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Processing facial features is crucial to identify social partners (prey, predators, 
or conspecifics) and recognize and accurately interpret emotional expressions. 
Numerous studies in both human and non-human primates provided evidence 
promoting the notion of inherent mechanisms for detecting facial features. 
These mechanisms support a representation of faces independent of prior 
experiences and are vital for subsequent development in social and language 
domains. Moreover, deficits in processing faces are a reliable biomarker of 
autism spectrum disorder, appearing early and correlating with symptom 
severity. Face processing, however, is not only a prerogative of humans: other 
species also show remarkable face detection abilities. In this review, we present 
an overview of the current literature on face detection in vertebrate models that 
could be relevant to the study of autism.
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Introduction

Faces convey a great amount of socially relevant information related to emotional and 
mental states, identity, and intention. Processing facial information is crucial for social and 
cognitive development (Wagner et al., 2013), so much so that newborns within an hour of 
birth are already biased to orient to faces and prefer them over any other stimulus (Johnson 
et al., 1991; Valenza et al., 1996). This early preference is even observed towards schematic 
geometric (face-like) patterns resembling a face (three black squares organized as an upside-
down triangle; Goren et al., 1975; Johnson et al., 1991) and might already be present during 
the last gestational trimester (Reid et al., 2017). Although still a matter of debate, evidence 
suggests the presence of a specialized cognitive system present since the first moments of life. 
Some authors have proposed a two-process model supporting face processing to explain 
newborns’ preference for real and schematic faces (Johnson et al., 1991; Morton and Johnson, 
1991). According to this model, the inherent predisposition of newborns to visually attend to 
faces and schematic face-like stimuli is guided by a rudimental representation (CONSPEC; 
see Morton and Johnson, 1991), which can drive their preference for simple, geometrical 
characteristics of these stimuli (oval bounded area, top-heavy featural pattern, and positive 
contrast; see Johnson, 2005). Neuropsychological studies indicating residual face processing 
abilities in patients with visual cortical impairments and electrophysiological studies suggest 
the involvement of a visual system supporting fast and coarse (based on low spatial frequencies) 
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facial detection localized in subcortical areas such as the superior 
colliculus, the pulvinar, and the amygdala (Johnson, 2005). As 
development proceeds, the predisposition is complemented by a 
second adaptive mechanism (termed CONLEARN; see Morton and 
Johnson, 1991) relying on preferential exposure to faces to refine and 
adapt the cortical representations of faces and to ascribe identity. 
Other authors have proposed alternative hypotheses to explain the 
early preference responses to face and face-like stimuli based on 
intrinsic visual properties of the stimuli, such as the stimulus energy 
(Kleiner, 1987) or the structural properties of the stimuli (for example 
the presence of a “top-heavy” configuration, Turati et al., 2002; Simion 
and Di Giorgio, 2015) that may drive the preference for faces in 
human newborns without being related to “facedness.” Moreover, a 
recent study investigating face processing in newborns challenges the 
hypothesis that the preference for face-like stimuli is mainly mediated 
by subcortical structures, demonstrating a clear activation of cortical 
structures upon exposure to upright face-like compared to inverted or 
scrambled stimuli (Buiatti et al., 2019).

Several studies indicate that the visual processing of facial 
information is significantly compromised in neurodevelopmental 
disorders (Collin et al., 2013). Schizophrenia patients show deficits in 
face detection (Chen et  al., 2008; Romagnano et  al., 2022), face 
identity (Russell et al., 2024), and facial emotion recognition (see for 
a review Bortolon et  al., 2015). Moreover, disruptions in face 
processing are one of the earliest indicators of social deficits in autism 
spectrum disorders (ASD) and play a key role in the pathophysiology 
of these disorders (Johnson, 2014; Johnson et al., 2015; Pavlova et al., 
2017). Infants at risk of ASD often exhibit impairments in processing 
face and eye-gaze direction, further emphasizing the significance of 
these social orienting mechanisms as early biomarkers for ASD.

However, processing facial information is not just a prerogative of 
humans; several other animal species possess remarkable face 
recognition abilities.

Like humans, infant non-human primates prefer faces (Pascalis 
and Kelly, 2009; Pascalis et al., 2021). Among mammals, sheep and 
other ungulate species show sophisticated face recognition abilities 
(Proops and McComb, 2012; Towler et al., 2019); dogs have been 
shown to respond specifically to their owners’ faces and recognize 
their facial emotional expressions (Barber et al., 2016; Cuaya et al., 
2016). Several avian species possess remarkable face processing 
abilities (Brecht et al., 2017; Suwandschieff et al., 2023), including 
pigeons and domestic chicks, where neural correlates of face 
discrimination have been investigated (Clark et al., 2022; Kobylkov 
et al., 2024). Fish also rely on visual information in the head and face 
regions to drive their social affiliative responses (Karplus and Algom, 
1981; Wang and Takeuchi, 2017; Nunes et al., 2020). Finally, individual 
recognition based on facial features has been described also in paper 
wasps and honeybees (Avarguès-Weber et  al., 2018; Tibbetts 
et al., 2021).

Face processing comprises multiple functional components, 
including visual processing, facial identity analysis, and facial emotion 
expression recognition. We focus here on face detection, defined as 
the ability to detect the presence of faces in the visual scene based on 
first-order information (i.e., basic spatial properties of facial features). 
This form of visual discrimination is the simplest and earliest form of 
face processing, and it is more likely to be ubiquitous across species.

Moreover, the similarities in face processing observed in different 
species suggest a common origin that could be exploited to investigate 

the underlying neurobiological mechanisms and to elucidate the 
earliest expression of social deficits in neurodevelopmental disorders 
such as ASD. This review presents an overview of the current literature 
on face detection in vertebrate models potentially relevant to the 
study of ASD.

Evidence of face processing in 
newborn vertebrates

A significant contribution to the knowledge about face detection 
comes from the extensive literature on face processing development 
in non-human primates (see Pascalis et al., 2021 for a review). Infant 
primates, including humans, exhibit a strong preference for faces. 
Cross-fostering and restricted social experience experiments in rhesus 
(Macaca mulatta) and Japanese monkeys (Macaca fuscata) indicate 
differences in the ability of these two species to respond to the faces of 
other species. Japanese macaques raised without face experience for 
several months maintained their preferences for both monkey and 
human faces, showing an innate response to faces independent of the 
species (Sugita, 2008). After limiting their visual experience to human 
or monkey faces, their preference was tuned toward the predominant 
faces they were exposed to, demonstrating a strong influence of 
experience on the innate representation of faces (Sugita, 2008, 2009). 
Rhesus macaques, instead, express a strong preference for faces of 
their own species already at 3 months of age (Fujita, 1987, 1993). 
Subsequent studies on young infants (3 weeks old) rhesus macaques 
raised without face experience also supported the idea of an early 
coarse representation of faces that is quickly refined to the own species 
due to exposure (Simpson et  al., 2017). This data supports the 
existence, also in monkeys, of hard-wired mechanisms providing an 
early representation of faces independent of experience. These 
mechanisms are then fine-tuned by experience according to the 
predominant face stimuli found in the environment.

In addition to Japanese macaque monkeys, domestic chicks 
(Rosa-Salva et al., 2010), and land tortoises (Versace et al., 2020) show 
innate face preference responses similar to those observed in 
human newborns.

Research involving domestic chicks (Gallus gallus domesticus) 
offers a convenient method for regulating the animals’ visual exposure 
prior to hatching by maintaining the eggs and the hatchlings in 
complete darkness. Unlike many mammalian species, dark rearing does 
not compromise the chicks’ visual system’s development. Moreover, 
domestic chicks are a precocial species: the hatchlings already possess 
a mature visual system, can immediately and efficiently explore the 
environment, and are strongly driven to social interaction. Thanks to 
these advantages, studies on domestic chicks have demonstrated the 
presence of innate representations of visual stimuli important for the 
animals’ survival, including faces and face-like schematic configurations 
(Rosa-Salva et al., 2010; Rosa Salva et al., 2012), biological motion 
(Vallortigara et al., 2005; Zanon et al., 2024), and animacy (Rosa Salva 
et al., 2015). As for face detection, a series of experiments showed that 
visually inexperienced newborn chicks are spontaneously driven to 
approach a schematic stimulus representing a face compared to several 
other stimuli sharing the same top-heavy configuration but lacking the 
“facedness” property (Rosa-Salva et  al., 2010). Subsequent studies 
demonstrated the sensitivity of the chicks to the reversal of contrast 
polarity and a right hemisphere advantage for the detection of faces 
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(Rosa Salva et al., 2012) similar to what was shown in human neonates 
(Farroni et al., 2005; Buiatti et al., 2019). Overall, domestic chicks seem 
to express orienting responses to visual stimuli equivalent to those 
observed in developmental human studies, advocating this flexible 
animal model to investigate the neurobehavioral bases of face detection.

Neural correlates of face detection

Visual object recognition in mammals is mediated by a series of 
recurrent, hierarchically, and topographically organized cortical 
circuits, often referred to as the ventral visual processing stream. Visual 
information is sent from the primary visual cortex (V1) to the extra-
striate occipital visual areas and converges in the ventral part of the 
temporal cortex in high-level visual areas. The simplest aspect of face 
processing, which involves detecting the presence of faces in the visual 
scene, requires extracting basic features of the stimulus independent 
of contexts and viewpoints. Face detection has been hypothesized to 
involve a different hierarchical visual pathway than the recognition of 
other objects and to be  supported by cortical face-selective areas 
(Kanwisher et al., 1997; McCarthy et al., 1997). Face-selective regions 
in the brain have been described in the ventrolateral aspects of the 
occipital and temporal cortex (see for review Duchaine and Yovel, 
2015). These areas respond preferentially to faces, being active 
significantly more in response to faces than other non-face visual 
stimuli (objects, places, body parts, and letters). The occipital face area 
(OFA; Gauthier et al., 2000), an early visual area in the inferior occipital 
gyrus, and the face-selective region in the superior temporal sulcus 
(fSTS; Hoffman and Haxby, 2000) produce an initial representation of 
faces based on first-order elements, i.e., eyes, nose and mouth, but lack 
sensitivity to their spatial configuration (Pitcher et al., 2007; Liu et al., 
2010). The most robust face-selective activation is observed in the 
fusiform gyrus of the temporal lobe, named the fusiform face area 
(FFA; Kanwisher et al., 1997; McCarthy et al., 1997). Numerous studies 
have indicated that FFA is activated in response to face stimuli rather 
than their visual features (Liu et al., 2010) and that it exhibits selective 
activation in response to different types of facial stimuli, including 
photographs, drawings, and depictions of animal faces (Tong et al., 
2000). Moreover, the neural representation within the FFA is sensitive 
to the “inversion effect” (originally unveiled through the “Thatcher 
illusion” by Thompson, 1980), which causes a disproportionate drop 
in recognition of upside-down (inverted) faces compared to upright 
faces not observed for inverted objects (Yovel and Kanwisher, 2005).

A recent report found evidence of cortical involvement in face 
processing at birth, similar to the face-selective areas observed in the 
adult brain (Buiatti et al., 2019). Using high-density EEG and measuring 
frequency-tagged signals in newborns exposed to upright face-like, 
inverted, and scrambled face stimuli, the study found a stronger response 
to face-like stimuli in cortical structures along the occipitotemporal 
pathway, similar to those observed in adults (Buiatti et al., 2019).

In addition to the face-selective areas in the visual cortex, an 
extended network of additional face processing areas has been 
described as involved in identity recognition, facial expression and 
emotional processing (Haxby et al., 2000; Calder and Young, 2005). 
These include lateral prefrontal cortex regions that are involved in both 
featural and configural processing of faces and provide a top-down 
control to the temporal cortex (Heekeren et al., 2004; Renzi et al., 2013).

Non-human primate research has also been fundamental in 
investigating the neural bases of face perception (Tsao and Livingstone, 

2008; Rossion and Taubert, 2019). Face-selective areas, called face 
patches, have been described in macaque monkeys (Tsao et al., 2008), 
vervet monkeys (Zangenehpour and Chaudhuri, 2005), marmosets 
(Hung et al., 2015), and chimpanzees’ (Parr et al., 2009) inferotemporal 
(IT) cortex.

In parallel to discovering face-selective areas in the temporal 
cortex of humans and non-human primates, several studies 
demonstrated that a subcortical visual pathway largely mediates face 
perception (Johnson et al., 2015; Almasi and Behrmann, 2021). It is 
widely recognized that newborns have the ability to orient themselves 
toward faces and stimuli that resemble faces. Considering the poor 
maturation of the cerebral cortex in the first months after birth, many 
authors have suggested that subcortical visual pathways may support 
the immature cortical structures during this time (Johnson, 2005). 
Evidence confirms this hypothesis, including recent studies showing 
a monocular advantage in infants’ and adults’ face processing (Almasi 
and Behrmann, 2021; Dalrymple et al., 2021) and suggesting the 
engagement of subcortical visual pathways. This evolutionarily 
conserved visual system includes part of the retinocollicular system, 
the amygdala, the lateral geniculate nucleus, the pulvinar, and the 
superior colliculus. In addition to studies in infants, face-selective 
activation has also been demonstrated in subcortical regions of the 
adult brain, independent of emotional expression, for example, in the 
amygdala and the superior colliculus (Mende-Siedlecki et al., 2013). 
Recent studies in monkeys have demonstrated that a specific 
population of neurons in the superior colliculus responded stronger 
and faster to the face-like than non-face patterns (Le et al., 2020), 
elucidating some of the subcortical neural correlates involved in face 
detection. To reconcile with recent reports of cortical areas in the 
occipitotemporal cortex participating in newborns’ face detection 
(Buiatti et  al., 2019), studies have suggested a substantial link 
between the subcortical and the cortical circuits to support face 
processing in early development (Pessoa and Adolphs, 2010).

A recent report investigated face-selective neurons also in domestic 
chicks (Kobylkov et al., 2024). The authors examined the response of a 
group of neurons in the nidopallium, a region of the chick brain believed 
to be homologous to the human prefrontal cortex, of face-naïve young 
domestic chicks exposed to schematic face-like stimuli. Using single-cell 
recordings, Kobylkov et al. (2024) demonstrated the presence of face-
selective neurons in the caudolateral nidopallium of domestic chicks 
that respond significantly stronger to upright face-like stimuli compared 
to other configurations (inverted, asymmetric, or frequency-filtered 
facial stimuli) or to face parts (Kobylkov et al., 2024). Moreover, the 
authors demonstrated that face-selectivity in this neuronal population 
emerges independently of previous visual experience, supporting the 
hypothesis of an innate system for face detection in domestic chicks (see 
for a review Kobylkov and Vallortigara, 2024). Interestingly, face 
selectivity has been described in the prefrontal cortex of both humans 
(Heekeren et al., 2004; Renzi et al., 2013) and non-human primates 
(Chan et al., 2016; Schaeffer et al., 2020) demonstrating, once more, the 
strong translational value of this animal model.

Face detection in neurodevelopmental 
disorders: an animal model 
perspective

Face processing deficit is the most important early impairment in 
ASD and one of the most reliable findings in the literature. Several 
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studies have examined face processing abilities in ASD (see for a 
review Campatelli et  al., 2013; Bi and Fang, 2017), documenting 
behavioral differences at different levels: facial expression recognition 
(Uljarevic and Hamilton, 2013; Lozier et al., 2014; Loth et al., 2018), 
individual identity recognition (Weigelt et al., 2012; Minio-Paluello 
et al., 2020), visual attention to faces (Klin et al., 2002; Pelphrey et al., 
2002; Riby and Hancock, 2009; Chita-Tegmark, 2016; Reisinger et al., 
2020), and face perception (Carver and Dawson, 2002; Klin et al., 
2002). Deficits in visual attention and face detection seem to 
characterize ASD from very early in life: while face detection deficits 
in ASD have been reported more consistently in older children and 
adults (Webb et al., 2017; Bathelt et al., 2022), newborns with increased 
ASD risk also show reduced responses to face-like stimuli already at 
birth (Di Giorgio et al., 2016, 2021; Bradshaw et al., 2020). In addition, 
neurophysiological and neuroimaging studies have shown altered 
activation patterns in cortical brain areas associated with face 
detection (Shephard et al., 2020; Tye et al., 2022). Hypoactivation of 
FFA during tasks involving face perception appears to be the most 
consistently observed functional abnormality in ASD (Schultz et al., 
2000, 2003; Schultz and Klin, 2002; Nickl-Jockschat et al., 2015; Wang 
et  al., 2024). Other subcortical face processing networks exhibit 
functional alterations and modified connectivity in individuals with 
ASD (Kleinhans et al., 2011). For example, the amygdala displays 
atypical activation in ASD (Kliemann et al., 2012; Philip et al., 2012; 
Rutishauser et al., 2013; Wang and Li, 2023); aberrant activation in 
ASD was also described in the pulvinar and the superior colliculus 
(Kleinhans et al., 2011; Huang et al., 2022).

Despite the advancement in the understanding of brain 
connectivity and functional changes related to face processing 
abnormalities in ASD, the neurobiological bases of these 
dysfunctions are still not well understood. Given the high 
heterogeneity of the symptoms and neurobiological alterations 
associated with ASD (Lamanna and Meldolesi, 2024), as well as the 
adaptative changes occurring in the developing brain to compensate 
for the deficits, understanding the mechanisms behind face 
processing abilities in ASD requires developmental studies. So far, 
very few studies have addressed the developmental aspect of these 
deficits, i.e., what are the mechanisms behind the lack of preferential 
attention to faces in individuals with ASD from early developmental 
stages? Some authors (Dawson et al., 2005) have proposed that face 
processing deficits are mediated by underlying impairment in social 
motivation, resulting in the failure to attend to socially relevant 
stimuli and, therefore, limiting social development. Others (Johnson, 
2005) have suggested that in individuals with ASD, the disruption of 
the subcortical face processing pathway is a primary cause of 
impaired social orienting mechanisms, which in turn compromises 
exposure to faces and, therefore, the development of typical 
social abilities.

Given human neonatal studies’ limits and ethical constraints, 
together with the pervasive nature of face processing in vertebrates, 
adopting a developmental approach to studying face detection 
mechanisms with a comparative perspective in animal models of ASD 
may represent a valuable strategy to investigate these deficits.

The development of highly efficient and precise genetic tools has 
significantly spurred research in modeling human disorders in 
non-human primates, including in the context of autism (Zhao et al., 
2018). A recent study by Zhou et al. (2019) analyzed the effect of a 
mutation in the SH3 and ankyrin repeat domains 3 (SHANK3) gene, 

a highly penetrant, monogenic risk factor for ASD, on Cynomolgus 
macaque monkeys (Macaca fascicularis) visual attention to social and 
nonsocial stimuli. Using images of faces, objects, and faces with 
threatening or neutral expressions, the authors found a reduced 
fixation time and increased aversion to the images in the mutant 
monkey compared to the controls despite the low number of mutant 
monkeys analyzed (5 mutants, 1 female). Another study was recently 
conducted (Zhao et al., 2019) investigating attentive behavior towards 
faces in juvenile macaques (Macaca fascicularis) exposed to valproic 
acid (VPA), an anticonvulsant known to interfere with the 
development of the social brain and increase the risk of developing 
ASD in humans (Christensen et al., 2013). VPA’s mechanism of action 
involves its direct inhibition of histone deacetylases (HDACs), 
interfering with normal chromatin deacetylation and disrupting the 
transcription of multiple ASD-associated genes (Meng et al., 2022; 
Guerra et al., 2023; Krueger et al., 2024; Zarate-Lopez et al., 2024). 
Using eye-tracking analysis to measure the animals’ attention to faces 
or scenes containing conspecifics, the authors found that juvenile 
monkeys exposed to VPA attended to non-social stimuli significantly 
more than their control siblings (Zhao et al., 2019). Studies have also 
been carried out on models of ASD in marmoset monkeys (Callithrix 
jacchus) exposed to VPA. Nakagami et al. (2022) examined the visual 
attention of juvenile and adult marmosets exposed to VPA and found 
a reduction in the time spent gazing at other conspecifics already at 
15–19 weeks.

Despite the limited reports of direct face detection testing in 
monkeys, the evidence accumulated so far is promising, and the 
potential for investigating the neural correlates and neurobiological 
mechanisms underlying the reported deficits in social preference is 
encouraging (Watson and Platt, 2012; Bauman and Schumann, 2018; 
Katsnelson, 2018; Zhao et al., 2018).

In addition to human newborns and monkeys, several other 
vertebrate species possess remarkable face detection abilities. In 
domestic chicks, younglings express striking orienting responses to 
a broad spectrum of visual representations of the typical appearance 
and features associated with living beings. Several studies have 
investigated the behavioral and neurobiological bases of these 
abilities in domestic chicks, including extensive investigation of their 
innate preferences for human faces and face-like stimuli (see for a 
review Di Giorgio et  al., 2017). Thanks to their precocious and 
strong social response to visual cues, domestic chicks have also 
attracted attention as model organisms to investigate other 
behavioral and neurobiological mechanisms relevant to autism 
(Csillag et  al., 2022; Matsushima et  al., 2024). Exposure to the 
anticonvulsant VPA impairs the chicks’ ability to orient to the 
appearance of a stuffed hen (Sgadò et  al., 2018) to motion cues 
typical of animate agents (Lorenzi et  al., 2019) and, most 
interestingly, to face-like configurations similar to those that bias the 
attention of human neonates (Adiletta et al., 2021). Interestingly, 
neurobiological mechanisms potentially relevant for impairments in 
face processing are starting to be investigated (Adiletta et al., 2022).

Discussion

Despite a consensus on the significance of face processing in social 
development and ASD, the nature and origin of the face processing 
deficits and the underlying neurobiological mechanisms are still 
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unclear. Thanks to the pervasive nature of face processing in 
vertebrates, employing a comparative approach to study the 
development of face detection mechanisms in animal models of ASD 
may shed light on these mechanisms.

Many studies investigating the neurobiological bases of ASD in 
animal models are focused on rodents, especially mice, thanks to their 
genetic and neuroanatomical homology to humans. However, given 
the prolonged postnatal development of the visual system and the 
difficulty in analyzing visually mediated early behavioral responses, 
research into face processing in rodents has been limited (Schnell 
et al., 2019; Watanabe et al., 2022). However, both rats and mice have 
remarkable visual perception abilities (Djurdjevic et al., 2018) that 
could be exploited to further investigate face processing deficits in 
rodent ASD models.

Prioritizing species with early visual perceptual skills that replicate 
many of the features of face processing in humans, readily testable at 
postnatal developmental stages, may be instrumental in providing the 
key to clarifying the nature and origin of these mechanisms and their 
role in atypical social development. Very few studies have explored 
this approach.

The recent development of highly efficient and precise genetic 
tools, such as CRISPR/Cas9 and TALEN (transcription activator-like 
(TAL) effector nucleases), makes exploring transgenic strategies in 
several species possible, including the domestic fowl. Since the first 
transgenic chick was generated (Salter et al., 1987), much effort has 
been devoted to developing strategies to induce genetic modifications 
and improve germline transmission in domestic chicks (see for a 
review Sid and Schusser, 2018). CRISPR/Cas9-mediated genome 
editing has been previously employed in domestic chicks to generate 
somatic mutations in early embryos used for developmental studies 
(Gandhi et al., 2017), but only recently have stable Cas9-expressing 
chicken lines been generated (Rieblinger et al., 2021), opening new 
perspectives to yield loss-of-function mutations in this species, 
including those to model ASD.
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