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Introduction: Magnetic resonance imaging (MRI) is crucial for diagnosing and

monitoring of multiple sclerosis (MS) as it is used to assess lesions in the

brain and spinal cord. However, in real-world clinical settings, MRI scans are

often acquired with thick slices, limiting their utility for automated quantitative

analyses. This work presents a single-image super-resolution (SR) reconstruction

framework that leverages SR convolutional neural networks (CNN) to enhance

the through-plane resolution of structural MRI in people with MS (PwMS).

Methods: Our strategy involves the supervised fine-tuning of CNN architectures,

guided by a content loss function that promotes perceptual quality, as well as

reconstruction accuracy, to recover high-level image features.

Results: Extensive evaluation with MRI data of PwMS shows that our

SR strategy leads to more accurate MRI reconstructions than competing

methods. Furthermore, it improves lesion segmentation on low-resolution MRI,

approaching the performance achievable with high-resolution images.

Discussion: Results demonstrate the potential of our SR framework to facilitate

the use of low-resolution retrospective MRI from real-world clinical settings to

investigate quantitative image-based biomarkers of MS.

KEYWORDS

super-resolution, MRI, multiple sclerosis, lesion segmentation, CNN, fine-tuning, deep

learning, perceptual loss

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease
characterized by inflammation and demyelination of nerve axons in the central nervous
system. This damage leads to the formation of lesions, which are the most important
markers of disease activity (Kolb et al., 2022). Diagnosis and monitoring of people with
MS (PwMS) relies on the acquisition of Magnetic Resonance Imaging (MRI), particularly
T2-weighted (T2-W) fluid-attenuated inversion recovery (FLAIR), to assess lesions in the
white matter (WM) (Wattjes et al., 2021). Although current clinical guidelines recommend
acquiring high-resolution (HR) T2-W FLAIR MRI using 3D sequences (Wattjes et al.,
2021), in clinical settings images have been often acquired with 2D sequences, where the
resulting “3D” image is rather a stack of thick 2D slices with highly anisotropic voxels.
Such multi-slice images are faster to acquire, are less prone to motion artifacts, and
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their in-plane resolution is often sufficient for visual inspection by
radiologists. However, their poor through-plane resolution
hampers their use for precise quantitative analyzes (e.g.,
radiomics) as most of the automated methods proposed for
lesion segmentation and morphometric analyzes require HR
images with isotropic voxels (Danelakis et al., 2018; Carass et al.,
2020; Mendelsohn et al., 2023). In this scenario, super-resolution
(SR) methods aiming to improve the spatial resolution of acquired
MRI would facilitate the use of real-world MRI and clinical data of
PwMS to investigate MS biomarkers.

Super-resolution methods aim to estimate an unknown HR
MRI from one or more acquired low-resolution (LR)MRIs. Model-
based methods assume an explicit imaging model of the MRI
acquisition and seek a numerical solution of the ill-posed inverse
problem by introducing regularization terms to constrain the
solution space (Shilling et al., 2009; Poot et al., 2010; Gholipour
et al., 2015; Beirinckx et al., 2022). These model-based SR methods,
however, require multiple multi-slice LR images to reconstruct
one HR MRI. Hence, they are not suitable for single-image SR.
Even when two multi-slice LR images (e.g., with orthogonal slice
direction) are available, their performance is limited (Giraldo et al.,
2023). Alternatively, learning-based single-image SR approaches,
for example based on convolutional neural networks (CNN), have
demonstrated impressive performance in natural images, due to
their ability to learn the relation between the LR and HR images
from data (Dong et al., 2014; Johnson et al., 2016; Ledig et al.,
2017; Lim et al., 2017; Blau et al., 2019; Wang et al., 2021). A
straightforward procedure is to train a CNN generative model with
paired LR-HR samples, enabling the model to learn a SR mapping
that can be applied to unseen LR data with generally fast inference
times. Despite their demonstrated effectiveness on natural images,
the performance of these SR approaches heavily relies on the
variability and characteristics of the data the models were trained
and tested with. CNN models trained with large datasets of natural
images do not capture the statistical properties of medical images,
including specific acquisition conditions, artifacts and types of
noise. In medical imaging, preserving anatomical and pathological
features is crucial to avoid misleading diagnostic judgments.
Therefore, applying CNN SR models to medical images requires
fine-tuning these models to the specific application domain. This
process ensures the models capture domain-specific features and
maintain diagnostic integrity.

In the context of brain MRI SR, several works have presented
and evaluated CNNs for single-image SR of structural MRI
sequences, primarily T1-W and T2-W scans. Sanchez and
Vilaplana (2018) proposed a 3D Generative Adversarial Network
(GAN) architecture inspired by the SRGAN model (Ledig et al.,
2017). Their method achieved promising quantitative results and
demonstrated the potential of GANs for MRI SR compared
to conventional cubic spline interpolation. Pham et al. (2019)
presented a 3D CNN based on residual learning, with the
underlying assumption that it is easier to find a mapping from
the missing high-frequency information to HR, instead of finding
a direct mapping from LR to HR. A similar residual learning
approach was adopted by Du et al. (2020), who proposed a 2D
CNNnetwork for SR reconstruction of multi-slice T1-W and T2-W
MRI, although it was mainly evaluated on synthetic brain images.

Addressing the challenge of collecting training data, Zhao et al.
(2019, 2021) introduced a self-supervised approach based on 2D
CNNs, which leveraged the high in-plane resolution of acquired
MRI to train a SRCNN for increasing the through-plane resolution.
This method showcased improved performance over previous self-
supervised methods when evaluated for the SR of multi-slice T2-
W MRI. However, the requirement to train or fine-tune a CNN
model each time the method is applied to a new image poses
an important practical limitation in terms of computational cost
and processing time. A CNN model trained to convert a brain
MRI of any orientation, resolution and contrast into an HR T1-W
MRI was recently presented (Iglesias et al., 2021, 2023). While this
approach holds promise for facilitating standard morphometric
analyzes by inpainting normal-appearing tissue in pathological
areas, it does not facilitate the quantitative analysis of lesions
in PwMS.

Most CNN strategies for MRI SR rely on minimizing either the
mean squared error (L2 loss) (Pham et al., 2017, 2019; Du et al.,
2020) or mean absolute error (L1 loss) (Zhao et al., 2021; Iglesias
et al., 2023) between the model output and the ground truth HR
image during model training. While this minimization approach
results in improved reconstruction accuracy measures such as
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM),
it can produce images with over-smoothed textures and blurry
boundaries (Timofte et al., 2017; Blau et al., 2019). To address this
limitation, previous works have explored the use of GANs (Sanchez
and Vilaplana, 2018; Zhang et al., 2022), which encourage the
model to generate more realistic-looking images by incorporating
an adversarial loss. However, this adversarial approach carries
the risk of hallucinating structures or introducing artifacts in
generated images. Another promising approach to improve the
perceptual quality in SR is the use of loss functions that compare
high-level image features rather than relying solely on pixel-wise
similarities. These high-level features are often extracted from
intermediate layers of pre-trained neural networks (Johnson et al.,
2016). Perceptual losses, which transfer semantic knowledge from
the pre-trained loss network, have demonstrated their effectiveness
in improving the perceptual quality of single-image SR for natural
images (Johnson et al., 2016; Wang et al., 2019). Recently, Zhang
et al. (2022) incorporated a perceptual loss into a GAN framework
for MRI SR, which was trained with T1-W brain MRI of PwMS and
then tested on T2-W FLAIR.

Current state-of-the-art approaches for single-image SR of
multi-slice MRI (Du et al., 2020; Zhao et al., 2021; Zhang et al.,
2022) have been evaluated in scenarios where the upsampling scale
factor between the slice thickness of LR and HR ranges from 2 to
6. As expected, the performance of SR reconstruction decreases as
the input slice thickness increases, leading to greater challenges in
faithfully recovering anatomical structures and details. The larger
resolution gap between LR input and HR target exacerbates the
risk of hallucinating artificial features, compromising the diagnostic
quality and reliability of SR outputs, a critical concern when
applying SR to brain MRI of PwMS. A particularly challenging
scenario, that is prevalent in real-world retrospective image datasets
of PwMS, involves MRI acquisitions with a thick slice spacing of 6
mm.Moreover, these multi-slice MRI scans are often acquired with
slice gaps, a factor that is frequently overlooked when generating
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LR training data for SR models but can significantly influence their
performance (Han et al., 2023).

In this paper, we present a SR framework that leverages
SR CNN architectures to enhance the resolution of multi-slice
structural MRI of PwMS, reducing the slice spacing from 6 to
1 mm. Our strategy involves fine-tuning SR models with image
patches extracted from T2-W FLAIR and T1-W MRI data of
PwMS. The fine-tuning of SR models is guided by a content
loss Lc which simultaneously promotes perceptual quality and
pixel-wise reconstruction accuracy, ensuring realistic textures and
well-defined tissue boundaries in the reconstructed HR images.
Our framework reconstructs HR MRI volumes from single LR
inputs, enabling more accurate downstream 3D analysis. Through
a comprehensive evaluation using multi-center MRI data, we
demonstrate that our SR framework outperforms existing methods
in terms of reconstruction accuracy, and additionally improves the
performance of automated lesion segmentation on T2-W FLAIR
MRI, a highly relevant task in the context of multiple sclerosis.

We summarize the contributions of this work as follow:

• We present a single-image SR framework for multi-slice MRI
based on the adaptation of CNN architectures to the domain
of structural MRI in MS.

• We fine-tune two state-of-the-art SR CNNmodels, namely the
EDSR (Lim et al., 2017) and the RealESRGAN (Wang et al.,
2021), using a perceptual loss to recover realistic features, and
themean absolute error (L1 loss) to control the reconstruction
accuracy.

• We incorporate information from the MRI physics model by
simulating LR data from HR MRI with an acquisition model
that accounts for a slice selection profile, including slice gap,
commonly found in clinical multi-slice MRI data.

• We evaluate our framework for MRI SR reconstruction and
compare its performance against existing MRI SR methods
using MRI datasets of PwMS from different centers.

• We evaluate the impact of our SR strategy in a relevant
downstream task: the automated segmentation of whitematter
lesions on reconstructed T2W-FLAIR images.

We named our framework PRETTIER, a name encapsulating
its purpose: "Perceptual super-REsoluTion in mulTIple sclERosis."
The code to apply PRETTIER is available at: https://github.com/
diagiraldo/PRETTIER.

2 Materials and methods

An overview of the workflow is presented in Figure 1. The
process begins with MRI data preparation, consisting of LR MRI
simulation and extraction of paired LR-HR patches. Then, in the
learning step, CNN models for image SR are fine-tuned using
these patches, with final weights selected based on the minimum
content loss in a validation set. We then use each fine-tuned
CNN model to reconstruct HR MRI volumes from single LR MRI
inputs, combining outputs from applying the model in different
slice directions. The evaluation step uses an independent set of
structural MRI from PwMS and comprises three parts: First, we
evaluate the fine-tuning of CNNmodels with MRI patches. Second,

we evaluate the SR framework by reconstructing MRI volumes.
Finally, we assess the impact of SR reconstruction on the automated
segmentation of WM lesions.

2.1 MRI data

We gathered six different datasets containing 429 HR structural
MRIs, T2-W FLAIR, and T1-W, of 192 PwMS. The numbers of
unique subjects, images, and data partition are shown in Table 1.

• ISBI2015 (Carass et al., 2017): 61 T1-W images from the test
data for the longitudinal MS lesion segmentation challenge
held during the ISBI 2015 conference. All images were
acquired on a 3T Philips MRI scanner.

• Lesjak-3D (Lesjak et al., 2017): 30 T2-W FLAIR images
accompanied by their lesion annotation resulting from the
consensus of three experts. Images were acquired on a 3T
SiemensMagnetom TrioMR system at the University Medical
Center Ljubljana.

• MSSEG1 (Commowick et al., 2021b): 53 T2-W FLAIR and
53 T1-W images from the MS lesions segmentation challenge
held in MICCAI 2016. For a subset of 15 subjects (subset A)
the dataset also provides the WM lesion annotation resulting
from the consensus of seven experts. Images were acquired
in four different centers with 1.5T and 3T MR scanners from
different vendors (Siemens, Philips, and GE).

• MSSEG2 (Commowick et al., 2021a): 80 T2-W FLAIR images
from the MS new lesions segmentation challenge held in
MICCAI 2021. This dataset contains scans of 40 PwMS
acquired in two different time-points. Images were acquired
with 11 different 1.5 T and 3T MR scanners.

• MSPELT: 56 T2-W FLAIR and 41 T1-W images of 41 PwMS
from the Noorderhart—Revalidatie and MS Centrum in Pelt,
Belgium. All images were acquired in a 1.5 T MR scanner
(Philips Achieva dStream). The use of this pseudonymized
retrospective dataset was approved by the ethical commission
of the University of Hasselt.

• HUN: 28 T2-W FLAIR and 27 T1-W images of 14 PwMS
from the Hospital Universitario Nacional (HUN) in Bogota,
Colombia. This dataset contains, for each subject, scans at
two different visits and the manual annotation of WM lesions
verified by an expert neuroradiologist (20 years of experience)
for each visit. All images were acquired in a 1.5 T MR
scanner (Philips Multiva). Participants provided voluntary
and informed consent, and the collection of images received
ethical approval from the HUN ethics committee.

Detailed information about data acquisition and compliance
with ethical standards for the four public datasets (ISBI2015,
Lesjak-3D, MSSEG-1, and MSSEG-2) can be found in their
corresponding publications.

2.1.1 MRI pre-processing
The raw versions of HR T2-w FLAIR and T1-W images were

denoised with adaptive non-local means (Manjón et al., 2010), and
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FIGURE 1

Methodology overview. In the first step, LR multi-slice MRI acquisitions are simulated using ground truth HR MRIs, and paired LR-HR image patches

are extracted. In the learning step, pre-trained convolutional neural network (CNN) models for natural image super-resolution (SR) are fine-tuned

with the extracted MRI patches. Then, the fine-tuned models are used to reconstruct HR MRI volumes from single LR MRI inputs. In the evaluation

step, the SR performance is assessed at the patch level and the MRI volume level. Finally, we also evaluate the e�ect of SR on the automated

segmentation of white matter (WM) lesions.

TABLE 1 Overview of the multi-centric dataset used in this work.

Dataset Source
# # FLAIR # T1 Lesion Data

subjects images images annotation partition

ISBI 2015 Public 14 - 61 - Learning

Lesjak-3D Public 30 30 - X Learning

MSSEG1 B Public 38 38 38 - Learning

MSSEG2 Public 40 80 - - Learning

MSPELT Clinical 41 56 41 - Learning

MSSEG1 A Public 15 15 15 X Evaluation

HUN Clinical 14 28 27 X Evaluation

Total 192 247 182

The two datasets used for evaluation, MSSEG1 A and HUN, have manual delineation of lesions to evaluate automated lesion segmentation.

bias-field corrected with N4 algorithm (Tustison et al., 2010). For
each image, a brain mask was estimated using the HD-BET tool
(Isensee et al., 2019). All images, brain masks and ground truth
lesion masks were adjusted to have isotropic voxels of 1 mm3 using
cubic interpolation forMRIs and nearest neighbor interpolation for
the binary masks.

2.1.2 Data partition
The set of 192 subjects was partitioned into learning and

evaluation sets with the consideration of having ground truth
segmentations and a balanced number of image modalities in the
evaluation set (MSSEG1 A and HUN). As shown in Table 1, this
first partition resulted in 163 subjects (204 T2-W FLAIR and 140
T1-W MRIs) in the learning set, and 29 subjects (43 T2-W FLAIR

and 42 T1-W MRIs) in the evaluation set. Images in the learning
set were further partitioned into training and validation using a
stratified scheme: for each dataset in the learning set, image sessions
were randomly split into training and validation with a proportion
of 7:3. The validation set, resulting from this second partition, was
used to optimize the training hyper-parameters and select the best
model weights during fine-tuning.

2.2 Data preparation

2.2.1 Simulation of LR images
We obtained pairs of LR-HR MRI volumes (yi, x) by applying

the multi-slice MRI acquisition modelMi (Poot et al., 2010) to the
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HR ground truth image:

yi = Mi(x) = DBRi(x) (1)

Where Ri is a rotation operator that accounts for the slice
direction of the multi-slice LR image, B is the blurring operator
with a filter that accounts for the slice-selection profile, and D is
the downsampling operator. For each HR image x, we simulated
three LR images {yi}3i=1 with orthogonal slice orientations (axial,
sagittal, and coronal), with slice thickness of 5 mm and slice spacing
of 6 mm (a slice gap of 1 mm). The simulated LR images have
highly anisotropic voxels of 1×1×6 mm3, which are common in
retrospective clinical multi-slice MRI.

2.2.2 Extraction of patches
Most CNN models for image SR receive as inputs 2D images

with three color channels (R: red, G: green, B: blue). For model
fine-tuning, we randomly extracted pairs of 3-channel patches from
each pair of LR-HR MRI by taking triplets of 2D patches that are
contiguous in the third dimension. As we considered only fully
convolutional CNN models, there are no restrictions in terms of
patch size. To keep the memory requirements relatively low, we
extracted HR patches of 96×96 while ensuring most of the patch
area correspond to brain tissue. Therefore, the LR patches were
96×16 or 16×96, depending on the slicing orientation they were
taken from their corresponding LR volume.

For the learning stage, 18 pairs of LR-HR patches were extracted
from each LR-HR MRI pair resulting in 13, 344 training samples
and 3, 168 validation samples. For the evaluation stage, 9 patch pairs
extracted from each MRI pair, resulting in 2, 040 pairs of LR-HR
patches.

2.3 Learning

The learning stage consists of fine-tuning two CNN models
that have shown excellent performance for SR of natural images
and have been previously tested for MRI SR. The first model
is the Enhanced Deep Residual Networks for Single Image Super-

Resolution (EDSR) (Lim et al., 2017), which ranked first in the
NTIRE 2017 super-resolution challenge (Timofte et al., 2017). Some
works, including a self-supervised approach, have also relied on
the EDSR model to perform SR of structural brain MRI (Zhao
et al., 2019, 2021; Fiscone et al., 2024). The second model is the
Real Enhanced Super-Resolution Generative Adversarial Network

(RealESRGAN) (Wang et al., 2021), which is an improved version
of the ESRGAN (Wang et al., 2019). The ESRGAN achieved the best
perceptual index in the 2018 PIRM challenge on perceptual image
super-resolution (Blau et al., 2019). RealESRGAN showed superior
performance than the ESRGAN in a recent work evaluating GAN-
based approaches for SR of brain and knee MRI (Guerreiro et al.,
2023).

2.3.1 CNN architectures
• EDSR (Lim et al., 2017): it builds upon the SRResNet

(Ledig et al., 2017) by removing the batch normalization

from residual blocks and adding residual scaling to stabilize
training. These modifications allow the use of more
filters to improve performance without increasing the
required computational resources. We used the architectural
configuration and pre-trained weights provided by the
authors.1

• RealESRGAN (Wang et al., 2021): its generator is composed
by residual-in-residual dense blocks, similar as in ESRGAN
(Wang et al., 2019), but the discriminator is a U-Net that
provides per-pixel feedback (Schonfeld et al., 2020). We
used the architectural configuration and pre-trained weights
provided by the authors.2

2.3.2 Loss function
The content loss Lc or objective function to minimize during

fine-tuning of the CNNmodels is the combination of the perceptual
loss Lperceptual and the L1 loss, therefore:

Lc = Lperceptual + ηL1

LEDSR = Lc

LRealESRGAN = Lc + λLGAN

(2)

Where η accounts for the relative importance of the L1 loss,
which measures the image pixel-wise differences. The perceptual
loss Lperceptual compares high-level visual features between the
model output and the ground truth. These features can be extracted
from a pre-trained network, allowing the knowledge transfer from
this loss network to the SR CNN (Johnson et al., 2016). Here, we
calculate the perceptual loss using five layers of a pre-trained VGG-
19 (Simonyan and Zisserman, 2015), following the approach used
in the initial training of the RealESRGAN (Wang et al., 2021). The
adversarial loss LGAN, used during RealESRGAN fine-tuning, is
given by the binary cross entropy with sigmoid function, applied
to discriminator output. The weighting factor λ modulates the
contribution of the adversarial component to the overall loss during
generator training.

2.3.3 Other training details
Both models, EDSR and RealESRGAN, were fine-tuned using

the ADAM optimizer (Kingma and Ba, 2015) and cosine annealing
with warm restarts (Loshchilov and Hutter, 2017) as learning
rate scheduler to prevent over-fitting. The L1 loss weight η was
1, following a previous work that used the same content loss
(Wang et al., 2021). The batch size was set to 6. Optimal training
hyperparameters were selected using the tree-structured Parzen
estimator (Bergstra et al., 2011) within the Optuna (Akiba et al.,
2019) framework with the content lossLc in the validation set as the
objective function. The set of hyperparameters that were optimized
included the initial learning rates lr0, schedulers parameters T0 and
Tmult, and for RealESRGAN, the adversarial loss weight λ. The
optimal set of hyperparameters for EDSR was: lr0 = 2×10−4,
T0 = 8, and Tmult = 2. In the case of RealESRGAN, λ = 0.05,
the generator hyperparameters were lr0 = 1×10−4, T0 = 6 and

1 https://github.com/sanghyun-son/EDSR-PyTorch/

2 https://github.com/xinntao/Real-ESRGAN/
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Tmult = 1, the discriminator hyperparameters were lr0 = 5×10−6,
T0 = 8, and Tmult = 2. Fine-tuning was run for 100 epochs, and the
best weights for each model were selected based on the minimum
content loss Lc in the validation set.

2.4 SR reconstruction of MRI volumes

After fine-tuning a CNNmodel for SR of MRI patches, the next
step is to leverage the model for reconstructing HR MRI volumes
from single LR MRI inputs. For this purpose, we applied the fine-
tuned model to LR slices along each of the two in-plane dimensions
using a sliding window approach. Specifically, we take 3 contiguous
LR slices as the 3-channel input of the SR model, then we combine
the HR outputs corresponding to the same slice location using
a weighted average. This sliding window approach mitigates the
stacking artifacts that could arise from single-slice inference. As
this process is done for each in-plane dimension, the result is a
pair of volumes consisting of stacked HR slices. These intermediate
volumes are then averaged to produce the final SR reconstructed
MRI volume.

2.5 Evaluation

We evaluated MRI SR at two levels: first, a patch-based
assessment to evaluate the fine-tuned SR CNN models on unseen
MRI patches. Second, a volume-based assessment to evaluate
the SR reconstruction of MRI volumes. Additionally, we apply
automated lesion segmentation methods to SR reconstructed T2-
W FLAIR MRIs to assess the impact of our SR approach on
downstream tasks.

2.5.1 SR of MRI patches
For the patch-based assessment, we used paired LR-HR patches

extracted from MRIs in the evaluation set. The patches used in this
evaluation were also RGB patches extracted following the approach
described in subsection 2.2.2. We compared the output of fine-
tuned SR models applied to LR patches against ground truth HR
patches using an extended set of image quality measures. These
included the widely used PSNR and SSIM, as well as five additional
measures:

• Visual information fidelity (VIF) (Sheikh and Bovik, 2006),
which combines the reference image information and the
mutual information between the reference and the distorted
image. Its calculation relies on a statistical model for natural
scenes, a model for image distortions, and a model of the
human visual system.

• Feature similarity index (FSIM) (Zhang et al., 2011), which
characterizes the image local quality by combining the image
phase congruency and the image gradient magnitude.

• Visual saliency-induced index (VSI) (Zhang et al., 2014),
which uses a visual saliency map as a feature to characterize
local quality and as a weighting factor when combining it with
gradient and chrominance feature maps.

• Haar perceptual similarity index (HaarPSI) (Reisenhofer et al.,
2018), which utilizes both high- and low-frequency Haar
wavelet coefficients to assess local similarities and weigh local
importance. It can be seen as a simplification of the FSIM.

• Deep image structure and texture similarity (DISTS) (Ding
et al., 2022), which combines texture similarity and structure
similarity, both computed with feature maps extracted from a
pre-trained VGG16.

While PSNR and SSIM compare pixel-wise accuracy, the five
additional metrics evaluate visual features extracted from the
images using hand-crafted filters or pre-trained CNNs. Recent
studies (Mason et al., 2020; Kastryulin et al., 2023) show that these
visual feature metrics (VIF, FSIM, VSI, HaarPSI, and DISTS) are
better correlated with diagnostic quality perceived by radiologists
than PSNR and SSIM. This better correlation suggests that visual
feature metrics may capture more relevant aspects for diagnostic
interpretation than simple pixel-wise comparisons. We computed
the metrics for patch evaluation using the PyTorch Image Quality
(PIQ) package (Kastryulin et al., 2022).

2.5.2 SR reconstruction of MRI volumes
We evaluated the quality of SR reconstructed MRI volumes

with respect to ground truth HR MRI using the PSNR and
SSIM. These two measures were chosen for their straightforward
applicability to 3D images. We opted to compute these measures
within a brain mask to ensure they accurately reflect the quality
of SR in diagnostically relevant areas, avoiding inflation from the
uniformity of background air. We also included a comparison
with two state-of-the-art methods for structural MRI SR that have
publicly available implementations:

• SMORE-v4: the "Synthetic Multi-Orientation Resolution

Enhancement" (Remedios et al., 2023) method is a single-
image SR algorithm devised to increase the through-plane
resolution of multi-slice MRI. It is based on the self-training
of a CNN model for super-resolution using patches extracted
from the HR plane. Then, the self-trained models are applied
to LR slices to obtain a HR MRI volume.

• SOUP-GAN: the "Super-resolution Optimized Using

Perceptual-tuned GAN" (Zhang et al., 2022) is a single-
image 3D SR framework to produce thinner slices of MRI.
In this work, authors trained a GAN using a perceptual loss
calculated from slices in the axial, sagittal, and coronal view.

2.5.3 Impact of SR on automated lesion
segmentation

The impact of SR on WM lesion segmentation was evaluated
by applying two automated lesion segmentation methods to the
SR reconstructed T2-W FLAIR volumes. These two methods were
chosen because they accept T2-w FLAIR as the only input and are
publicly available:

• LST-lpa (Schmidt, 2017): the lesion prediction algorithm (lpa)
is part of the Lesion Segmentation Toolbox (LST) for SPM. It
is a statistical method based on a logistic regression model that
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includes a lesion belief map and a spatial covariate that takes
into account voxel-specific changes in lesion probability.

• SAMSEG (Cerri et al., 2021): the lesion segmentation add-on
to SAMSEG routine in Freesurfer, it allows the simultaneous
segmentation of white matter lesions and 41 structures by
decoupling computational models of anatomy frommodels of
the imaging process.

We applied these two segmentation methods also to the LR and
the HR T2-weighted FLAIR images, being the latter a reference
benchmark for segmentation performance.

Finally, we included the results of applying the recently
proposed WMH-SynthSeg (Laso et al., 2024) to the simulated LR
T2-w FLAIR images. WMH-SynthSeg is an automated method
aiming to segment WM hyper-intensities and 36 anatomical brain
regions from MRI of any resolution and contrast. Regardless of the
input, WMH-SynthSeg produces a HR segmentation volume with
1 mm isotropic voxels, going directly from LR images to HR lesion
segmentation.

3 Results

3.1 SR of MRI patches

The ability of fine-tuned models, namely EDSR and
RealESRGAN, to upsample LR MRI patches was evaluated
with seven image quality measures: PSNR, SSIM, VIF, FSIM, VSI,
HaarPSI, and DISTS. The mean and standard deviation of each
image measure along patches extracted from the evaluation set
is presented in Table 2. The fine-tuned EDSR is superior to the
fine-tuned RealESRGAN in all quality measure for both sequences,
T2-W FLAIR and T1-W MRI. Meanwhile, both fine-tuned CNNs
outperform bicubic interpolation by at least 1 dB in PSNR and 0.06
in SSIM.

Figure 2 shows four examples of super-resolution of LR patches
using the fine-tuned models. Compared to bicubic interpolation,
notable improvements are evident in tissue boundaries, sulci shape,
and lesion surroundings. It should be noted that MRI patches for
evaluation were extracted following the same approach used for
training: three contiguous 2D LR patches taken as one RGB image.
An extended comparison including examples with the pre-trained
models is shown in Supplementary Figure 1.

3.2 SR reconstruction of MRI volumes

The quality of SR reconstructed MRIs was evaluated with
the 3D versions of PSNR and SSIM, calculated within a brain
mask. Table 3 presents the mean and standard deviation of
these metrics for our SR framework, PRETTIER, compared to
SMORE and SOUP-GAN. Our approach using the fine-tuned
EDSR (PRETTIER-EDSR), consistently outperforms all other
methods across all MRI sequences and evaluation sets (see
Supplementary Figure 2 for distributions per dataset). PRETTIER
with the fine-tuned RealESRGAN yields higher PSNR and SSIM
than SMORE when reconstructing T2-W FLAIR images but lower
when reconstructing T1-W MRI. Notably, both PRETTIER and
SMORE substantially outperform SOUP-GAN.

Qualitative comparisons for T2-W FLAIR and T1-W are shown
in Figures 3, 4, respectively. While quantitative results indicate
a relatively modest increase of PSNR and SSIM over SMORE,
qualitative results show noticeable improvements such as better-
defined lesion contours in T2-W FLAIR (Figure 3) and more
anatomically coherent tissue boundaries in T1-W MRI (Figure 4).
Meanwhile, SOUP-GAN appears to introduce artifacts and textures
that are not present in the ground truth HR image, which might
explain its lower performance metrics compared to the other
methods.

3.3 E�ect of SR on automated lesion
segmentation

The performance of automated lesion segmentation was
quantitatively evaluated in terms of the Dice score, sensitivity (also
known as recall), precision, and error of lesion volume estimation.
In Table 4, we present the mean and standard deviation of the
first three segmentation performance measures for LST-lpa and
SAMSEG when applied to LR, SR reconstructed, and HR T2-
W FLAIR images, and for WMH-SynthSeg applied only to LR
images. Due to non-gaussianity and presence of outliers, we present
the distributions of lesion volume estimation errors in Figure 5, a
similar plot for Dice score, sensitivity, and precision is presented
in Supplementary Figure 3. These results confirm that applying
PRETTIER improves lesion segmentation over LR images and
brings it closer to segmentation performance in ground truth HR
images. Furthermore, in the scenario of segmenting WM lesions
on LR multi-slice T2-W FLAIR of PwMS, a better Dice score is
achieved by applying first PRETTIER-EDSR and then segmenting
lesions with LST-lpa than by applying WMH-SynthSeg directly on
the LR image.

Figure 6 shows an example of WM lesion segmentation on
T2-W FLAIR, applied to LR inputs, our SR reconstructions, and
HR images. This example illustrates how applying SR enhances
the automated lesion segmentation when the input is a LR image
(red mask in the figure). The automated segmentation on the
HR image (green mask) serves as an upper bound, indicating the
best segmentation performance attainable for each method, which
might still be far from the ground truth segmentation (blue mask).

4 Discussion

In this work, we presented PRETTIER, a framework to
enhance the through-plane resolution of multi-slice structural
MRIs containing MS lesions. Evaluation results with independent
datasets demonstrate successful SR reconstruction which leads to
improved performance of automated lesion segmentation.

There are four key aspects that contribute to the successful
domain adaptation of 2D CNN models in our approach. First, the
content loss function guiding the fine-tuning process promotes the
recovery of high-level features with the perceptual loss term, and
also the pixel-wise reconstruction accuracy with the L1 term. This
loss formulation, with L1 weight η = 1, leads to outputs with
high perceptual quality, as shown in the evaluation with metrics
beyond PSNR and SSIM (see Table 2), as well as in the qualitative
results exhibiting well-defined tissue and lesion boundaries (see
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TABLE 2 Mean and standard deviation of image quality measures (IQM) of fine-tuned CNNmodels, RealESRGAN and EDSR, per MRI sequence.

MRI
IQM

Bicubic Fine-tuned Fine-tuned
sequence interpolation RealESRGAN EDSR

T2-W FLAIR PSNR (dB) 22.7± 1.2 23.7± 1.2 24.1± 1.3

SSIM 0.64± 0.06 0.70± 0.05 0.72± 0.06

VIF 0.28± 0.04 0.33± 0.05 0.35± 0.05

FSIM 0.82± 0.03 0.87± 0.02 0.88± 0.02

HaarPSI 0.64± 0.03 0.72± 0.03 0.74± 0.04

VSI 0.92± 0.01 0.94± 0.01 0.95± 0.01

DISTS 0.30± 0.02 0.14± 0.02 0.13± 0.02

T1-W PSNR (dB) 21.0± 2.0 23.0± 1.8 23.7± 1.9

SSIM 0.71± 0.05 0.79± 0.05 0.81± 0.05

VIF 0.32± 0.05 0.39± 0.05 0.41± 0.06

FSIM 0.83± 0.03 0.88± 0.03 0.89± 0.03

HaarPSI 0.65± 0.05 0.75± 0.04 0.77± 0.04

VSI 0.93± 0.02 0.95± 0.01 0.96± 0.01

DISTS 0.28± 0.03 0.13± 0.02 0.12± 0.02

Results of bicubic interpolation are also included for comparison. The best values for each metric are indicated in bold.

TABLE 3 Mean and standard deviation of PSNR and SSIM for MRI SR reconstruction methods, calculated within a brain mask.

MRI
IQM SMORE SOUP-GAN

PRETTIER– PRETTIER–
sequence RealESRGAN EDSR

T2-W FLAIR PSNR brain 24.6± 1.3 21.6± 1.3 25.0± 1.4 25.5± 1.4

SSIM brain 0.76± 0.04 0.65± 0.03 0.78± 0.03 0.80± 0.04

T1-W PSNR brain 27.4± 1.7 23.7± 1.7 26.7± 1.7 28.5± 1.8

SSIM brain 0.86± 0.03 0.76± 0.02 0.84± 0.04 0.89± 0.03

The best values for each metric are indicated in bold.

TABLE 4 Mean and standard deviation of Dice score, sensitivity, and precision calculated for automated lesion segmentation on T2-W FLAIR.

Method Input Dice score Sensitivity Precision

LST-lpa LR 0.47± 0.15 0.59± 0.17 0.47± 0.22

PRETTIER-RealESRGAN 0.52± 0.15 0.60± 0.19 0.55± 0.22

PRETTIER-EDSR 0.53± 0.15 0.60± 0.18 0.55± 0.22

HR 0.58± 0.16 0.69± 0.16 0.57± 0.23

SAMSEG LR 0.41± 0.17 0.32± 0.16 0.67± 0.16

PRETTIER-RealESRGAN 0.46± 0.21 0.38± 0.21 0.71± 0.16

PRETTIER-EDSR 0.47± 0.21 0.40± 0.21 0.71± 0.17

HR 0.53± 0.20 0.43± 0.19 0.79± 0.14

WMH-SynthSeg LR 0.35± 0.14 0.37± 0.14 0.40± 0.23

LST-lpa (Schmidt, 2017) and SAMSEG (Cerri et al., 2021) were applied to simulated LR images, the outputs of our SR framework (PRETTIER), and to ground truth HR images. WMH-SynthSeg

(Laso et al., 2024) was only applied to LR images as its purpose is to directly produce HR segmentations. These results show that our SR framework improves the segmentation performance

over LR images, approaching the performance of segmentation over HR images.

Figure 2 and Supplementary Figure 1). Second, we use patches
extracted from two different MRI modalities (T2-W FLAIR and
T1-W MRI) with three different slice orientations (axial, sagittal,
and coronal). This variability in our training dataset exposes the
models to a wide range of anatomical and contrast variations,
potentially enhancing their generalizability, as suggested by the

results in our similarly diverse evaluation dataset. Third, instead
of of using simple downsampling or k-space truncation as done
in some existing literature (Sanchez and Vilaplana, 2018; Pham
et al., 2019; Du et al., 2020), we obtain pairs of LR-HR images by
applying a physics-informed model of multi-slice MRI acquisition
to HR images which takes into account the slice selection profile.
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FIGURE 2

Examples of LR (left column) and HR (right column) patches extracted from T2-W FLAIR (first 2 rows) and T1-W MRI (last 2 rows) in the evaluation

set. Bicubic interpolation and SR with fine-tuned models were applied to LR patches (middle columns). Patches are shown as RGB images where

each color channel represents one of three contiguous patches in the third dimension. This is the same patch extraction approach used for model

fine-tuning.

Fourth, we incorporate information from adjacent slices as color
channels in the inputs and outputs of 2D CNN models, allowing
them to leverage the 3D information in MRI while benefiting from
architectural advances in natural image SR.

Two considerations led us to employ 2D instead of 3D
CNN architectures. First, 2D models have lower computational
costs during training and inference compared to their 3D
counterparts. Second, adopting a 2D approach offers greater
flexibility in leveraging advances from the vast literature on
natural image SR. Many of the cutting-edge architectures and
strategies for SR have been primarily developed and optimized
for 2D images. By operating with 2D models, we could adapt
and fine-tune any of these models to our MRI SR framework.
Specifically, in this work we used two SR models: the EDSR
(Lim et al., 2017) and the RealESRGAN (Wang et al., 2021).

Patch-based evaluation of fine-tuned models demonstrates that
EDSR consistently outperforms RealESRGAN across datasets, MRI
contrasts and evaluation metrics (see Table 2). It is worth noting
the architectural differences between these models. EDSR has 32
residual blocks with 256 features in each convolutional layer,
amounting to over 40 million trainable parameters. Meanwhile, the
generator in RealESRGAN has 23 residual-in-residual dense blocks
with 64 initial features per residual dense block, resulting in ∼16.7
million parameters, a lighter model size than EDSR.

We quantitatively evaluate our framework for SR
reconstruction of MRI volumes using PSNR and SSIM metrics,
comparing against two state-of-the-art methods for MRI SR:
SMORE (Remedios et al., 2023; Zhao et al., 2021) and SOUP-GAN
(Zhang et al., 2022). The key feature of SMORE is its self-supervised
training without relying on external data. However, this comes
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FIGURE 3

Qualitative result for simulated LR T2-W FLAIR with sagittal slice orientation. Coronal (top row) and axial (bottom row) views of LR input, volumes

reconstructed using SMORE (Remedios et al., 2023; Zhao et al., 2021), SOUP-GAN (Zhang et al., 2022), and our SR framework (PRETTIER) with the

fine-tuned RealESRGAN and EDSR, and the HR reference volume. PSNR and SSIM values are calculated within a brain mask. The arrow points to the

boundary of a MS lesion which is visible in the HR image but lost in the LR views. PRETTIER recovers sharper lesion boundaries than SMORE,

meanwhile SOUP-GAN produces artificial textures.

at a significant computational cost as a CNN model must be
trained for each new input image. In contrast, our approach
leverages trained models that have been fine-tuned with data we
gathered from external datasets, allowing faster and less resource
demanding application. Evaluation on the independent dataset
shows our fine-tuned EDSR model outperforms SMORE across
metrics for both T2-W FLAIR and T1-W MRI (see Table 3 and
Supplementary Figure 2). While those quantitative results also
show our approach with the fine-tuned RealESRGAN slightly
underperforms SMORE on T1-W, the qualitative example
(Figure 4) reveals sharper tissue boundaries more alike the HR
ground truth. Our SR framework shares some similarities with
SOUP-GAN (Zhang et al., 2022), as both approaches rely on
models trained with a perceptual loss. Specifically, SOUP-GAN
employs a scale-attention architecture trained via an adversarial
approach. However, our evaluation results demonstrate that SOUP-
GAN underperforms quantitatively and qualitatively compared
to both SMORE and our framework using the fine-tuned EDSR
and RealESRGAN models. The qualitative examples in Figures 3,
4 suggest that SOUP-GAN suffers from artificial textures, artifacts
that are likely introduced when promoting only the perceptual

quality of images (via perceptual loss and adversarial training)
without accounting for reconstruction accuracy.

White matter lesion segmentation is a highly relevant task
when processing brain MRI data of PwMS. Assessing the impact
of our SR framework on this task is crucial for validating
its practical use. For this evaluation, we applied two different
automated methods for lesion segmentation, LST-lpa (Schmidt,
2017) and SAMSEG (Cerri et al., 2021), on T2-W FLAIR images.
We compared the segmentation performance when using the LR
images versus the SR reconstructed images, and also include the
segmentation performance on HR images as reference. The results
demonstrate that, compared to segmentation on LR images, our
SR reconstruction approach improves the Dice score, sensitivity,
precision, and lesion volume estimation, bringing them closer
to what is achievable with HR images (Table 4 and Figure 5).
Consistently, we observe that LST-lpa exhibits higher sensitivity
but lower precision than SAMSEG when applied to LR and HR
T2-W FLAIR images. Notably, our SR approach improves the
precision of LST-lpa without compromising sensitivity, suggesting
it effectively refines lesion boundaries, as illustrated in Figure 6.
Conversely, SR enhances the low sensitivity of SAMSEG while
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FIGURE 4

Qualitative result for simulated low-resolution LR T1-W MRI with axial slice orientation. Coronal (top row) and sagittal (bottom row) views of LR

input, volumes reconstructed using SMORE (Remedios et al., 2023; Zhao et al., 2021), SOUP-GAN (Zhang et al., 2022), and out SR framework

(PRETTIER) with the fine-tuned RealESRGAN and EDSR, and the HR reference volume. PSNR and SSIM values are calculated within a brain mask. The

arrow indicates the WM-ventricle boundary. HR imaging reveals periventricular lesions, but tissue interfaces are unclear in LR views. PRETTIER

recovers sharper, more accurate tissue boundaries and periventricular lesions than SMORE and SOUP-GAN.

also improving its precision. Furthermore, we also include a
comparison against the recently proposed WMH-SynthSeg (Laso
et al., 2024), a method aiming to produce a HR segmentations
of WM hyperintensities (and 36 brain regions) from scans of any
resolution and contrast. Our evaluation shows that, given a LR T2-
W FLAIR image (acquired in a 1.5 T or 3 T scanner), applying our
SR approach followed by LST-lpa or SAMSEG yields superior lesion
segmentation compared to directly applying WMH-SynthSeg on
the LR images.

The work presented herein has some limitations. First, LR

MRIs used for model fine-tuning and evaluation are simulated

using only one slice profile: slice thickness of 5 mm and slice

spacing of 6 mm (i.e., 1 mm of slice gap). While our evaluation

results demonstrate the capabilities of our SR framework in this

challenging and common clinical scenario, and preliminary results

show good performance on images with different slice profiles

(see Supplementary Figure 5), future work should evaluate its
performance across a broader range of acquisition settings. Second,

the computational requirements of using deep CNN models can
pose barriers to their implementation, especially in resource-
limited settings. To address this, future research will explore the

capabilities of more efficient SR models (Li et al., 2023; Ren et al.,
2024). Lastly, we evaluated the impact of our SR framework on
only one downstream task, the automated segmentation of WM
lesions. Expanding this evaluation to other downstream tasks
in MS neuroimaging analyzes, such as regional volumetry and
radiomic feature extraction, would provide a more comprehensive
assessment of SR potential benefits and limitations in MS research.

5 Conclusion

We have presented PRETTIER, a single-image SR framework
for multi-slice structural MRI of PwMS that leverages existing
CNN architectures for image SR. Our framework demonstrates
superior image quality results than existing methods for MRI
SR, and improves the automated lesion segmentation on LR T2-
W FLAIR. By effectively addressing the limitations of routinely
acquired multi-slice MRI with low through-plane resolution, our
approach facilitates the use of retrospective MRI datasets already
acquired in the clinics to conduct 3D analyzes and investigate
image-based biomarkers of MS outcomes.
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FIGURE 5

Distribution of error in lesion volume estimation from automated segmentation with LST-lpa (Schmidt, 2017), SAMSEG (Cerri et al., 2021), and

WMH-SynthSeg (Laso et al., 2024).

FIGURE 6

Example of automated white matter lesion segmentation (A) LST-lpa and (B) SAMSEG, compared against (C) the ground truth manual segmentation.

Red: Automated segmentation over LR and SR reconstructed T2-W FLAIR. Green: Automated segmentation over HR T2-W FLAIR. Blue: Ground truth

lesion mask. Note that our SR framework refines red masks, which is particularly evident in the bottom row, bringing them closer to the green and

blue masks.
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