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The brain’s ability to perform efficient and fault-tolerant data processing is strongly 
related to its peculiar interconnected adaptive architecture, based on redundant 
neural circuits interacting at different scales. By emulating the brain’s processing 
and learning mechanisms, computing technologies strive to achieve higher levels 
of energy efficiency and computational performance. Although efforts to address 
neuromorphic solutions through hardware based on top-down CMOS-based 
technologies have obtained interesting results in terms of energetic efficiency 
improvement, the replication of brain’s self-assembled and redundant architectures 
is not considered in the roadmaps of data processing electronics. The exploration of 
solutions based on self-assembled elemental blocks to mimic biological networks’ 
complexity is explored in the general frame of unconventional computing and 
it has not reached yet a maturity stage enabling a benchmark with standard 
electronic approaches in terms of performances, compatibility and scalability. Here 
we discuss some aspects related to advantages and disadvantages in the emulation 
of the brain for neuromorphic hardware. We also discuss possible directions in 
terms of hybrid hardware solutions where self-assembled substrates coexist and 
integrate with conventional electronics in view of neuromorphic architectures.

KEYWORDS

neuromorphic, unconventional computing, CMOS, nanoparticle networks, 
perceptron, hardware

1 Introduction

The reduction of the energy footprint of pervasive computing infrastructures is crucial for 
the realization of a sustainable innovation agenda (Masanet et al., 2020). The advent of artificial 
intelligence (AI) has made even more urgent the development of suitable computing 
technologies to try to contain the enormous expenditure of energy required for data storage 
and processing infrastructures (Masanet et al., 2020; De Vries, 2023).

AI achievements in areas such as speech and visual object recognition, object detection, 
and various other fields within hard and life sciences can be attributed to the use of deep 
learning techniques that utilize computational models made up of multiple processing layers, 
enabling them to learn data representations with varying levels of abstraction (Kozma et al., 
2018). Deep Neural Networks (DNN) effectively identify complex patterns within large 
datasets, as Spiking Neural Network (SNN) in vision and event-based tasks, while Recurrent 
Neural Networks (RNN) are used for complex sequential data like text and speech series 
(LeCun et  al., 2015). These methods exploit at different levels gradient descent via 
backpropagation algorithm and the highly parallel matrix multiplications enabled by GPUs 
(Burr et al., 2017). Recently, Transformer architectures have revolutionized AI by overcoming 
some limitations of previous models like RNNs, particularly in sequential tasks. Transformers, 
which rely on self-attention mechanisms, have demonstrated superior performance in 
language models (Vaswani et al., 2017) and, more recently, Vision Transformers (ViTs) have 
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extended these principles to computer vision tasks (Dosovitskiy 
et al., 2021). Unlike Convolutional Neural Networks (CNNs), which 
focus on local patterns, ViTs can capture global context efficiently, 
further pushing the boundaries of AI applications, but often at the 
cost of higher energy consumption due to their 
computational complexity.

To reverse the trend of increasingly growing energy demand of 
DNN, the use of new biologically inspired strategies for computing 
and data processing is actively pursued (Aimone, 2021). Human brain 
is considered the essential model of the matching of energy efficiency 
and structural complexity with dynamic learning capabilities in the 
context of unstructured noisy data (Axer and Amunts, 2022). The 
ability of the brain to perform such efficient and fault-tolerant data 
processing is strongly related to its peculiar interconnected adaptive 
architecture, based on redundant multiscale neural circuits and 
equipped with short- and long-term plasticity (Sporns et al., 2005; 
Shapson-Coe et al., 2024). During evolution, animals have faced the 
constant problem of energy scarcity: to afford a metabolically 
expensive brain, they have evolved finding strategies for the 
implementation of energy-efficient neural coding, enabling operation 
at reduced energy costs (Padamsey and Rochefort, 2023).

The intimate interrelation between multiscale structure and 
function in the brain is a fundamental aspect, still poorly understood 
(Breakspear and Stam, 2005; Suárez et al., 2020), for the optimization 
of internal and external resources: as an example, one can consider 
that information transmission through presynaptic terminals and 
postsynaptic spines is related to their energy consumption (Harris 
et al., 2012; Padamsey and Rochefort, 2023). Although conspicuous 
intellectual and economic efforts have been concentrated in the last 
decades on the artificial reproduction of the human brain 
performances in terms of energetic resource optimization, precision 
and timeliness, this achievement remains a challenge yet to 
be overcome (Pfaff et al., 2022; Shapson-Coe et al., 2024).

Neuromorphic engineering and computing (Mead, 1990) aim at 
the implementation of highly efficient information processing 
methods typical of biological systems on artificial software and 
hardware platforms, relying on the tacit assumption that the brain 
functions like a computer and that a computer can function like the 
brain (Jaeger, 2021; Richards and Lillicrap, 2022). Since Alan Turing’s 
groundbreaking work on computability (Turing, 1937), the concept of 
“computable functions” has been central to define what computers can 
achieve, regardless of their physical characteristics. While a brain 
could potentially emulate a Turing machine in terms of its 
computational capabilities, it operates in a fundamentally different 
way from traditional computers (Jaeger, 2021; Jaeger et al., 2023). 
Furthermore, in computers distinct boundaries exist between the 
physical hardware and the software algorithms that run on them, 
while in the brain the categories of hardware and software have no 
practical meaning (Jaeger et al., 2023).

The dichotomy between hardware and software is probably one of 
the major obstacles to the realization of an artificial system truly 
neuromorphic and it profoundly affects the way artificial 
neuromorphic systems are conceived and perceived (Jaeger, 2021). 
DNN are considered as brain-inspired since they are organized on 
several layers of artificial neurons and synapses (Haensch et al., 2023), 
however despite this terminology is derived from the neurosciences, 
the actual correspondence to the main mechanisms of the natural 
neural counterparts is far from being implemented and their training 

approaches do not represent the learning strategy adopted by the 
biological system (Burr et al., 2017).

On the hardware side, major efforts are concentrated on solutions 
that can improve the energy efficiency of DNNs (Chen et al., 2022). 
Among them the use, at various length scales, of building blocks and/
or architectures reproducing biological brain components and 
organization is gaining increasing attention (Burr et al., 2017). In 
particular, advances in neuromorphic hardware addresses two major 
distinctive features of the biological brain data processing: the 
temporal dimension in data transmission (Spiking Neural Networks) 
(Schuman et al., 2022) and the so-called in memory computing (Burr 
et al., 2017). Strategic hardware components for the implementation 
of efficient SNN are dense crossbar arrays of non-volatile memory 
(NVM) devices as an alternative to CMOS neuron circuitry. These 
could represent an effective solution for the improvement of energy 
efficiency although they have a very poor similarity to biologic 
neurons and synapses. The faithful imitation of the structural and 
functional characteristics of biological constituents is not in itself a 
necessary and sufficient condition for the substantial increase in 
performance of neuromorphic software based on DNN.

Considering the brain on larger scales compared to that typical of 
a single or small groups of neurons and synapses, one can affirm that 
the structural and functional properties in terms of adaptability, 
learning capability, robustness and efficiency are related to its self-
organized nature (Kelso, 2012). Self-organization achieves stability 
and functional plasticity while minimizing structural system 
complexity, it can be  defined in terms of a general principle of 
functional organization that ensures system autoregulation, adaptation 
to new constraints, and functional autonomy (Dresp-Langley, 2020). 
These characteristics can be recognized in many natural dynamic and 
adaptive systems based on organic and inorganic matter and capable 
of evolving in response to internal and external stimuli (Tanaka et al., 
2019). It seems thus reasonable to hypothesize that systems different 
from the biological brain and characterized by self-organization can 
be considered for computation and data processing.

Such systems are at the basis of the so-called unconventional 
computing approach (Finocchio et al., 2024; Vahl et al., 2024), where 
computation arises from the collective interactions of many simple 
components and by the emergence of complex patterns rather than 
from a central processing unit communicating with memory. It would 
be interesting to discuss the reasons why the term “unconventional” 
is used in this context, instead of neuromorphic. In our opinion, one 
of the reasons is linked to the very strong significance of the brain-
computer metaphor. The use of features related to self-assembly and 
statistical mechanisms for data processing, even if typical of the 
biological brain, are not perceived as “neuromorphic” as they are very 
far from the architectures of a traditional computer. Anyway, by using 
materials having memory effects and nonlinear responses, it could 
be possible to create devices performing “neuromorphic” tasks like 
pattern recognition or time-series analysis with low external energy 
input (Vahl et  al., 2024), being based on the spontaneous 
reorganization of the physical system. Such data processing can 
be performed through various physical phenomena, such as electrical 
conductivity, magnetism, and even chemical reactions (Vahl 
et al., 2024).

Networks of nano-objects electrically connected by junctions 
possessing nonlinear memristive characteristics (Milano et al., 2023) 
exhibit emergent complexity and collective phenomena akin to 
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biological neural networks, in particular hierarchical collective 
dynamics (Mallinson et  al., 2019) and heterosynaptic plasticity 
(Fostner and Brown, 2015; Milano et al., 2020, 2022a; Daniels and 
Brown, 2021; Kuncic and Nakayama, 2021; Carstens et al., 2022; Vahl 
et al., 2024). Data processing performed with these nanostructured 
systems has been reported under the label of “in materia 
computing”(Jaeger, 2021; Milano et  al., 2022b). The emerging 
properties of self-assembled networks of nanowires and nanoparticles 
have been used to provide a physical substrate for Reservoir 
Computing (RC) (Usami et al., 2021; Daniels et al., 2022; Milano et al., 
2022b; Yan et al., 2024). RC is a paradigm in machine learning that 
utilizes a fixed, complex dynamic system as a “reservoir” to process 
input signals (Miller, 2019; Tanaka et al., 2019; Nakajima, 2020).

The exploitation of the in materia approach is in its infancy and it 
must face different challenges: a major one, common to all the 
unconventional approaches to computation, is represented by the lack 
of a unifying theoretical basis, as discussed in detail in Jaeger (2021). 
The second is the benchmarking in terms of material selection, 
computing performances, fabrication scalability with the silicon-based 
technology (classical and/or neuromorphic) (Teuscher, 2014; Cao 
et al., 2023).

Here we would like to address some issues related to the possibility 
of using hardware solutions proposed for in materia computing and 
mimicking the biological brain as a self-assembled system, for tasks 
demanded to components and architectures typical of neuromorphic 
or even standard von Neumann systems. The development of real 
devices based on in materia computing systems can provide useful 
insights for the translation of a “theory of computing from whatever 
physics offer” (Jaeger et al., 2023) to an effective hardware. To analyze 
this point, we will consider some aspects of the picture describing the 
biological brain related to nonlinearity and nonlocality, then we will 
discuss possible artificial counterparts and their integration for the 
fabrication of devices for Boolean functions classification.

2 Biological picture

The operation of mammalian brains relies on optimizing and 
organizing a multitude of biochemical, electrophysiological, and 
anatomical phenomena across various spatial and temporal scales, 
culminating in an incredibly adaptive, robust, and balanced physical 
system (Herculano-Houzel, 2009; Loomba et al., 2022). Key building 
blocks include cells such as neurons, glial cells, and astrocytes, which 
intricately connect and through synapses, form complex functional 
networks (Shapson-Coe et al., 2024). Chemical synapses are prevalent 
in the brain and involve several sequential steps, starting with the 
transmission of an action potential through the axon, leading to 
neurotransmitters release in the synaptic cleft. This is followed by 
neurotransmitters binding to post-synaptic receptors, ultimately 
activating an ionic current in the post-synaptic cell. The multipart 
process of generating a postsynaptic current is subject to various 
modulation and plasticity phenomena, influencing information 
processing within neurons and neural circuits (Stöckel and 
Eliasmith, 2021).

Understanding changes in synaptic strength has been a focus of 
research, utilizing different stimulation protocols to assess their impact 
on computation. Short-term plasticity (STP) acts as a band-pass filter 
for incoming signals (Tsodyks and Wu, 2013), while long-term 

potentiation/depression (LTP/LTD) results in a lasting alteration of 
synaptic strength, crucial for learning and memory (Xu-Friedman and 
Regehr, 2003; Nieus et  al., 2006). The interplay between different 
plasticity phenomena is noteworthy, with studies demonstrating how 
LTP/LTD dynamics can turn synaptic facilitation into depression, 
influencing how neural cells process input stimuli (Arleo et al., 2010).

Furthermore, neurons are structurally extended, with dendritic 
trees spanning up to 1 mm, which significantly impacts a neuron’s 
computational abilities. For example, cortical layer 5 pyramidal 
neurons (examples of pyramidal neurons from cortex area are shown 
in Figure  1) function as coincidence detectors for contextual and 
sensory inputs, playing a crucial role in connecting cortical columns 
and the thalamus, believed to be fundamental for consciousness (Aru 
et  al., 2019). Over the past three decades, extensive research into 
cortical pyramidal neurons has unveiled a multitude of their 
processing capabilities (Spruston, 2008). Recent findings have even 
demonstrated that in human cortical layer 2 and 3 pyramidal neurons 
can solve the XOR operation (Gidon et al., 2020), a task typically 
achieved only by multilayer artificial neural networks.

Thus, the computational capacity of a neural ensemble (a group of 
neurons performing a specific function) appears to be enhanced not 
only by the interconnections within the recurrent network (a portion 
of human brain’s connectome is shown in Figure 1) but also by the 
dynamic nature of neurons themselves, particularly through their 
intricate processing of inputs at the dendritic level (Häusser et al., 2000). 
Studies have shown that back-propagating action potentials interact 
with synaptic inputs, amplifying dendritic calcium signals nonlinearly 
and increasing neuron firing rates (Larkum et al., 1999). Nonlinear 
systems can embody various types of computations, and it is feasible to 
dynamically configure the system to execute different ones (Kia et al., 
2017). The adaptability of living systems itself to diverse conditions is 
believed to stem from nonlinearity (Skarda and Freeman, 1987).

Biophysically plausible computational models suggest that the 
nonlinear properties of dendrites are crucial, for example in explaining 
the processing capabilities of cortical pyramidal neurons. Nonlinear 
phenomena can arise from the interaction between the spatial 
distribution of ionic channels and synapses (Mäki-Marttunen and Mäki-
Marttunen, 2022). The arrangement of synapses and ionic channels in 
dendritic trees plays a fundamental role for the understanding of how 
neurons contribute to information processing (Migliore and Shepherd, 
2002). Activation of the NMDA synaptic receptor exhibits high 
nonlinearity, akin to a transistor’s response concerning the post-synaptic 
site’s voltage. Moreover, under specific conditions, NMDA receptor 
activation can trigger a series of intracellular processes involved in long-
term potentiation (LTP) formation (Luscher and Malenka, 2012). 
Furthermore, compartmental models of passive dendrites demonstrate 
that adjacent synapse activations tend to sum less linearly compared to 
distant synapses, which tend to sum linearly. This spatial sensitivity 
implies that local nonlinear synaptic operations can be  semi-
independently executed in numerous dendritic subunits (Kia et al., 2017).

An original attempt to insert non linearity in modeling dendrites 
inputs integration is reported in Legenstein and Maass (2011), where 
the summing of post-synaptic potentials at dendritic branches is 
modeled as a weighted linear combination of input potentials (passive 
terms) and active nonlinear components, which activate when passive 
elements exceed a specific dendritic threshold. Here, nonlinearity is 
effectively integrated into dendritic dynamics, although input-
associated weights are treated independently.
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Also at a larger scale, the nervous system adjusts its functioning 
through nonlinear changes in activation patterns within networks of 
cells composed of large numbers of units; these networks are 
responsible for channeling, shifting, and shunting activity (Kozachkov 
et al., 2020). The activity of the biological network itself emerges as 
significant output, where synchronized neural activities and feedback 
loops are key elements of its operating mechanisms. Neurons respond 
in an analog way, changing their activity in response to changes in 
stimulation. Unlike any artificial device, the nodes of these networks 
are not stable points like transistors or valves, but sets of neurons—
hundreds, thousands, tens of thousands strong—that can respond 
consistently as a network over time, even if the component cells show 
inconsistent behavior (Richards and Lillicrap, 2022).

The organization of brain connectivity, by a very simple level of 
single neuron dendritic tree to more complex neuronal ensemble, is 
at the basis of remarkable properties such as fault tolerance, robustness 
and redundancy (Kitano, 2004).

The brain is characterized by robustness, being able to support 
highly efficient information transmission between neurons, circuits, 
and large regions making it possible to promptly gather and distribute 
information while tolerate the large-scale destruction of neurons or 
synaptic connections (Achard et al., 2006; Tian and Sun, 2022). Till 
now, it remains unclear where these remarkable properties of brain 
originate from. The close relationships between these properties and 
the brain network naturally leads to a hypothesis that argues these 
properties may originate from specific characteristics of brain 
connectivity (Tian and Sun, 2022).

3 Artificial brain-like hardware

3.1 Building blocks

The theoretical underpinnings of the artificial neuromorphic 
primitive elements are rooted in modeling biological neuronal systems 

as propositional logic units, as proposed by McCulloch and Pitts (1943). 
They suggested that due to the “all-or-none” nature of nervous activity, 
neural events and their relations can be handled using propositional 
logic. Subsequently, Donald Hebb’s findings on neural network plasticity 
led to a deeper exploration and formalization of constituent elements, 
as networks exhibit learning abilities and reinforce connections 
(Paulsen, 2000). In 1952, John von Neumann postulated that logical 
propositions can be  represented as electrical networks or idealized 
nervous systems, setting the foundation for current computation 
models (Neumann, 1956). An aspect that seems to be  scarcely 
recognized is that the above-mentioned models are mainly used to build 
neuromorphic software, and they are only marginally translated 
into hardware.

Threshold logic gates (TLGs) are directly inspired to the neuron 
(McCulloch and Pitts picture) and constitute the basis of many software 
neuromorphic architectures, however they are not used in conventional 
and neuromorphic hardware. Digital circuit design is entirely based on 
Boolean logic circuits and not on TLGs, although the ability of the latter 
to process multiple inputs simultaneously and perform weighted 
calculations for efficient implementation of complex functions (Beiu 
et al., 2003). TLGs also provide natural fault tolerance and are more 
resilient to noise, given their analog-based approach to digital 
computation (Zhang et al., 2008).

Boolean logic circuits are widespread because of their simplicity 
and easiness to design, debug, and manufacture (Elahi, 2022). The vast 
existing literature and experience in Boolean logic facilitate rapid 
prototyping and scalability, making them the industry standard for von 
Neumann and neuromorphic computing applications. Additionally, 
they can take advantage of established fabrication technologies, leading 
to cost-effective manufacturing. The simplicity of Boolean circuits has 
led to their standardization across the industry, with established design 
methodologies, tools, and educational resources readily available 
(Vingron, 2024). CMOS technology is designed around Boolean logic 
gates for mass production in consumer electronics, computing devices, 
and embedded systems.

FIGURE 1

On the left, dendritic tree of pyramidal neurons from cortical layer 2 and 3, featured by two distinct domains, i.e., the basal and the apical dendrites, 
adapted from Spruston (2008); on the right, connectome from human brain, adapted from Carving Out Brain Structure with Connectomics (2022).
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We can summarize that brain-inspired building blocks such as 
threshold logic gates (neuron) and input weights (synapses) are at the 
basis of neuromorphic software running on a hardware, where Boolean 
logic gates are organized in order to improve the efficiency of the 
neuromorphic software. The development of neuromorphic computing 
hardware by using CMOS architectures (Indiveri et al., 2011) or other 
types of devices such as non-volatile memories (Indiveri et al., 2013; 
Burr et  al., 2017; Ielmini and Ambrogio, 2020) to emulate 
neurobiological networks at the small circuit or device level, may favor 
a significant reduction of power consumption (Li et al., 2021). The 
downscaling of dense non-volatile memory (NVM) crossbar arrays to 
few-nanometer critical dimensions has been recognized as one path to 
build computing systems that can mimic the massive parallelism and 
low-power operation found in the human brain.

3.2 Brain-like networks

The fundamental significance of the structural organization of 
biological systems was recognized by F. Rosenblatt, who introduced in 
a series of seminal works the idea of weighted sums of inputs and 
network reinforcement in his perceptron model (Rosenblatt, 1958). This 
model was not primarily concerned with the invention of a device for 
“artificial intelligence,” but rather with investigating the physical 
structures and neurodynamic principles which underlie “natural 
intelligence” (Rosenblatt, 1962). The perceptron was considered a brain 
model, not a device for pattern recognition; as a brain model, its utility 
was concentrated in enabling to determine the physical conditions for 
the emergence of various psychological properties (Rosenblatt, 1962) 
(Figure 2B).

In his probabilistic theory, he emphasized statistical separability as 
the core of biological intelligence, rather than symbolic logic (Rosenblatt, 
1958). His model had significant “neuromorphic” aspects compared to 

those based solely on McCulloch and Pitts neurons (Figure  2A), 
particularly in the role of connections, both random and strategically 
placed within the projected area, such as in the photo-perceptron 
organization, and the reinforcement system (Figure 2B). Positive and 
negative reinforcement play key roles in either facilitating or hindering 
the reorganization of connections, whereas McCulloch and Pitts 
networks were assumed to be fixed (McCulloch and Pitts, 1943).

In Rosenblatt’s model, complexity arises from the extensive number 
of interconnections rather than the variety of basic components 
(Rosenblatt, 1958). He  proposed the concept of combining wiring, 
specifically random wiring, as crucial for information storage, in 
analogy with biological system, so much so that the model was 
specifically developed to address questions regarding information 
storage and its influence on brain recognition and behavior.

Rosenblatt also underlined that “…The construction of physical 
perceptron models of significant size and complexity is currently 
limited by two technological problems: the design of a cheap, mass-
produceable integrator, and the development of an inexpensive means 
of wiring large networks of components” (Rosenblatt, 1962).

The importance of random wiring pointed out by Rosenblatt was 
not fully recognized (Rosenblatt, 1958) and the perceptron was 
considered as a threshold logic gate able to perform linear 
classification. The linear character of the device is a limitation, as 
pointed out by Minsky and Papert (2017) and nonlinearity can 
be obtained only by the use of perceptron networks (Hopfield, 1982; 
Cybenko, 1989; Olivieri, 2024).

4 Self-assembled brain-like hardware

Among the materials which offer a degree of structural and 
functional complexity at different scales, self-assembled networks of 
nanoobjects connected by nonlinear electric junctions are 

FIGURE 2

Neuron model proposed by Neumann (1956) (A), and the organization of the perceptron proposed by Rosenblatt (1958) (B).
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characterized by complex and redundant wiring (Mirigliano and 
Milani, 2021; Vahl et al., 2024). Compared to standard circuits typical 
of conventional computing systems, they are much easier to assemble, 
however quite intractable in terms of designing, interfacing, and 
interconnecting with conventional computing hardware (Vahl 
et al., 2024).

Recently, a logic threshold gate has been proposed based on self-
assembled nanostructured films that share some of the characteristics 
of random wiring and reconfigurability typical of biological systems 
and present in the original Rosenblatt’s perceptron model. This model, 
called “Receptron” (reservoir perceptron), share with Rosenblatt’s 
perceptron the fundamental importance of the randomness of the 
connections, on the other hand it generalizes the Minsky perceptron 
considered as a linear logic gate by introducing, as in the biological 
neuron, a nonlinear dependence among the input weights (Martini 
et  al., 2022; Paroli et  al., 2023). The Receptron instead is a 
reconfigurable, non-linear threshold logic gate (Mirigliano et al., 2021; 
Martini et al., 2022; Paroli et al., 2023).

From a formal standpoint, one can consider the traditional logic 
threshold perceptron model as based on linearly independent weights:

 1
,

n
j j

j
S x w

=
= ∑

 
(1)

where j  numbers the inputs ( [ ]1,j n∈ ) and jw  are constant real values 
referring to the weights in the perceptron model.

A more general form of Equation 1 can be  considered which 
allows for the nonlinear interaction of the inputs:
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=
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n
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j
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(2)

where  ( ) : Cn
jw x R →
  are complex-valued functions and 

( )1, , nx x x= …
  is the input vector (Paroli et al., 2023).

Equation 2 is at the basis of the Receptron formalism (see Paroli 
et  al., 2023) and it describes a threshold system where the input 
weights are not univocally related to a single input, hence, they cannot 
be independently adjusted. This nonlinear characteristic is similar to 
what observed in the interactions between synapses in neural 
dendritic trees (Moldwin and Segev, 2020). In this sense the model of 
the receptron is a generalization of that of the perceptron as a logic 
threshold gate: the weights are not univocally related to a single input 
making the Receptron intrinsically nonlinear and capable, as a single 
device, of classification tasks not achievable by individual perceptrons 
(Paroli et al., 2023).

Physical systems fabricated by the random assembly of metallic 
nanoparticle from the gas phase to form nanostructured films 
constitute a suitable hardware to implement the Receptron, since they 
consist in a network of highly interconnected non-linear junctions 
regulating their connectivity and the topology of conducting pathways 
depending on the input stimuli (Mirigliano et al., 2020; Martini et al., 
2024). Two-electrodes and multi-electrodes planar devices based on 
cluster-assembled Au and Pt showing nonlinear electronic properties 
and resistive switching behavior have been fabricated by supersonic 
cluster beam deposition (SCBD) (Mirigliano and Milani, 2021; Radice 
et al., 2024).

SCBD is a well-established technology for the scalable 
production of nanostructured metallic and oxide thin films (Borghi 
et al., 2018, 2019, 2022; Profumo et al., 2023; Radice et al., 2024) 
characterized by a high deposition rate, high lateral resolution 
(compatible with planar microfabrication technologies) and 
neutral particle mass selection process by exploiting aerodynamic 
focusing effects (Tafreshi et al., 2001; Barborini et al., 2003). High 
directionality, collimation and intensity of aerodynamically 
focused supersonic cluster beams, make it suitable for patterned 
deposition of nanostructured films through non-contact stencil 
masks or lift-off technologies (Previdi et al., 2021), as schematically 
described in Figure  3, enabling this tool for the large-scale 
integration of nanoparticles and nanostructured films on 
microfabricated platforms and smart nanocomposites (Marelli 
et al., 2011; Migliorini et al., 2020, 2021, 2023).

SCBD can be  used for high throughput fabrication of 
two-electrode and multielectrode nanostructured metallic planar 
devices characterized by resistive switching behavior (Borghi et al., 
2022; Martini et al., 2022; Profumo et al., 2023; Radice et al., 2024). 
Due to the efficient decoupling of cluster production, manipulation 
and deposition in a typical SCBD apparatus it is possible to 
characterize in situ the evolution of the electrical properties of 
cluster-assembled films during the fabrication process. This allows 
the precise and reproducible production of large batches of films 
with tailored electrical properties (Mirigliano et  al., 2020; 
Mirigliano and Milani, 2021).

In particular, nanostructured Au and Pt films fabricated by 
supersonic cluster beam deposition (Mirigliano et al., 2019, 2020; 
Radice et al., 2024) show a complex resistive switching behavior 
and their nonlinear electric conduction properties are deeply 
affected by the extremely high density of grain boundaries resulting 
in a complex network of nanojunctions (Mirigliano et al., 2019, 
2020; Nadalini et  al., 2023; Profumo et  al., 2023; Radice et  al., 
2024). Correlations emerge among the electrical activity of 
different regions of the film under the application of an external 
electrical stimulus higher than a suitable threshold. The degree of 
correlation can be varied controlling the film connectivity at the 
nano- and mesoscale (Nadalini et al., 2023), as also its geometry 
and the electrode configuration used as input and output (Martini 
et al., 2022, 2024).

A possible hardware implementation of a Receptron has thus 
been obtained by interconnecting a generic pattern of electrodes 
with a cluster-assembled Au film; this multielectrode device can 
perform the binary classification of input signals, following a 
thresholding process, to generate a set of Boolean functions 
(Mirigliano et al., 2021). The multielectrode Receptron can receive 
binary inputs from all the possible combination of the input 
electrodes and generate a complete set of Boolean functions of n 
variables for classification tasks.

In analogy with neural biological systems, the network of 
interconnected nanojunctions are characterized by the nonlinear and 
distributed nature of the junction weight interactions: the weights are 
not exclusively tied to a single node as highly interconnected junctions 
modulate their connectivity and conducting pathways’ topology based 
on input stimuli (Mirigliano et al., 2020, 2021; Martini et al., 2022), 
mirroring the behavior observed in neuronal dendrites (Moldwin and 
Segev, 2020; Bicknell and Häusser, 2021). The device can switch 
between reconfiguration and computation functionalities. The reading 
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of the analog output for each combination of a 3-bit system is 
performed at low voltage, not to change the resistivity map of the gold 
network (reading process in Figure 4), to compute a specific Boolean 
function. By exploring the resistive switching behavior of the 
nanogranular material, by means of an electrical stimulus applied to 
different possible pairs of electrodes (writing procedure in Figure 4), 
the electrical response of the network changes in a nonlinear and 
nonlocal fashion (Martini et al., 2022), allowing the reconfiguration 
of the device. It is thus possible to generate an extremely wide range 
of outputs, which change the sequence of their analog values (Martini 
et al., 2022). The outputs cannot be directly and accurately controlled: 
because of the extremely high number of junctions involved and the 
metastable configurations of the system, thus making receptron a kind 
of random and unpredictable device. Therefore, one could not exploit 
this device in a pre-programmed and deterministic way: one can 
instead use this complex system to rapidly explore a variety of input–
output applications until the right one is reached (Martini et al., 2022).

A schematic representation of the electrical setup for a 3-bit 
receptron device is reported in Figure 4: it is featured by three relays 
on the left, which are connected to their respective electrodes, to 
enable switching between a voltage supply and an open circuit, on the 
right, the output electrode is connected to a digital multimeter, 
allowing for the current recording.

In a 3-bit receptron all 23 = 8 possible input combinations are 
tested, each producing a corresponding output that can 
be  digitized through thresholding, thus generating a Boolean 

function (see Figure  4). Subsequent reconfiguration alters the 
nanostructure of the gold film, potentially modifying the preferred 
input–output current pathways through the formation or 
disruption of grain boundaries and other defects, generating a 
new function.

This random search method is intrinsically different from the 
training performed for classical DNNs: while classical neural 
networks require fine tuning of the independent weights of each 
single node according to some gradient descent technique 
(Rumelhart et al., 1986; Huang et al., 2020), the Receptron approach 
relies only on a random change of the interconnected weights 
(Mirigliano et al., 2021; Martini et al., 2022). The non-local resistive 
switching behavior in the nanojunction system result in a tunable 
correlated behavior, characterized by a non-trivial simultaneous 
changes in the resistivity of different regions of the film, generating 
voltage outputs which are not statistically independent (Martini 
et al., 2022).

The using of a stochastic approach for Boolean function 
classification with a nanostructured device fabricated by the self-
assembling of metallic nanoparticles might unconsciously suggest that 
one is dealing with an irreproducible and unstable system. This is not 
the case: the stability and reproducibility of the Receptron device has 
been tested over period of several months and in certain cases of years 
in normal laboratory conditions. A reconfigurable arithmetic logic 
unit based on Receptrons instead of Boolean circuits is currently 
underway (Martini, n.d.).

FIGURE 3

Schematic representation of cluster-assembled thin film deposition: (A) two or multi metallic electrodes are deposited on a flat and insulating 
substrate, (B) a mask is placed between the clusters beam and the sample for its negative printing on the substrate, (C) the mask is removed and a 
nanostructured film with rough and disordered structure (D) is formed.
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5 Summary

Neuromorphic computing refers to a wide variety of software/
hardware architectures and solutions that try to emulate the levels of 
energy efficiency and data processing performance typical of the 
biological brain. The strategies adopted and the terminologies used are 
affected on one hand by the tendency to consider computers and 
brains as ideally superimposable and, on the other hand, by the 
unavoidable dichotomy between hardware and software that 
characterizes artificial systems based on Turing and von Neumann 
paradigms (Jaeger, 2021; Jaeger et al., 2023).

Neuromorphic computing software is exploiting hardware 
platforms based on highly miniaturized and integrated Boolean logic 
gate architectures and not on threshold logic gates which are 
considered the electronic counterpart of McCulloch and Pitts neurons. 
The hardware of neuromorphic systems is currently based on 

top-down fabrication approaches and not on self-assembling and 
redundant wiring typical of biological neural systems.

The use of self-assembled substrates for computing, although 
characterized by features like those of biological systems, is 
considered as “unconventional.” Although interesting results have 
been reported in the case of reservoir computing using self-
assembled systems, strategical issues about scalability, 
reproducibility and compatibility with CMOS architectures are 
still to be addressed. A possible route in this direction is the use 
of non-linear threshold logic gates based on self-assembled 
nanostructured substrates (receptrons) to build devices that can 
be integrated with standard electronic systems.

Solutions based on truly brain-like hardware capable of substituting 
CMOS architectures for neuromorphic computing are not on the 
horizon so far and realistically will not be  for a long time to come 
(Teuscher, 2014). Unconventional and CMOS hardware should find a 

FIGURE 4

Schematic representation of multielectrode device based on nanostructured random-assembled material, implementing a Boolean functions classifier 
according to the Receptron model. The Boolean function is obtained by thresholding the analog outputs recorded at low voltage (lower than 1 V) for 
all the possible combinations of the 3-bit inputs. By applying a short pulse of a voltage highest than a certain threshold between a pair of electrodes, 
the connectivity of the network changes and a new conductance map is written. After this stochastic writing process, a new sequence of analog 
outputs is recorded, by implementing a different Boolean function.
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mutually profitable coexistence regardless of the faithful reproduction of 
the biological neural structures. To this goal the development of 
reconfigurable threshold logic gates based on self-assembled 
nanostructured substrates that can be  integrated in standard 
microelectronic architectures can be considered as an interesting starting 
point for the further development of hybrid computing hardware.
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