλΘ .

	 9	 Repeat the following steps sequentially from 0 Zz to= :

{

	9.1	 Update the values of ,k cλ  to 
,

z
k cλ  using Equation 19.

	9.2	 Obtain the updated values W z  for W using Equation 22.
	9.3	 Obtain the updated values Yz for Y using Equation 24.
	9.4	 Obtain the updated values P2 for P using Equation 26.
	9.5	 Update the value of the objective 

function to ( )0 0 0 0
, ,P ,W ,Yk cλΘ .

	9.6	 If ( ) ( )1 1 1 1
, ,È ,P ,W ,Y È ,P ,W ,Yz z z z z z z z

k c k cλ λ ε− − − −− < , 

terminate the repetition and return the matricesλ, P, W, and 
Y; otherwise, go back to step 9.1 and continue the calculation 
until the condition in step 9.5 is satisfied.

}
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( ) ( ) ( )( ), ,xh h loss h x h x∼  =  
  E

The difference in domain distributions between the source 
domain distribution   and the target domain distributioncan be 
defined in Equation (29):

	
( ) ( ) ( ){ }

,
, sup , ,

h h H
disc h h h h

∈
= −



     
	

(29)

Let f and f be the true label functions for  and , respectively, 
and let the corresponding optimized hypothesis functions be:

	
( ): argmin ,

h H
h h f∗

∈
=  

	
( ): argmin ,

h H
h h f∗

∈
=  

Their corresponding expected loss is denoted as ( ),h h∗ ∗   . Our 
EDPC method aims to achieve the empirical loss target ( ),h h∗ ∗    
through the objective function ( ),R Y W .

The following theorem provides the generalization error bound 
for the proposed method:

Theorem 6 (Generalization Error Bound; Nie et al., 2010). Let 

{ }: : , 1andH f f f r∞= ∈ → ≤ ≤    be a function set in 
the reproducing kernel Hilbert space (RKHS)  . Consider 

( )1 , ,
s

s s
nX x x= … ∼

  and ( )1, ,
t

t t
nX x x= … ∼

  as datasets from the 
source domain and the target domain, respectively. Assume the loss 
function loss (.) is Lipschitzq - , mapping ( ) [ ], : 0,loss q⋅ ⋅ × →  . 
For ,a b∈ ×  , the condition ( ) ( )loss a loss b q a b− = −  holds. 
The generalization error bound for any hypothesis function h∈, 
with a probability of at least 1 δ− , having Rademacher complexity 

( )X Hℜ

  on X

 , is shown in Equation (30):

	

( ) ( ) ( ) ( )

( ) ( )( ) ( )

, , , 2

2log
3 8 P ,P W,

2

X

s t

h f h f h h q H

q q X X R Y
N
δ

∗ ∗− ≤ + ℜ

+ + Ω +

          

	

(30)

where ( )X Hℜ

  is the Rademacher complexity, ( ) ( )( )P ,Ps tX XΩ

is the disctriminative possibilistic clustering distribution distance 
measure and is composed by possibilistic clustering distribution 
distance measure with intra-class alignment item ( ) ( )( )P ,Ps tX XλΩ  

and disctriminative item ( ) ( )( )P ,Ps t
rep X XΩ (i.e.,  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )P ,P P ,P P ,Ps t s t s t
repX X X X X Xλα βΩ = Ω − Ω ).

Theorem 6 demonstrates that the disctriminative possibilistic 
clustering distribution distance measure ( ) ( )( )P ,Ps tX XΩ  and the 

model alignment function ( )W,R Y  can jointly control the 
generalization error bound of the proposed method. Consequently, by 
minimizing both the disctriminative possibilistic distribution distance 

between domains and the model bias, the proposed method can 
effectively enhance its generalization performance in domain 
adaptation. Experimental results on real-world datasets also support 
this conclusion.

5 Experiments

To validate the effectiveness of the proposed EDPC in the cross-
domain emotion recognition, this section systematically compares 
and analyzes the performance of the EDPC method with current state-
of-the-art unsupervised domain adaptation techniques on several key 
EEG datasets (i.e., SEED and SEED-IV).

5.1 Databases description

To ensure a fair comparison with state-of-the-art (SOTA) 
methods, extensive experiments were conducted for effective 
validation using two well-known open datasets: SEED (Zheng and Lu, 
2015a) and SEED-IV (Zheng et  al., 2018). The SEED datasets 
comprises data collected from 15 subjects, each participating in three 
sessions held at different times. Each session includes 15 trials, 
featuring three types of emotional stimuli: negative, neutral, and 
positive. Similarly, the SEED-IV datasets also involves 15 subjects, 
each undergoing three sessions at different times. Each session in 
SEED-IV consists of 24 trials, with four emotional stimuli: happy, sad, 
fearful, and peaceful.

EEG signals for both datasets (SEED and SEED-IV) were 
simultaneously recorded using a 62-channel ESI Neuroscan system. 
During EEG signal preprocessing, the data were down-sampled to a 
rate of 200 Hz. Environmental noise was manually removed, and the 
data were filtered using a 0.3 Hz-50 Hz band-pass filter. To make a fair 
comparison with the existing studies on the two benchmark databases, 
we also use the pre-computed differential entropy (DE) features as the 
model input. Specifically, for each trial, the EEG data was divided into 
a number of 1-s segments, and the DE features were extracted from 
each 1-s segment at the given five frequency bands [Delta (1–3 Hz), 
Theta (4–7 Hz), Alpha (8–13 Hz), Beta (14–30 Hz), and Gamma 
(31–50 Hz)] from the 62 channels. Then, for each 1-s segment, it was 
represented by a 310-dimensional feature vector (5 frequency bands 
× 62 channels), which was further filtered by a linear dynamic system 
method for smooth purpose (Shi and Lu, 2010).

5.2 Experiment Settings

Before delving into the detailed analysis of the experimental 
results, it is essential to fine-tune the hyperparameters in the EDPC 
strategy. Empirical evidence suggests that the hyperparameters θ  and 
α  serve to balance the trade-off between fuzziness and local structure 
preservation in the objective Function (17) for both the source and 
target domains. Meanwhile, the other two hyperparameters β  and ρ  
can still be adjusted to, respectively, balance the influence of class 
exclusion and feature selection. Therefore, these two parameters play 
a crucial role in the final performance of the algorithm.

Given that parameter setting remains a challenging issue in the 
field of machine learning, this study adopts an experience-based 

https://doi.org/10.3389/fnins.2024.1458815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dan et al.� 10.3389/fnins.2024.1458815

Frontiers in Neuroscience 12 frontiersin.org

parameter space exploration strategy to determine the optimal 
parameter configuration. This, in turn, allows for the evaluation of 
various methods on the datasets and the recording of the best 
performance for each method. Except in special cases, all related 
methods will undergo fine-tuning to achieve optimal results. 
Regarding the potential geometric structure of the data, it is associated 
with the neighborhood size chosen when constructing the Laplacian 
matrix. Experimental observations show that the model’s performance 
is slightly sensitive to changes in neighborhood size when the 
neighborhood is small. Therefore, when constructing the nearest 
neighbor graph in EDPC, this study uses grid search within the range 

{ }3,5,10,15,17  to determine the optimal number of neighbors and 
reports the highest recognition accuracy results obtained under this 
optimal parameter configuration.

Additionally, for all methods implemented in this paper, a 
Gaussian kernel ( ) ( )2 2, exp / 2i iK x x x x σ= − −  is used in both the 
source and target domains, where σ  is determined by minimizing 
the Maximum Mean Discrepancy (MMD) to establish a 
benchmark. Based on prior experience, σ  is initially set to the 
square root of the average norm of the binary training data, and 
for multiclass classification, σ  is adjusted to Cσ  (where C 
represents the number of classes). The underlying geometric 
structure relies on k neighbors for computing the Laplacian 
matrix. In our experiments, we observed that performance slightly 
varies when k is not large. Consequently, to construct the nearest 
neighbor graph in EDPC, we conduct a grid search to determine 
the optimal number of nearest k neighbors from the set 
{ }3,5,10,15,17 , and report the best recognition accuracy from the 
optimal parameter configuration.

Before presenting the detailed evaluation, it is essential to explain 
the tuning process for the hyper-parameters of EDPC. Based on prior 
experience, the parameter β  is used to balance the fuzzy entropy and 
the alignment of domain probability distributions in the objective 
Function (16). The parameters α  and ρ  are adjustable and used to 
balance the importance of structure description and feature selection. 
Given that parameter uncertainty remains an open issue in machine 
learning, we rely on previous work experience to determine these 
parameters. Consequently, we evaluate all methods on the datasets by 
empirically searching the parameter space to identify the optimal 
settings and report the best results for each method. Except for special 
cases, all parameters of relevant methods are fine-tuned to achieve 
optimal results.

Since unsupervised domain adaptation lacks target labels for 
standard cross-validation, we  employ a leave-one-subject-out 
strategy on the SEED and SEED-IV datasets (detailed in Section 
6.2). We identify the optimal parameter values from the set { 610−
, 510− , … 510 , 610 } by achieving the highest average accuracy on 
these datasets using the aforementioned method. This strategy 
typically constructs an effective EDPC model for unsupervised 
domain adaptation, and a similar approach is used to find optimal 
parameter values for other domain adaptation methods.In the 
subsequent sub-sections, a series of experiments is designed to 
test the sensitivity of the proposed EDPC method to parameter 
selection (see Section 6.4.1), verifying that EDPC can maintain 
stable performance across a wide range of parameter values. 
Additionally, the hyper-parameters for other methods are 
selected according to their original literature.

5.3 Experimental protocols

To fully verify the robustness and stability of the proposed 
method, this paper employs three different validation protocols (leave-
one-subject-out; Zhang et al., 2020) to compare the proposed method 
with the latest methods.

	 1	 Single-subject cross-session leave-one-session-out cross-
validation. In line with existing methods, a time series cross-
validation approach is utilized here, where past data is 
leveraged to predict current or future data. For each subject, 
the first two sessions are designated as the source domain, 
while the latter session serves as the target domain. The final 
results are determined by calculating the average accuracy and 
standard deviation across all subjects.

	 2	 Cross-subject single-session leave-one-subject-out cross-
validation. This validation scheme is the most widely used in 
emotion recognition tasks based on EEG data (Li J. et al., 2020; 
Luo et al., 2018). In this approach, one session’s data from a 
subject is treated as the target domain, while the data from the 
remaining subjects serve as the source domain. The training 
and validation process is repeated until each subject has been 
used as the target once. Consistent with other studies, we only 
consider the first session for this type of cross-validation.

	 3	 Cross-subject cross-session leave-one-subject-out cross-
validation. To comprehensively assess the robustness of the 
model on unseen subjects and trials, this paper employs a 
rigorous leave-one-out cross-subject cross-session method for 
evaluation. In this approach, all session data from a single 
subject are designated as the target domain, while data from all 
sessions of the remaining subjects serve as the source domain. 
The training and validation process is repeated until each 
subject’s sessions have been used as the target domain once. 
Given the variations between subjects and sessions, this 
evaluation protocol presents a substantial challenge to the 
effectiveness of models in EEG-based emotion 
recognition tasks.

5.4 Experimental results

Specifically, in the following tables of experimental results, the 
bold values in each table are the best accuracy performance results 
achieved by the compared methods. Pacc denotes the average accuracy 
performance of each method. In following tables, EDPC denotes the 
method proposed by us. During the implementation of the 
experiments, the features of the data were initially extracted using 
shallow technical means. When labeled as EDPC+ResNet101, it 
indicates that we employed the deep neural network ResNet101 for 
data feature extraction in the experimental process.

5.4.1 Single-subject cross-session
We calculate the average and standard deviation of each subject’s 

experimental results, the cross-session validation results for each 
subject on different datasets (i.e., SEED and SEED-IV) show in 
Tables 1, 2, respectively. When the proposed EDPC method is 
compared with the traditional machine learning methods on both 
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SEED and SEED-IV, the EDPC obtained the best accuracy 
performance, even DICE. It indicates that the EDPC method with 
discrimination has a more significant noise suppression effect.

Additionally, in the experiments on the SEED datasets, the results 
from deep learning methods show that the EEGMatch method 
achieved the best performance among the deep learning methods. 
This is possibly because the mixup technique provided richer and 
more effective data information, which aided the model training, 
although the increased data volume naturally led to higher 
computational costs. Nevertheless, the EDPC method still obtained 
comparable performance and ranked closely its behind. This 
demonstrates the advantage of the EDPC method in distinguishing 
the single subject across sessions.

We can observe from the Table 3 that the EDPC method achieved 
the best performance on SEED-IV datasets with four different 
emotions (SEED has three different emotions), no matter what in the 
traditional machine learning or the deep learning methods. It signs 
that the EDPC method with “sames attract and opposites repel” 
characteristics can get more accuracy performance on finer-grained 
emotion recognition. The EDPC has stronger scalability in more 
nuanced emotion recognition tasks.

5.4.2 Cross-subject single-session
Table  3 presents the model results for the recognition task 

using the leave-one-subject-out method within a single session, 
comparing them with the performance of the latest methods in the 
literature. All results are presented as mean ± standard deviation. 
The MDDD method achieved the best performance, the possible 
reason is: a more balanced impact of noise may arise when the 
different subjects in the same session faced consistent consistent 
environment, the MDDD adopted ensemble learning approach can 
effectively handle this kind of data. The MDDD method needs 
higher computational costs since it requires training and 
combining multiple models.

However, the EDPC achieved the best accuracy (82.34) with a 
standard deviation of 7.52 except MDDD method. It still maintains a 

comparable performance advantage overall among traditional 
machine learning methods. The recognition performance of EDPC 
surpasses that of the DICE method, indicating that the EDPC method 
handles noise better than the DICE method. It shows that the 
clustering hypothesis with fuzzy entropy can overcome the influence 
of noise and outliers in unsupervised classification.

When we  compared to the latest deep learning methods, 
particularly deep transfer learning networks based on DANN (e.g., 
ATDD-DANN, R2GSTNN, BiHDM, BiDANN, WGAN-GP, PR-PL, 
EEGMatch), the proposed EDPC method demonstrated the best 
performance from Table 3. It effectively addresses issues of individual 
differences and noisy labels in aBCI applications, indicating that the 
EDPC method has better generalization performance and 
discrimination across subjects within the same session.

5.4.3 Cross-subject cross-session
To validate the efficiency and stability of the EDPC method under 

cross-subject and cross-session conditions, this study uses cross-
subject cross-session leave-one-out cross-validation on the SEED and 
SEED-IV databases to verify the proposed EDPC method. As shown 
in Tables 4, 5, the proposed EDPC method achieves the best 
performance when compared to traditional machine learning 
methods and deep learning methods. Moreover, Table 3 obtained 
better performance than Table 5 since the cross-subject cross-session 
is more complicated. We easy to see that the performance of EDPC 
method is better than the MDDD method. All these results 
demonstrate that the proposed EDPC method has higher recognition 
accuracy and better generalization ability in the face of more complex 
individual and environmental differences, indicating better 
emotional validity.

6 Discussion

To comprehensively study the model’s performance, this section 
evaluates the effects of different settings in EDPC. Please note that all 

TABLE 1  The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED database using single-subject cross-session leave-one-
subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF (Breiman, 2001) 76.42 ± 11.15 KNN* (Coomans and Massart, 1982) 72.96 ± 12.10

TCA* (Pan et al., 2011) 77.63 ± 11.49 CORAL (Sun et al., 2016) 84.18 ± 9.81

SA* (Li Y. et al., 2020) 67.79 ± 7.43 GFK* (Gong et al., 2012) 79.28 ± 7.44

DICE (Liang et al., 2019) 81.58 ± 7.55 EDPC 82.31 ± 6.44

MDDD (Luo et al., 2024) 81.27 ± 5. 47

Deep learning methods

DAN (Long et al., 2015) 89.16 ± 7.90 SimNet (Pinheiro, 2018) 86.88 ± 7.83

DDC (Tzeng et al., 2014) 91.14 ± 5.61 ADA (Li J. et al., 2020) 89.13 ± 7.13

DANN (Ganin et al., 2016) 89.45 ± 6.74 MMD (Li J. et al., 2020) 84.38 ± 12.05

JDA-Net (Li J. et al., 2020) 91.17 ± 8.11 DCORAL (Sun et al., 2016) 88.67 ± 6.25

PR-PL (Zhou et al., 2022) 93.18 ± 6.55 PARSE (Zhang and Etemad, 2022) 89.85 ± 5.06

EEGMatch (Zhou et al., 2023) 94.70 ± 4.10 EDPC+ResNet101 93.76 ± 5.82

Here, the model results reproduced by us are indicated by ‘*’.  The bold value in table corresponds to the method with the best accuracy performance result among all the compared methods.
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results presented in this section are based on the SEED datasets, using 
the cross-subject single-session cross-validation evaluation protocol. 
The bold values in Table 6 is the best accuracy performance result 
achieved of this method. It’s best to review in color mode.

6.1 Ablation study

This ablation study systematically explores the effectiveness of 
different components in the proposed model and presents the 

corresponding contributions of each component to the overall 
performance of the model. As shown in Table 6, adding 5 labeled data 
points per category in the target domain achieves a recognition 
accuracy (95.98 ± 5.22) very close to the recognition accuracy of 
EDPC (unsupervised learning; 92.19 ± 4.70). This decline indicates 
that prior label information in the target domain significantly 
enhances model performance and highlights the great potential of 
transfer learning in aBCI applications. Moreover, simultaneously 
preserving the local structure of data in both the source and target 
domains helps to improve model performance; otherwise, the 

TABLE 2  The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using single-subject cross-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF (Breiman, 2001) 60.27 ± 16.36 KNN (Coomans and Massart, 1982) 54.18 ± 16.28

TCA* (Pan et al., 2011) 59.49 ± 12.07 CORAL* (Sun et al., 2016) 66.88 ± 14.67

SA* (Li Y. et al., 2020) 56.94 ± 11.45 GFK* (Gong et al., 2012) 60.66 ± 10.00

DICE (Liang et al., 2019) 69.68 ± 12.52 EDPC 71.39 ± 7.22

MDDD (Luo et al., 2024) 68.81 ± 9.25

Deep learning methods

DCORAL (Sun et al., 2016) 65.10 ± 13.20 DAN (Long et al., 2015) 60.20 ± 10.20

DDC (Tzeng et al., 2014) 68.80 ± 16.60 MEERNet (Chen et al., 2021) 72.10 ± 14.10

PR-PL (Zhou et al., 2022) 74.62 ± 14.15 PARSE (Zhang and Etemad, 2022) 70.24 ± 8.47

EEGMatch (Zhou et al., 2023) 72.91 ± 8.34 EDPC+ResNet101 76.58 ± 10.29

Here, the model results reproduced by us are indicated by ‘*’.  The bold value in table corresponds to the method with the best accuracy performance result among all the compared methods.

TABLE 3  The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED database using cross-subject single-session leave-one-
subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

TKL (Li et al., 2018c) 63.54 ± 15.47 T-SVM* (Li et al., 2018c) 68.57 ± 9.54

TCA (Pan et al., 2011) 63.64 ± 14.88 TPT* (Suykens and Vandewalle, 1999) 73.86 ± 11.05

KPCA (Suykens and Vandewalle, 1999) 61.28 ± 14.62 GFK (Gong et al., 2012) 71.31 ± 14.09

SA* (Li Y. et al., 2020) 66.00 ± 10.89 DICA (Ma et al., 2019) 69.40 ± 07.80

DNN (Suykens and Vandewalle, 1999) 61.01 ± 12.38 SVM (Suykens and Vandewalle, 1999) 58.18 ± 13.85

DICE (Liang et al., 2019) 74.22 ± 7.33 EDPC 82.34 ± 7.52

MDDD (Luo et al., 2024) 84.57 ± 9.49

Deep learning methods

DGCNN (Song et al., 2018) 79.95 ± 9.02 DAN (Long et al., 2015) 83.81 ± 8.56

RGNN (Zhong et al., 2020) 85.30 ± 6.72 BiHDM (Li Y. et al., 2020) 85.40 ± 7.53

WGAN-GP (Luo et al., 2018) 87.10 ± 7.10 MMD (Li J. et al., 2020) 80.88 ± 10.10

ATDD-DANN (Du et al., 2020) 90.92 ± 1.05 JDA-Net (Li J. et al., 2020) 88.28 ± 11.44

R2G-STNN (Li et al., 2019) 84.16 ± 7.63 SimNet* (Pinheiro, 2018) 81.58 ± 5.11

BiDANN (Li et al., 2018c) 83.28 ± 9.60 DResNet (Ma et al., 2019) 85.30 ± 8.00

ADA (Li J. et al., 2020) 84.47 ± 10.65 DANN (Ganin et al., 2016) 81.65 ± 9.92

PR-PL (Zhou et al., 2022) 93.06 ± 5.12 PARSE (Zhang and Etemad, 2022) 82.11 ± 5.83

EEGMatch (Zhou et al., 2023) 92.45 ± 06.85 EDPC+ResNet101 94.79 ± 4.28

Here, the model results reproduced by us are indicated by ‘*’. The bold value in table corresponds to the method with the best accuracy performance result among all the compared methods.
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recognition accuracy significantly decreases (92.29 ± 5.67 and 
92.83 ± 4.81, respectively). When the l21 norm in W is replaced with 
the l2 norm, the model’s recognition accuracy drops to 92.13 ± 5.83. 
This result demonstrates that using the l21 constraint achieves better 
sample selection and denoising effects.For the pseudo-labeling 
method, when switching from a fixed mode to a linear dynamic 
update, the corresponding accuracy increases from 91.48 to 94.71. 
When using an adaptive pseudo-labeling method based on nonlinear 
dynamics, the accuracy further improves to 94.79. When employing 
multi-kernel learning, the accuracy further increases to 95.66. These 
results indicate that multi-kernel learning helps rationalize the 
importance of different kernels in various scenarios and enhances the 
model’s generalization ability.

Next, we analyze the impact of different hyperparameters on the 
overall performance of the model. According to the experimental 

results, it can be observed that when the dynamic learning rateρ  varies 
from 0 to 100, the model accuracy continuously improves from 92.79 
to 93.54. This indicates that a dynamic learning rate ρ  is superior to a 
fixed value in terms of recognition accuracy. Additionally, the results 
suggest that the value of β  directly affects the importance of the 
discriminative term in the model. When the discriminative term is 
removed, the model accuracy drops to 90.56, whereas when β  = 100, 
the model accuracy reaches 94.74, which is close to the performance 
of EDPC. This demonstrates that the discriminative term plays an 
indispensable role in the model.

Additionally, θ  and θ  are two balancing parameters used to 
optimize the performance of EDPC by weighting fuzzy entropy and 
local retention (referring to the source and target domains). As shown 
in Figure 1a, whenθ  is 0, the performance is poor. Performance jumps 
significantly when θ is 1, and it continues to improve steadily as θ  

TABLE 4  The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED database using cross-subject cross-session leave-one-
subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF (Breiman, 2001) 69.60 ± 7.64 KNN (Coomans and Massart, 1982) 60.66 ± 7.93

SVM* (Suykens and Vandewalle, 1999) 62.24 ± 5.48 Adaboost (Zhu et al., 2006) 71.87 ± 5.70

TCA* (Pan et al., 2011) 65.31 ± 6.04 CORAL (Sun et al., 2016) 69.22 ± 4.11

SA (Li Y. et al., 2020) 61.41 ± 9.75 GFK* (Gong et al., 2012) 67.36 ± 6.52

DICE* (Liang et al., 2019) 73.56 ± 4.23 EDPC 76.82 ± 7.14

MDDD (Luo et al., 2024) 76.60 ± 6.79

Deep learning methods

DCORAL* (Sun et al., 2016) 80.87 ± 6.04 DAN* (Long et al., 2015) 82.51 ± 3.71

DDC (Tzeng et al., 2014) 82.17 ± 4.96 DANN* (Ganin et al., 2016) 84.79 ± 6.44

PR-PL (Zhou et al., 2022) 85.56 ± 4.78 PARSE (Zhang and Etemad, 2022) 82.44 ± 5.00

EEGMatch (Zhou et al., 2023) 86.30 ± 5.04 EDPC+ResNet101 87.42 ± 6.15

The bold value in table corresponds to the method with the best accuracy performance result among all the compared methods.

TABLE 5  The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using cross-subject cross-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF (Breiman, 2001) 50.98 ± 9.20 KNN (Coomans and Massart, 1982) 40.83 ± 7.28

SVM (Suykens and Vandewalle, 1999) 51.78 ± 12.85 Adaboost (Zhu et al., 2006) 53.44 ± 9.12

TCA (Pan et al., 2011) 56.56 ± 13.77 CORAL (Sun et al., 2016) 49.44 ± 9.09

SA (Li Y. et al., 2020) 64.44 ± 9.46 GFK (Gong et al., 2012) 45.89 ± 8.27

KPCA (Suykens and Vandewalle, 1999) 51.76 ± 12.89 DNN (Suykens and Vandewalle, 1999) 49.35 ± 9.74

DICE (Liang et al., 2019) 66.75 ± 7.25 EDPC 67.88 ± 5.21

MDDD (Luo et al., 2024) 64.90 ± 10.25

Deep learning methods

DGCNN (Song et al., 2018) 52.82 ± 9.23 DAN (Long et al., 2015) 58.87 ± 8.13

RGNN (Zhong et al., 2020) 73.84 ± 8.02 BiHDM (Li Y. et al., 2020) 69.03 ± 8.66

BiDANN (Li et al., 2018c) 65.59 ± 10.39 DANN (Ganin et al., 2016) 54.63 ± 8.03

PR-PL (Zhou et al., 2022) 74.92 ± 7.92 PARSE (Zhang and Etemad, 2022) 69.78 ± 8.22

EEGMatch (Zhou et al., 2023) 73.60 ± 7.53 EDPC+ResNet101 76.11 ± 6.69

The bold value in table corresponds to the method with the best accuracy performance result among all the compared methods.
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increases. When θ  reaches 400 or higher, the performance stabilizes. 
Therefore, based on the experimental results, setting θ  around 400 can 
achieve the best EDPC performance.

From Figure 1b, it can be seen that when α  is 0, the performance 
is poor. When α  is 1, there is a performance jump. As α  increases 
further, the performance improves slowly and becomes jittery. 
According to the trend observed in the experimental curve, α  can 
be  adjusted within the range of [100, 225] to achieve optimal 
EDPC performance.

Figure 1c shows that when δ  is within the range of [0.5, 0.85], the 
performance is high, indicating that the source domain contains a 
significant amount of discriminative information, and the means of 
different categories play a more important role. When δ  takes larger 
values up to 1 (completely removing the target domain’s mean 
information), the performance declines, further demonstrating that 
the mean information of the target domain also plays an auxiliary role.

6.2 Effect of noisy labels

To further validate the robustness of the model in the presence of 
noisy labels, we conducted an experiment where noise was randomly 
added to the source labels at different proportions, and the corresponding 

FIGURE 1

Performance variations of the EDPC method due to changes in parameters θ , α , and δ . (a) Adjusted for fuzzy entropy; (b) Adjusted for label 
propagation; (c) Weighted for the different classes centers of source domain.

TABLE 6  The ablation study of our proposed model.

Pacc

Ablation setting

target prior information (5 labeled samples per category) 95.98 ± 5.22

only preserving the local structures on the source 92.29 ± 5.67

only preserving the local structures on the target 92.83 ± 4.81

imposing 2l -norm on W 92.13 ± 5.83

fixed pseudo-labeling 91.48 ± 5.33

dynamic pseudo-labeling 94.71 ± 4.15

multiple kernel leaning 95.66 ± 3.20

Hyper-parameter controlling strategy

ρ  = 0 (Ignore the regularization term of W ) 92.79 ± 4.40

fixed ρ  = 100 for W  regularization 93.54 ± 5.16

β  = 0 (Ignore the regularization term of discriminative) 90.56 ± 3.25

fixed β=100 forthe regularization term of discriminative 94.74 ± 4.53

The proposed model

EDPC + ResNet101 94.79 ± 4.28

The bold value in table corresponds to the method with the best accuracy performance result 
among all the compared methods.
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model performance on unseen target data was tested. Specifically, 
we  replaced a certain proportion of the true labels with randomly 
generated labels and trained the model using semi-supervised learning. 
Then, the trained model’s performance was evaluated on the target 
domain. It is important to note that noise was only added to the source 
domain data, while the target domain was used for model evaluation. In 
the implementation, the noise proportions were adjusted to 5, 15, 25, 
and 30% of the source domain data.

The experimental results shown in Figure 2 indicate that as the 
amount of noise increases, the accuracy of the proposed EDPC 
decreases at the slowest rate, demonstrating that EDPC is a reliable 
model with a high tolerance for noisy data. In future work, recent 
methods such as [52, 53] could be integrated to further reduce the 
more prevalent noise in EEG signals and enhance the model’s stability 
in cross-corpus applications.

6.3 Confusion matrices

To qualitatively study the performance of the model in each 
emotion category, this section visualizes the confusion matrix and 
compares the results with state-of-the-art models (i.e., BiDANN, 
BiHDM, RGNN, PR-PL, DICE ResNet101). As shown in the Figure 3, 
all models excel at distinguishing positive emotions from other 
emotions (with recognition rates above 90%), but they perform 
relatively poorly in distinguishing negative emotions from neutral 
emotions. For example, the emotion recognition rate in RGNN [25] 
is even below 80% (specifically, 79.14%).

Additionally, the PR-PL method slightly outperforms the 
EDPC method in recognizing positive emotions, likely due to the 
use of adversarial networks in PR-PL, which also increases its 

computational cost. Compared to existing methods (Figures 3a–
c,e), the EDPC method is optimal, particularly in distinguishing 
neutral and negative emotions (even surpassing PR-PL). 
Furthermore, the overall performance of this method is superior 
to the DICE method (as shown in the comparison between 
Figures 3e,f ).

6.4 Convergence

The proposed algorithm in this paper employs an iterative 
optimization strategy. To demonstrate the convergence of the 
algorithm, experiments were conducted on the MATLAB platform. 
The hardware configuration used for implementation includes 64GB 
of memory, a 2.5GHz CPU, and an 8-core Intel i7-11850H processor. 
The Figure 4 shows the convergence process of EDPC at different 
iteration counts. From the displayed results, it is evident that the 
proposed algorithm approaches convergence at around 30 iterations. 
In the algorithm, the objective function of each sub-problem 
optimization is a decreasing function, thereby proving that the EDPC 
method has good convergence properties.

7 Conclusion

The article analyzes the issue of mean shift that may arise 
during distribution distance measure in domain adaptation due to 
potential noise in the field. It proposes a novel distribution 
distance measure method with DPC criterion. This method 
determines the membership degree of each instance (i.e., the 
closer the distance, the more likely it is non-noise data) by 

FIGURE 2

Robustness on source domain with different noise levels.

https://doi.org/10.3389/fnins.2024.1458815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dan et al.� 10.3389/fnins.2024.1458815

Frontiers in Neuroscience 18 frontiersin.org

measuring the distance between each instance and the overall 
domain mean. It uses membership degree and fuzzy trimming to 
mitigate the impact of noise data on final performance. 
Additionally, an outlier repulsion term is added during the domain 
adaptation process to further improve classifier discrimination 
accuracy. Based on this, a Emotion recognition DA method based 
on DPC is proposed (namely EDPC). It minimizes domain 
distribution differences while introducing a graph Laplacian 

matrix to learn a target domain label matrix and minimizes 
domain discrimination differences to learn a classifier for both the 
source and target domains. Theoretically, it is proven that the 
proposed algorithm has consistent convergence and an effective 
generalization error bound. Finally, the proposed EDPC method 
is extensively compared with the latest shallow and deep DAL 
methods on real datasets, validating its robustness and 
classification accuracy. Existing research results indicate that 

FIGURE 4

Convergence.

FIGURE 3

Confusion matrices of different models: (a) BiDANN; (b) BiHDM; (c) RGNN; (d) PR-PL; (e) DICE+ResNet101; and (f) EDPC+ResNet101.

https://doi.org/10.3389/fnins.2024.1458815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dan et al.� 10.3389/fnins.2024.1458815

Frontiers in Neuroscience 19 frontiersin.org

multi-source domain adaptation can effectively avoid the “negative 
transfer” situation caused by a single source domain. However, 
multi-source domain adaptation increases computational 
complexity. Therefore, constructing the EDPC model based on 
multi-source domain adaptation is a direction worthy of further 
research in this article.
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