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Pathological myopia is a major cause of blindness among people under 50  years 
old and can result in severe vision loss in extreme cases. Currently, its detection 
primarily relies on manual methods, which are slow and heavily dependent 
on the expertise of physicians, making them impractical for large-scale 
screening. To tackle these challenges, we  propose SMLS-YOLO, an instance 
segmentation method based on YOLOv8n-seg. Designed for efficiency in large-
scale screenings, SMLS-YOLO employs an extremely lightweight model. First, 
StarNet is introduced as the backbone of SMLS-YOLO to extract image features. 
Subsequently, the StarBlock from StarNet is utilized to enhance the C2f, 
resulting in the creation of the C2f-Star feature extraction module. Furthermore, 
shared convolution and scale reduction strategies are employed to optimize 
the segmentation head for a more lightweight design. Lastly, the model 
incorporates the Multi-Head Self-Attention (MHSA) mechanism following the 
backbone to further refine the feature extraction process. Experimental results 
on the pathological myopia dataset demonstrate that SMLS-YOLO outperforms 
the baseline YOLOv8n-seg by reducing model parameters by 46.9%, increasing 
Box mAP@0.5 by 2.4%, and enhancing Mask mAP@0.5 by 4%. Furthermore, 
when compared to other advanced instance segmentation and semantic 
segmentation algorithms, SMLS-YOLO also maintains a leading position, 
suggesting that SMLS-YOLO has promising applications in the segmentation of 
pathological myopia images.
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1 Introduction

Myopia is a condition where the eye’s refractive system focuses external light in front of 
the retina, resulting in distant objects appearing blurry because they are focused before the 
retina (Baird et al., 2020). It is a major cause of vision impairment in humans (Modjtahedi 
et al., 2018). Currently, over 1.4 billion people worldwide suffer from myopia; of these, 160 
million people suffer from high myopia. By 2050, it is projected that the number of people with 
myopia is expected to exceed 4.7 billion, and this trend is expected to continue to accelerate 
(Holden et al., 2016). The rapid increase in myopia has become a significant global public 
health concern (Dolgin, 2015). Moreover, the rising prevalence of high myopia has led to an 
increase in the incidence of pathologic myopia. Pathologic myopia is distinct form of myopia, 
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often characterized by axial myopia that has advanced to the stage of 
myopic maculopathy. It is marked by features such as posterior 
staphyloma and various fundus lesions. Unlike regular myopia, which 
primarily involves refractive errors, pathologic myopia also 
encompasses a complex set of fundus complications. Patients with this 
condition display distinctive funduscopic abnormalities. It remains 
unclear whether pathologic myopia progresses in parallel with regular 
myopia (Ohno-Matsui et al., 2021). Research by scholars, including 
Xu et al. (2006), indicates that pathologic myopia has emerged as the 
primary of irreversible blindness and the second most common cause 
of low vision, surpassed only by cataracts. As a result, it has become a 
critical focus in the prevention and management of myopia. Ohno-
Matsui et  al. (2015) proposed a grading system for myopic 
maculopathy, categorizing it into five grades, including three 
additional lesions: lacquer cracks, choroidal neovascularization, and 
Fuchs spots. Based on this standard, a diagnosis of pathologic myopia 
can be established at grade 2 or higher, or in the presence of at least 
one of these additional lesion.

In recent years, the prevalence of myopia among children and 
adolescents in China has been steadily increasing, leading to a 
corresponding increase in the incidence of pathologic myopia. The 
latest survey data shows that the overall myopia rate among Chinese 
children and adolescents has reached 51.9%, with a noticeable trend 
toward younger ages (Myopia Prevention and Control Guidelines, 
2024). In response to this trend, various provinces have proactively 
launched school-based myopia screening and prevention programs. 
These programs involve establishing refractive profiles for students, 
scheduling follow-up visits, and implementing comprehensive 
prevention and treatment strategies. Such measures include regular 
vision checks, increasing outdoor activity time, improving classroom 
lighting conditions, and promoting scientific eye care knowledge. All 
these efforts are aimed at reducing the prevalence of myopia and 
preventing the onset of pathologic myopia. However, implementing 
large-scale screening for pathologic myopia faces challenges. The 
detection of pathologic myopia heavily relies on the professional 
knowledge and experience of ophthalmologists, primarily through 
manual procedures. This reliance leads to low efficiency and high 
costs. Additionally, the scarcity of ophthalmologists makes it 
challenging to conduct large-scale screenings, limiting the reach of 
early diagnosis and treatment. Furthermore, current detection 
algorithms in practical applications suffer from insufficient accuracy 
and high computational resource consumption, resulting in slow 
detection speeds and high misdiagnosis rates. These challenges hinder 
the efficiency and coverage of efforts to prevent and control 
pathological myopia.

To tackle these challenges, it is essential to develop more accurate, 
efficient, and resource-efficient auto detection technologies. This 
development demands advancements not only in the accuracy and 
efficiency of algorithms but also in the practical applications’ 
convenience and user-friendliness. By integrating advanced 
technologies like artificial intelligence and machine learning, 
we anticipate a significant enhancement in the precision and efficiency 
of pathological myopia detection. These innovations aim to reduce 
detection costs and broaden screening coverage, ultimately benefiting 
a larger patient population.

In recent years, with the advancement of fundus photography and 
Optical Coherence Tomography (OCT) technologies, doctors have 
been able to acquire patients’ ocular data more conveniently, 

non-invasively, and visually (Li, 2023). This progress has facilitated the 
widespread application of image recognition-based diagnostic 
methods for pathological myopia. Concurrently, the rapid 
development of Artificial Intelligence (AI) has demonstrated 
extraordinary potential across various industries. As a significant 
branch of AI, deep learning has shown immense promise in the 
automated analysis of medical information and imaging. In the field 
of ophthalmology, where the diagnosis of many diseases relies on 
ocular imaging, AI-assisted image recognition technology has been 
extensively applied in the diagnosis of a variety of eye conditions, 
including diabetic retinopathy, age-related macular degeneration, 
and glaucoma.

In the early stages, the complexity of annotating pathological 
myopia lesion areas led to difficulties in annotation, resulting in a 
scarcity of datasets for pathological myopia segmentation. This also 
led to early deep learning-based research on pathological myopia 
focusing primarily on the classification of pathological myopia images. 
In 2021, Rauf and colleagues proposed a machine learning-based 
algorithm for the identification of pathological myopia. They first 
pre-processed the pathological myopia and then input it into a CNN 
(Convolutional Neural Network) for identification, achieving an AUC 
(Area Under the Curve) score of 0.9845 (Rauf et al., 2021). Lu and 
others used the ResNet50 classification network for the classification 
of pathological myopia images, achieving an accuracy rate of 97.08% 
(Lu et al., 2021). Qin and colleagues proposed a CNN-based screening 
system for pathological myopia, which achieved an accuracy rate of 
99.7% (Qin et al., 2023).

In the research of pathological myopia, although early work 
focused mainly on image recognition, the importance of segmentation 
has gradually become apparent as research has progressed. Compared 
to recognition, segmentation can accurately locate and separate the 
lesion areas, which has a more direct significance for the accurate 
diagnosis and treatment of pathological myopia. Through 
segmentation, not only can the morphology and changes of the lesion 
area be analyzed more meticulously, but it can also provide doctors 
with more detailed information about the lesions, helping to formulate 
more personalized and precise treatment plans. Therefore, 
segmentation technology has gradually taken a leading position in the 
automated analysis of pathological myopia, becoming a key link in 
achieving accurate diagnosis and intervention. However, real-time 
processing is an inevitable issue in large-scale screening scenarios. 
Although commonly used pixel-level semantic segmentation 
algorithms such as UNet (Ronneberger et al., 2015) and DeepLab V3 
(Chen et al., 2018) perform well in accuracy, their processing speed is 
relatively slow, limiting the efficiency of AI-assisted diagnosis in large-
scale screening, which restricts the work efficiency of AI-assisted 
diagnosis in large-scale surveys. Therefore, improving the speed and 
efficiency of algorithms is key to achieving broader screening and 
early intervention. In this context, instance segmentation technology 
has shown unique advantages. Compared to traditional pixel-level 
semantic segmentation, instance segmentation can not only accurately 
identify and segment each independent lesion area in the image but 
can also handle segmentation tasks for multiple types of lesions 
simultaneously. Through instance segmentation, the algorithm can 
more efficiently process complex fundus images, further improving 
the accuracy and speed of pathological myopia diagnosis.

In the current field of deep learning, instance segmentation is 
divided into single-stage and two-stage methods. Two-stage instance 
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segmentation algorithms first use a detector to locate objects in the 
image, and then perform fine segmentation within each detected 
object area. The advantage of two-stage methods is that the 
segmentation results are usually more accurate because they can 
utilize the high-quality candidate areas provided by the detector. 
However, these methods typically have a large computational load and 
long inference times, making them less suitable for real-time 
applications. Single-stage instance segmentation algorithms, on the 
other hand, complete both detection and segmentation tasks within a 
single network, simplifying the process and increasing efficiency. 
Therefore, single-stage instance segmentation algorithms generally 
have higher detection speeds compared to two-stage methods and are 
more suitable for real-time detection. Single-stage instance 
segmentation algorithms, such as the YOLO-seg series, SOLO (Wang 
et al., 2022), and CenterMask (Lee and Park, 2020), segment targets 
directly in the image, combining efficiency and accuracy, making 
them suitable for real-time segmentation tasks. These algorithms are 
designed to balance the need for speed with the requirement for 
precision, which is particularly important in applications where rapid 
processing is crucial, such as in medical imaging for real-time 
diagnostics or in autonomous systems that require immediate 
environmental understanding.

In summary, considering the need for real-time performance in 
large-scale screening for pathologic myopia detection, single-stage 
instance segmentation algorithms are particularly suitable. These 
algorithms maintain high detection accuracy while offering faster 
processing speeds, meeting the real-time requirements of pathologic 
myopia detection. Therefore, this paper proposes a novel single-stage 
instance segmentation algorithm, SMLS-YOLO. This algorithm is 
specifically designed for the segmentation of lesion areas in fundus 
images of pathologic myopia, aiming to achieve efficient and accurate 
real-time segmentation to meet the demands of large-scale screening.

In SMLS-YOLO, extreme lightweight processing has been 
implemented to meet the real-time requirements of the algorithm, 
with the model’s parameter count being only 1.7 M, significantly 
smaller than other instance segmentation algorithms. First, StarNet 
(Ma et  al., 2024) is introduced as the backbone to extract image 
features. Next, to better integrate the features extracted by the 
backbone, we propose an efficient feature extraction module, C2f-Star, 
which enhances the detection accuracy of the algorithm. Additionally, 
to better adapt to different lesion area sizes, we propose a segmentation 
head based on shared convolution. Using shared convolution 
significantly reduces the number of parameters. Alongside shared 
convolution, a scale layer is employed to adjust features, addressing 
the inconsistency in target scales segmented by each detection head. 
Finally, the MHSA (Han et  al., 2023) attention mechanism is 
incorporated, greatly enhancing the model’s performance. Combining 
these features, SMLS-YOLO not only improves the speed and accuracy 
of detection and segmentation but also provides a practical solution, 
offering strong support for early diagnosis and effective intervention 
of pathologic myopia. By applying our algorithm, it is expected to 
significantly enhance the screening efficiency of pathologic myopia, 
meeting the urgent need for rapid and accurate detection in clinical 
and public health fields.

The main contributions of this paper include:

 1 This paper proposes SMLS-YOLO, a real-time instance 
segmentation algorithm based on a single-stage approach. It is 

designed to meet the need for real-time detection in large-scale 
screenings for pathological myopia.

 2 We propose a lightweight instance segmentation head called 
Segment_LS. The segmentation head in YOLOv8 accounts for 
30.7% of the total network parameters. Segment_LS 
significantly cuts down the parameter count by utilizing shared 
convolutions and a scale layer to adjust features, addressing the 
challenge of inconsistent target scales detected by each 
detection head. This results in approximately a 75.6% reduction 
in the parameters of the segmentation head itself, and nearly 
halves the total number of model parameters.

 3 An efficient feature extraction module, C2f-Star, is proposed, 
which is designed to reduce computational load and the 
number of parameters while enhancing the 
model’s performance.

 4 The incorporation of the Multi-Head Self-Attention (MHSA) 
mechanism notably boosts the model’s performance.

 5 Comprehensive experiments conducted on a pathological 
myopia dataset reveal that SMLS-YOLO exhibits exceptional 
detection capabilities even under extremely 
lightweight conditions.

The remainder of this paper is organized as follows: Section 2 
reviews related work on pathologic myopia detection. Section 3 
presents the proposed SMLS-YOLO and related improvement 
strategies. Section 4 provides implementation details. Section 5 
analyzes the experimental results. Section 6 concludes the paper and 
discusses future research directions.

2 Relate work

2.1 Methods based on traditional image 
processing

In the early field of pathologic myopia instance segmentation, 
research primarily focused on the application of traditional image 
processing techniques. Initially, fine preprocessing of fundus images, 
including key techniques such as noise reduction filtering and contrast 
enhancement, was aimed at improving image quality. Following this, 
methods such as region-growing algorithms, threshold segmentation 
techniques, and K-means clustering analysis were used for the 
identification and segmentation of lesion areas. Specifically, Aquino 
et al. (2010) proposed a template-based segmentation method that 
integrated morphological analysis with edge detection techniques, 
successfully achieving approximate segmentation of the circular 
boundary of the optic disk. GeethaRamani and Dhanapackiam (2014) 
further explored the synergistic effect of template matching and 
morphological operations, making advancements in the accuracy of 
optic disk localization. Marín et al. (2015) combined morphological 
operations with efficient edge detection strategies to achieve precise 
localization of the fundus image center and detailed segmentation of 
the optic disk and retinal areas, providing new insights for analyzing 
complex fundus structures. Chakravarty and Sivaswamy (2017) 
proposed an innovative boundary conditional random field model 
that comprehensively considered the depth interactions and color 
gradient information of the optic disk and cup boundaries. By 
incorporating supervised depth estimation, this model achieved more 
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accurate boundary extraction, offering a new method for detecting 
fundus lesions.

Although the aforementioned methods have demonstrated 
potential in lesion area detection to some extent, their sensitivity to 
image noise, adaptability to complex lesion morphologies, and 
generalization capabilities still require further improvement.

2.2 Methods based on deep learning

In recent years, with the rapid development of deep learning 
technology, especially the application of convolutional neural 
networks (CNN) in instance segmentation, it has gradually become a 
research hotspot. These methods leverage the powerful feature 
extraction capability and automated learning process of deep learning, 
significantly improving the accuracy and efficiency of image 
segmentation. Due to their wide application in fields such as medical 
imaging, autonomous driving, and security surveillance, CNN-based 
instance segmentation algorithms have increasingly attracted attention 
and research, becoming a significant force driving the advancement 
of image processing and computer vision technologies.

Viedma and other scholars have proposed the use of the instance 
segmentation algorithm Mask R-CNN for multi-level segmentation of 
retinal OCT (Optical Coherence Tomography) images. Compared to 
the traditional U-Net method, this approach not only achieves higher 
segmentation performance but also simplifies the extraction process 
of boundary positions, significantly reducing inference time (Viedma 
et al., 2022). Hung-Ju Chen and other scholars utilized the instance 
segmentation algorithm Mask R-CNN to achieve precise segmentation 
of the choroid in myopic eyes. In their study, they designed a deep 
learning-based segmentation method that successfully separated and 
identified the choroidal region through instance segmentation of 
ocular images (Chen et  al., 2022). Almubarak and other scholars 
proposed a two-stage method for locating the optic nerve head and 
segmenting the optic disk/cup (Almubarak et al., 2020).

These studies demonstrate the versatility and effectiveness of 
instance segmentation algorithms in ophthalmic imaging, where 
precise localization and segmentation of different layers and structures 
are essential for accurate diagnosis and treatment planning. The 
adoption of advanced deep learning techniques like Mask R-CNN has 
the potential to revolutionize the field by providing more accurate and 
efficient tools for ophthalmologists.

3 Methods

3.1 SMLS-YOLO

In this paper, we propose an improved method based on YOLOv8 
to achieve high-precision, rapid detection and instance segmentation 
of pathological myopia images, meeting the requirements of large-
scale screening. The method, SMLS-YOLO, is specifically designed for 
the segmentation of lesion areas in fundus images of pathological 
myopia. Compared to the original YOLOv8, our SMLS-YOLO method 
has made significant improvements in the following four aspects:

 1 Adopted a lightweight Backbone. To achieve extreme 
lightweighting, SMLS-YOLO employs StarNet as the model’s 

feature extraction network. This choice not only reduces 
computational resource consumption but also improves the 
model’s efficiency.

 2 Proposed an efficient feature extraction module, C2f-Star. The 
innovative C2f-Star feature extraction module is introduced, 
which, while maintaining a lightweight model, better captures 
and extracts fine features in images, thereby improving 
segmentation accuracy.

 3 MHSA attention mechanism. To enhance the model’s focus on 
lesion areas, we  incorporated a multi-head self-attention 
mechanism (MHSA) into the model. MHSA effectively 
enhances the model’s performance in processing complex 
fundus images by focusing on key areas of the image, 
significantly improving segmentation accuracy.

 4 Proposed a shared convolution-based segmentation head, 
Segment_LS. By using shared convolution, the number of 
parameters can be greatly reduced, making the model more 
lightweight. While using shared convolution, to address the 
issue of inconsistent target scales segmented by each detection 
head, a scale layer is used to scale the features. Figure  1 
illustrates the network structure of SMLS-YOLO.

3.2 StarNet

StarNet is an efficient convolutional neural network that not only 
inherits the strengths of traditional convolutional neural networks but 
also enhances the high-dimensionality and nonlinearity of feature 
representation through the innovative “star operation.” As shown in 
Figure 2, its structure mainly consists of convolutional layers and Star 
Blocks, with the latter integrating the “star operation.” The “star 
operation” maps image features into a high-dimensional nonlinear 
space through element-wise multiplication, significantly enhancing 
the expressive power of features without increasing the network’s 
width, thereby achieving efficient feature extraction and fusion.

The essence of StarNet lies in its ability to transform input features 
into an implicit high-dimensional feature space through simple 
element-wise multiplication. This mapping not only increases the 
dimensionality of the feature space but also enhances the network’s 
ability to express complex patterns without adding computational 
complexity. This characteristic allows StarNet to perform well while 
maintaining a compact network structure and efficient computation. 
In addition, StarNet not only has significant performance advantages 
but also maintains low latency under limited computational resources, 
making it suitable for real-time application scenarios. Incorporating 
StarNet as a feature extraction network brings many notable 
advantages. Firstly, the overall number of model parameters is 
significantly reduced, and the computational complexity is lowered, 
thereby accelerating the model’s inference speed. Secondly, StarNet’s 
efficient feature expression capability ensures the model’s accuracy.

3.3 C2f-Star

In order to more effectively utilize the feature information 
extracted by the Backbone, we have integrated the “star operation” 
into the C2f module, proposing the C2f-Star module. Figures 3A,B 
respectively illustrate the structural diagrams of the C2f and C2f-Star 
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modules. From the structural diagrams, it can be  seen that the 
C2f-Star maintains the original basic structure of C2f while 
incorporating the “star operation” from StarNet to enhance the feature 
expression capability and the ability to capture complex patterns. 
Through this improvement, the C2f-Star module achieves a balance 
of efficiency and accuracy while maintaining a lightweight design.

In the design of the C2f-Star module, we have fully leveraged the 
advantages of the “star operation” in StarNet for feature extraction. 
StarNet generates high-dimensional features with rich expressiveness 
through the “star operation.” However, high-dimensional features alone 
are not sufficient to fully realize the potential of the entire network. 
Therefore, we have introduced the “star operation” into the C2f module 
to further optimize and process these features. The C2f-Star module 
not only inherits the advantages of StarNet’s “star operation” but also 
combines the efficient feature processing mechanism of the C2f module 
to provide more refined processing of these high-dimensional features. 
By integrating depthwise convolution and fully connected layers, the 
C2f-Star module not only retains the richness of the features but also 
further enhances the interaction between features, making the feature 
expression more accurate and effective.

3.4 Segment_LS segmentation head

The segmentation head of YOLOv8 adopts the method from 
YOLACT (Bolya et  al., 2019), breaking down the instance 
segmentation task into two steps. YOLOv8 first generates a set of 
prototype masks, where each detection head outputs a set of 
coefficients for each instance target. These prototype masks are then 
weighted and combined to obtain the final instance segmentation 
result. However, the segmentation head of YOLOv8 has significant 
drawbacks. It uses shared prototype masks that are common to all 
instances. Although this approach is computationally efficient, it May 

fail to capture the detailed features of targets requiring fine features, 
resulting in less precise segmentation. Additionally, the global sharing 
nature of the prototype masks might overlook small targets or fail to 
precisely segment large targets, especially in densely populated scenes 
where instance masks May overlap, affecting segmentation accuracy. 
Due to these shortcomings, to maintain high precision, the 
segmentation head of YOLOv8 employs a large number of 
convolutional and feature extraction layers, leading to a large number 
of parameters. Practical tests show that the segmentation head of 
YOLOv8 accounts for 30.7% of the total network parameters.

In response to the aforementioned shortcomings, we  have 
proposed a new type of efficient segmentation head called Segment_
LS. Segment_LS no longer uses the shared prototype masks of the 
original YOLOv8, overcoming the inherent flaws of YOLOv8’s 
segmentation head. As a result, our segmentation head does not rely 
on a large number of parameters to improve accuracy, which 
significantly reduces the overall parameter count of the network. The 
structure of Segment_LS is shown in Figure 4.

In the design of the Segment_LS segmentation head, we  first 
maintained the original Segment structure, allowing it to continue 
receiving feature maps from P3, P4, and P5 at different scales, thus 
preserving the segmentation head’s multi-scale feature fusion 
capability. Additionally, we  introduced shared convolutions, 
GroupNorm, and Scale scaling operations into the Segment_LS 
segmentation head. Compared to BatchNorm, GroupNorm does not 
depend on batch size and performs particularly well in training with 
small batches or even single images. By incorporating GroupNorm 
into the segmentation head, detection and segmentation accuracy can 
be stably improved across various batch sizes. To address the issue of 
excessive computational load in the segmentation head, we introduced 
shared convolution layers in the paths of P4 and P5. This mechanism 
not only significantly reduces the model’s parameter count but also 
ensures consistent processing of features at different scales, enhancing 

FIGURE 1

SMLS-YOLO network structure diagram.
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the model’s information sharing capability across scales and thereby 
improving the model’s generalization ability and computational 
efficiency. To tackle the issue of inconsistent scales, we introduced a 
Scale layer for feature scaling alongside shared convolutions, ensuring 
that each detection head can perform object detection and 
segmentation at the optimal scale, resulting in more stable and 
accurate regression outcomes. This approach effectively mitigates the 
accuracy drop caused by inconsistent target scales. Furthermore, the 
Head part carries out tasks such as mask prediction (Conv_Mask), 
regression prediction (Conv_Reg), and classification prediction 
(Conv_Cls) through multiple parallel paths. This separated path 
design allows the model to optimize for each task specifically, avoiding 
interference between tasks, thereby enhancing overall performance. 
Lastly, to generate more precise initial features during image 
segmentation, we generate prototype masks through a separate path, 
providing a reliable foundational template for subsequent 
segmentation tasks. Ultimately, we conducted practical tests on the 
original segmentation head of YOLOv8 and the optimized 
segmentation head. The results showed that the optimized 
segmentation head has a parameter count of 0.25 M, with a total 
model parameter count of 1.7 M, accounting for 14.4% of the 
computational volume; in contrast, the original YOLOv8 segmentation 
head has a parameter count of 1.00 M, with a total model parameter 
count of 3.26 M, accounting for 30.7% of the computational volume. 
Through optimization, our segmentation head’s parameter count was 
reduced by approximately 75.6%, and the total model parameter count 
was nearly halved. This optimization significantly reduced the 
computational load while maintaining high accuracy.

3.5 MHSA attention mechanism

The attention mechanism is an important technique in deep 
learning that enhances the model’s ability to focus on different parts of 
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the input data. Its core idea is to assign differentiated weights to input 
features, enabling the model to focus more on features that contribute 
significantly to the task. The multi-head self-attention mechanism 
(MHSA) further extends this concept. MHSA calculates the correlations 
between input features by using multiple attention heads in parallel. 
Each attention head independently captures different feature 
relationships and then combines these results. This enhances the model’s 
feature representation capability and improves its ability to handle long-
range dependencies. The structure of MHSA is shown in Figure 5.

MHSA processes input features in parallel through multiple 
attention heads, with each head independently calculating a set of 
attention weights and applying them to the features. These results are 
then concatenated and transformed linearly to generate the final output 
features. This allows MHSA to simultaneously focus on different parts 
of the input features, capturing richer inter-feature relationships.

We combined the characteristics of StarNet by introducing the 
multi-head self-attention mechanism (MHSA) after the Backbone to 
further enhance the model’s performance. StarNet’s “Star Operation” 
maps input features to a high-dimensional nonlinear feature space, 
enhancing expressive capability. MHSA captures long-range 
dependencies between features through parallel attention heads and 
integrates this information into feature representation. The 
combination of these two methods allows the model to capture local 
features and effectively integrate global features without increasing 
computational complexity, enhancing the richness and accuracy of 
overall feature representation.

4 Experiments

4.1 Experimental environment

All experiments covered in this paper were conducted on a deep 
learning workstation. The hardware configuration and experimental 
environment are shown in Table 1.

Based on the above experimental conditions, we set the training 
epochs to 300, the batch size to 16, the initial learning rate to 0.01, the 
momentum to 0.937, the weight decay coefficient to 0.0005, the input 
image size to 640 × 640, and the number of workers to 8. We used 
YOLOv8’s mosaic data augmentation.

4.2 Evaluation metrics

Evaluation metrics are important tools for measuring model 
performance. The metrics used in this paper to evaluate model size 
include computational load (GFLOPS), number of parameters 
(Parameters), and frames per second (FPS). The metrics used to 
evaluate model accuracy include precision (P), average precision (AP) 
for each class, mean average precision (mAP) across all classes, and 
recall rate (R).

Precision is used to measure how many of the samples predicted 
as positive by the classification model are actually positive examples. 
The calculation formula is shown in Equation 1:
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Segment_LS structure diagram.
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TPP

TP FP
=

+  
(1)

In the formula, P represents Precision, TP is the number of true 
positive cases, and FP is the number of false positive cases.

Recall rate (R) represents the proportion of correctly predicted 
positive samples to all actual positive samples. The calculation formula 
is shown in Equation 2:

 
TPR

FP FN
=

+  
(2)

In the formula, TP is the number of true positive cases, and FN is 
the number of false negative cases.

Average Precision (AP) is a commonly used evaluation metric 
to measure the accuracy of a model in information retrieval or 
object detection tasks across different classes or thresholds. It 
measures the model’s performance by calculating the area under the 
Precision-Recall curve. The calculation formula is shown in 
Equation 3:

 ( )AP P R dR= ∫  (3)

Mean Average Precision (mAP) is used to measure the accuracy 
of a model in information retrieval or object detection tasks across 
all classes or thresholds. The calculation formula is shown in 
Equation 4:

 1

1 N
i

i
mAP AP

N =
= ∑

 
(4)

In the formula, iAP represents the average precision for class i, and 
N represents the total number of classes.

To more intuitively demonstrate the training effect of the model, 
the mAP@0.5 comprehensive evaluation metric is introduced. 
mAP@0.5 represents the mAP when the IoU value is set to 0.5. When 
IoU > 0.5, it is considered that there is a predicted target within the 
predicted bounding box. When IoU < 0.5, it is considered that there 
is no predicted target within the predicted bounding box. mAP@0.5 
can comprehensively evaluate the model’s localization and 
classification accuracy. The calculation formula is shown in 
Equation 5:

 
1
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i
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=
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The F1-score is the best balance point that measures both 
precision and recall, providing a more comprehensive reflection of the 
model’s overall performance. The definition of the F1 score is shown 
in Equation 6:

 
1 2Score

Precision RecallF
Precision Recall

×
= ×

+  
(6)

FPS refers to the number of images the algorithm processes per 
second. The definition of FPS is shown in Equation 7:

 

1
per

FPS
T

=
 

(7)

where perT  represents the time taken by the algorithm to process 
a single fundus image.

Intersection over Union (IoU) represents the ratio of the 
intersection to the union between the predicted results and the ground 
truth, which can be  used to assess the accuracy of segmentation 
models, as shown in Equation 8:

 
TPIoU

TP FP FN
=

+ +  
(8)

TP represents the number of pixels in the lesion area of the fundus 
image that are correctly predicted, FP represents the number of pixels 

TABLE 1 Hardware configuration and experimental environment.

Name Model

CPU Intel Xeon Silver 4210

System Windows 10

GPU NVIDIA RTX 2080Ti 11GB

RAM 64 GB

Python 3.8.17

CUDA 11.6

Pytorch 1.8.0

Torchvision 0.9.0
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FIGURE 5

MHSA attention mechanism structure diagram.
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in the background area that are incorrectly predicted as being part of 
the lesion area in the fundus image, and FN represents the number of 
pixels in the lesion area of the fundus image that are incorrectly 
predicted as being part of the background area.

4.3 Dateset

The dataset used in this paper is sourced from the PALM 
Pathological Myopia Lesion Detection and Segmentation Challenge, 
provided by the Zhongshan Ophthalmic Center of Sun Yat-sen 
University. The dataset includes 582 fundus images with annotations 
for atrophy and detachment lesions, and 213 fundus images without 
lesions. Each fundus image is annotated with typical lesions related 
to pathological myopia: patchy retinal atrophy (including 
peripapillary atrophy) and normal regions without lesions. Pixel-level 
lesion annotations were initially manually performed by seven 
ophthalmologists from the Zhongshan Ophthalmic Center, and the 
final gold standard annotation was created by another senior expert 
who integrated the results from the seven ophthalmologists. 
Additionally, the dataset contains 400 unannotated fundus images 
used as a test set. Some images from the dataset and their 
corresponding masks are shown in Figure 6.

4.4 Data augmentation

Due to the limited amount of data in the dataset, we divided the 
795 images into a training set and a validation set in a 9:1 ratio, 
resulting in only 716 images in the training set and 79 images in the 
validation set. To increase the sample size of the training set, 
we  applied various data augmentation techniques to the dataset, 
including histogram equalization, grayscale transformation, 
horizontal flipping, linear color transformation, rotation 
transformation, and vertical flipping. These data augmentation 
techniques expanded the total capacity of the dataset by 6 times, 
increasing the training set to 5,012 images and the validation set to 
553 images. These data augmentation methods effectively increased 
the diversity of the training data, thereby improving the model’s 
generalization ability. A sample of the augmented dataset is shown in 
Figure 7.

5 Results

5.1 Comparison of SMLS-YOLO with the 
YOLOv8 family

To demonstrate the superiority of SMLS-YOLO, we compared its 
performance with the YOLOv8 family on the augmented dataset. The 
results are shown in Table 2. In the YOLO instance segmentation 
experiments, the metrics include both Box and Mask components, 
corresponding to object detection and instance segmentation tasks, 
respectively. The object detection task focuses on locating and 
classifying target objects in the image, outputting the bounding box 
for each target object. These metrics reflect the model’s performance 
in object detection tasks. The instance segmentation task requires not 
only locating and classifying target objects but also predicting pixel-
level segmentation masks for each target object. The Mask metrics 
reflect the model’s performance in instance segmentation tasks. From 
Table  2, we  can see that on the augmented dataset, SMLS-YOLO 
achieved a precision of 89.2%, recall of 86.1%, mAP@0.5 of 89.0%, and 
F1 score of 88% for Box. For Mask, it achieved a precision of 89.9%, 
recall of 85.4%, mAP@0.5 of 88.9%, and F1 score of 88%. Compared 
to the baseline model YOLOv8n-seg, SMLS-YOLO improved the Box 
mAP@0.5 by 2.3% and the Mask mAP@0.5 by 3.9%. Additionally, 
SMLS-YOLO achieved a 46.7% reduction in model size, a 31.7% 
reduction in GFLOPS, and maintained nearly the same FPS. This 
indicates that SMLS-YOLO not only enhances detection and 
segmentation accuracy but also excels in computational efficiency and 
resource consumption. To visually demonstrate the performance of 
each model on the dataset, we plotted the P-R curves for the Atrophy 
class in both Box and Mask tasks. Figures 8A,B show the P-R curves 
for the Box and Mask tasks, respectively.

In the P-R curves shown in Figures  8A,B, SMLS-YOLO 
demonstrates significant advantages in both Box and Mask tasks. 
SMLS-YOLO maintains the highest precision across most recall 
levels, indicating higher accuracy in detecting and segmenting 
atrophic lesions, thereby reducing the risk of false positives and false 
negatives. In summary, SMLS-YOLO achieves comprehensive 
performance improvements in both Box and Mask tasks. Its overall 
performance surpasses that of the YOLOv8 family, proving the 
model’s comprehensive advantages in detection and 
segmentation tasks.

FIGURE 6

Sample images and masks from the dataset.
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5.2 Comparison of SMLS-YOLO with 
advanced instance segmentation 
algorithms

To demonstrate that SMLS-YOLO has better generalization, 
we  compare SMLS-YOLO, YOLOv5n-seg, YOLOv7-tiny-seg, 
YOLOv8n-seg, and YOLOv9’s Gelan-c-dseg, Gelan-c-seg, and 
YOLOv9-c-dseg, respectively, on the enhanced performance 
comparison on the dataset. The experimental results are shown in 
Table 3. Compared with other advanced target detection algorithms, 
SMLS-YOLO performs well on several key metrics.

In the Box task, SMLS-YOLO outperforms other models in 
several metrics, with mAP@0.5 reaching 89.1%, showing particularly 
outstanding performance. In contrast, the state-of-the-art Gelan-c-seg 
achieves an mAP@0.5 of 88.2%, which does not perform as well as 
SMLS-YOLO. Additionally, although the precision rate of YOLOv7-
tiny reaches 91.1%, its recall rate is only 78.3%, leading to its lower 
overall performance, with an mAP@0.5 of 83.9%.

In the Mask task, SMLS-YOLO again leads in multiple metrics, 
further confirming its superiority. Additionally, SMLS-YOLO excels 
in model parameter count and computational efficiency. Its model 
parameters are only 1.7 M, significantly lower than those of other 

FIGURE 7

Sample display of the augmented dataset.

TABLE 2 Experimental results of SMLS-YOLO compared with YOLOv8 family.

Methods Box Mask All

p R mAP@0.5 F1 score p R mAP@0.5 F1 score Params GFLOPS FPS

YOLOv8n-seg 89.7 83.2 86.7 86.0 89.4 82.8 85.9 86.0 3.26 12.0 93.3

YOLOv8s-seg 91.3 84.2 88.9 88.0 90.5 84.1 87.6 87.0 11.78 42.4 72.8

YOLOv8m-seg 88.8 85.5 88.6 87.0 89.0 85.2 88.4 87.0 27.22 110.0 61.5

YOLOv8l-seg 89.2 85.7 87.6 87.0 88.7 85.2 87.6 87.0 45.91 200.1 41.4

YOLOv8x-seg 85.4 86.6 87.7 86.0 86.3 85.2 87.1 86.0 71.72 343.7 26.4

SMLS-YOLO 89.2 86.1 89.1 88.0 89.9 85.4 88.9 88.0 1.7 8.2 92.8

Note: Bold values represent the best performance.
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models. Furthermore, SMLS-YOLO’s GFLOPS is 8.2, and its FPS 
reaches 92.8, demonstrating high computational efficiency and real-
time performance.

Precision (P) and Recall (R) are two key metrics used to evaluate 
model performance. Precision measures the accuracy of the model’s 
predictions, while Recall assesses the model’s ability to capture all 
relevant instances. Typically, there is a trade-off between Precision and 
Recall: increasing Precision by being stricter with positive class 
predictions (reducing false positives, FP) can lead to missing some true 
positives (increasing false negatives, FN), which in turn decreases 
Recall. Conversely, being more lenient with positive class predictions 
can increase Recall but May also result in more false positives, thus 
decreasing Precision. The mean Average Precision at Intersection over 
Union (IoU) threshold of 0.5 (mAP@0.5) metric balances different 
combinations of Precision and Recall to maximize the model’s overall 
performance. It calculates the average Precision and Recall across 
various thresholds, providing a comprehensive performance indicator 
by averaging these values. Therefore, even when there is a trade-off 
between Precision and Recall, mAP@0.5 offers a more holistic 

assessment of model performance. Compared to YOLOv8s-seg, SMLS-
YOLO exhibits a slightly lower Precision but improved Recall and 
mAP@0.5, suggesting an overall enhancement in performance. 
Specifically, as shown in Table 2, SMLS-YOLO has a lower Precision (P) 
than YOLOv8s-seg, and in Table 3, SMLS-YOLO has a lower Precision 
(P) than YOLOv7-tiny. However, when considering the mAP@0.5 
metric, which measures overall performance, SMLS-YOLO outperforms 
both YOLOv8s-seg and YOLOv7-tiny. Additionally, our SMLS-YOLO 
is more lightweight than YOLOv8s-seg and YOLOv7-tiny, with 
GFLOPS being only 17% of that of YOLOv8s-seg and YOLOv7-tiny.

In summary, SMLS-YOLO not only excels in the Box task but 
also performs outstandingly in the Mask task. It achieves the best 
performance across multiple key metrics, demonstrating 
comprehensive advantages in both detection and segmentation tasks. 
Figures 9A,B show the mAP@0.5 curves for Box and Mask during the 
training process of seven networks. From these figures, it can be seen 
that SMLS-YOLO’s curve rises rapidly in the early stages of training, 
demonstrating its fast convergence ability. Additionally, its mAP@0.5 
performance remains very stable and higher than other models 

FIGURE 8

(A) Box P-R curve. (B) Mask P-R curve.

TABLE 3 Experimental results of SMLS-YOLO compared with other advanced instance segmentation algorithms.

Methods Box Mask All

p R mAP@0.5 F1 score p R mAP@0.5 F1 score Params GFLOPS FPS

YOLOv5n-seg 85.5 81.4 84.8 83.0 87.2 80.6 84.9 84.0 1.88 6.7 111.8

YOLOv7-tiny 91.1 78.3 83.9 83.0 90.8 79.8 84.2 84.0 6.99 47.7 101.2

YOLOv8n-seg 89.7 83.2 86.7 86.0 89.4 82.8 86.0 86.0 3.26 12.0 93.3

Gelan-c-seg 90.7 83.3 88.2 87.0 88.7 81.7 86.4 86.0 27.36 144.2 6.61

Gelan-c-dseg 88.6 84.4 87.9 86.0 88.4 83.4 87.0 86.0 27.39 145.2 5.72

YOLOv9-c-dseg 87.8 84.6 87.9 86.0 87.4 84.1 87.2 86.0 57.47 368.6 4.10

SMLS-YOLO 89.2 86.1 89.1 88.0 89.9 85.4 88.9 88.0 1.7 8.2 92.8

Note: Bold values represent the best performance.
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FIGURE 10

Visualization of SMLS-YOLO and other advanced instance segmentation algorithms results.

throughout the training process, reflecting its stability and 
consistency. This indicates that SMLS-YOLO not only converges 
quickly in the early stages but also maintains high performance with 
minimal fluctuations throughout the training process, exhibiting 
excellent robustness and consistency. Furthermore, we visualized the 
detection results of the seven algorithms on the dataset to 
demonstrate SMLS-YOLO’s advantages over other advanced 
algorithms. Figure 10 shows the visualization results of the seven 
algorithms, where it can be seen that SMLS-YOLO achieves the best 
detection accuracy and prediction probability.

5.3 Comparison of SMLS-YOLO with 
classical segmentation networks

In order to verify the advantages and application potential of 
SMLS-YOLO, this paper compares the performance of SMLS-YOLO 

with classic segmentation algorithms such as UNet and the DeepLab 
series on an enhanced fundus color photography dataset. Table 4 
presents the specific performance of SMLS-YOLO and these classic 
algorithms in terms of IoU, precision, recall, and F1-score.

Although UNet and the DeepLab series models are primarily 
used for semantic segmentation tasks, while SMLS-YOLO focuses on 
instance segmentation, the experimental results on the same dataset 
indicate that SMLS-YOLO not only surpasses these traditional 
semantic segmentation models in key performance indicators such 
as precision, recall, IoU, and F1-score, but also significantly reduces 
the number of parameters and increases processing speed. This 
suggests that, despite the differences in application domains, SMLS-
YOLO still demonstrates strong generalization capabilities and 
superior performance when faced with semantic segmentation tasks.

To validate the advantages of the SMLS-YOLO model across 
various performance metrics, this paper visualizes the detection 
results of SMLS-YOLO compared to classical segmentation networks, 

FIGURE 9

(A) Box mAP@0.5 curve. (B) Mask mAP@0.5 curve.
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as shown in Figure 11. SMLS-YOLO demonstrates higher recognition 
accuracy and stronger adaptability when processing lesion areas, 
showing significant advantages.

5.4 Analysis of strategy effectiveness

To demonstrate the effectiveness of each improvement in SMLS-
YOLO, we conducted an ablation study on the fundus image dataset. 
The results of the ablation study are shown in Table 5. Table 5 presents 
the detection performance achieved by the baseline algorithm 
YOLOv8n-seg with different combinations of components. It can 
be observed that each improvement strategy enhances the detection 
accuracy of the baseline algorithm to some extent.

From the aforementioned tables, it can be  observed that the 
StarNet module has demonstrated excellent performance across 
multiple experiments. It not only effectively reduced the model’s 
parameter count and computational load but also improved detection 
accuracy to some extent. For instance, in experiments A, B, and C, 
despite the reduction in parameter count, the values of 
mAP@0.5(Box) and mAP@0.5(Mask) increased to varying degrees, 
indicating the module’s enhancement effect on model performance. 

TABLE 4 Experimental results of SMLS-YOLO compared with classical 
segmentation networks.

Methods p R IoU F1-
score

Params FPS

Unet 79.7 72.5 61.0 72.7 40.0 16.7

DeepLabV1 84.0 73.9 64.7 76.1 20.5 33.3

DeepLabV2 88.4 77.4 70.0 80.3 44.0 17.5

DeepLabV3 87.1 75.3 67.3 77.4 11.0 22.0

YOLOv8-seg 89.4 82.8 75.1 86.0 3.26 93.3

SMLS-YOLO 89.1 88.9 76.6 88.0 1.70 92.8

Note: Bold values represent the best performance.

TABLE 5 Experimental results under different improvement strategies.

Methods StarNet C2f-
Star

Segment_
LS

MHSA mAP@0.5(Box) mAP@0.5(Mask) Params Gflops FPS

YOLOv8n-seg – – – 86.7 86.0 3.26 12.0 93.3

A √ 87.6 86.5 2.47 10.4 96.7

B √ √ 87.7 86.4 2.27 10.0 97.7

C √ √ √ 87.8 86.3 1.50 8.1 95.3

D √ √ – √ 89.1 87.7 2.46 10.1 94.1

E √ – – √ 88.6 87.1 2.66 10.5 93.8

F √ – √ – 88.4 86.9 1.70 8.4 96.5

G √ – √ √ 88.9 88.5 1.90 8.6 94.4

SMLS-YOLO √ √ √ √ 89.1 88.9 1.70 8.2 92.8

FIGURE 11

Visualization results of SMLS-YOLO compared with classical segmentation networks.
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FIGURE 12

Heatmap results under different improvement strategies.

By integrating StarNet as the Backbone of SMLS-YOLO, the baseline 
algorithm’s mAP@0.5 (Box) and mAP@0.5 (Mask) were, respectively, 
improved to 87.6 and 86.5%, while the model parameter count was 
reduced to 2.47 M. After incorporating the C2f-Star component, the 
mAP@0.5 (Box) further increased to 87.7%, the mAP@0.5 (Mask) 
slightly decreased to 86.4%, and the parameter count was reduced to 
2.27 M. The introduction of the Segment_LS segmentation head 
further optimized the model’s balance, allowing the model to 
maintain low computational load while still improving detection 
accuracy. Additionally, the incorporation of the MHSA attention 
mechanism, although leading to a slight increase in parameter count, 
significantly enhanced model performance. In experiments E, F, and 
G, it proved the value of the MHSA module in improving model 
performance. Ultimately, after integrating all the improvement 
strategies, SMLS-YOLO’s mAP@0.5 (Box) and mAP@0.5 (Mask) 
were, respectively, increased to 89.1 and 88.9%, which is 2.4 and 3.9% 
higher than the baseline algorithm, with the parameter count being 
only 52% of YOLOv8n-seg.

To further demonstrate the effectiveness of each improvement 
strategy, we conducted a heatmap visualization analysis of the model 
under various combinations of improvement strategies. Figure 12 
shows the heatmap results under different combinations of 
improvement strategies. Through these visualizations, the 
performance enhancement effects of different improvement strategies 
on the model can be  observed intuitively, thereby more clearly 
verifying the effectiveness of each improvement strategy.

6 Summary

In this paper, we  proposed a novel instance segmentation 
algorithm named SMLS-YOLO, designed to tackle the challenges in 

detecting pathological myopia. Firstly, we introduced StarNet as the 
backbone network to efficiently extract feature information from 
images. Following this, we  proposed a new feature extraction 
module, C2f-Star, which aims to more effectively integrate multi-
level feature information produced by the backbone network, 
thereby enhancing performance while reducing the model’s 
complexity. Subsequently, to mitigate the issue of the original 
segmentation head’s large number of parameters, we proposed a new 
lightweight segmentation head, Segment_LS. This head leverages 
shared convolution and introduces scale adjustment operations, 
significantly reducing the computational burden during 
segmentation. Our Segment_LS segmentation head abandons the 
shared prototype masks of YOLOv8, thereby overcoming the 
segmentation head’s inherent limitations. As a result, our 
segmentation head does not require a large number of parameters to 
improve accuracy, thus significantly reducing the overall network 
parameters. Additionally, we  integrated the Multi-Head Self-
Attention (MHSA) mechanism to bolster the model’s capability to 
capture essential information in images, thereby improving the 
overall performance of SMLS-YOLO. Experiments conducted on 
fundus images dataset with pathological myopia demonstrate that 
SMLS-YOLO achieves advanced performance. Looking ahead, 
we  intend to explore model pruning and knowledge distillation 
techniques to further refine the model’s efficiency and develop even 
more lightweight algorithms.
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