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Introduction: The robot-assistive technique has been widely developed in the 
field of neurorehabilitation for enhancement of neuroplasticity, muscle activity, 
and training positivity. To improve the reliability and feasibility in this patient–
robot interactive context, motion constraint methods and adaptive assistance 
strategies have been developed to guarantee the movement safety and 
promote the training effectiveness based on the user’s movement information. 
Unfortunately, few works focus on customizing quantitative and appropriate 
workspace for each subject in passive/active training mode, and how to provide 
the precise assistance by considering movement constraints to improve human 
active participation should be further delved as well.

Methods: This study proposes an integrated framework for robot-assisted 
upper-limb training. A human kinematic upper-limb model is built to achieve 
a quantitative human–robot interactive workspace, and an iterative learning-
based repulsive force field is developed to balance the compliant degrees 
of movement freedom and constraint. On this basis, a radial basis function 
neural network (RBFNN)-based control structure is further explored to obtain 
appropriate robotic assistance. The proposed strategy was preliminarily validated 
for bilateral upper-limb training with an end-effector-based robotic system.

Results: Experiments on healthy subjects are enrolled to validate the safety and 
feasibility of the proposed framework. The results show that the framework is 
capable of providing personalized movement workspace to guarantee safe and 
natural motion, and the RBFNN-based control structure can rapidly converge to the 
appropriate robotic assistance for individuals to efficiently complete various training 
tasks.

Discussion: The integrated framework has the potential to improve outcomes 
in personalized movement constraint and optimized robotic assistance. Future 
studies are necessary to involve clinical application with a larger sample size of 
patients.
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1 Introduction

A large majority of patients with injuries to the nervous system suffer 
from motor disability of limbs, which gravely affects the quality of life. 
Exploring effective treatments, particularly rehabilitation strategies, is one 
of the challenging goals in medicine (Moore et al., 2020; Wright et al., 
2020; Wingfield et  al., 2022; Shi et  al., 2024). In neurorehabilitation, 
bilateral upper-limb training is an effective adjunct treatment that has 
shown positive promise for neuroplasticity as it induces the remodeling 
of premotor cortex (Luft et al., 2004; Cauraugh and Summers, 2005; Chen 
et al., 2010; Xie et al., 2022; Norris et al., 2024) and prepares human 
subjects to return to activities of daily living (Lim et al., 2016).

Traditional rehabilitation intervention is to build a one-to-one 
training environment by means of physical therapists. This way has 
been extensively adopted but not adequately improved owing to its 
low efficiency and precision (Zhang and Cheah, 2015). Based on 
such limitations, robot-assisted therapy has been recently developed 
by the controllability and repeatability. For industrial robots, 
accuracy, rapidity, and stability of the operation are recognized as 
the paramount importance (Koç et al., 2019; Han et al., 2020; Sun 
et al., 2023a; Sun et al., 2023b). However, there exists an additional 
subject who needs to operate the robotic device during rehabilitation 
training. In this scenario, information perception on the user’s 
movements becomes indispensable for a human–robot interaction, 
particularly in training safety and rehabilitation effectiveness.

When it comes to the human–robot interaction safety, a fundamental 
precondition is the estimation of suitable workspaces (Carbone et al., 
2018). In general, some studies tend to drive the affected upper limb by 
referring the workspace of the unaffected side (Chunguang et al., 2009; 
Leonardis et al., 2015; Sarasola-Sanz et al., 2022), while the inconformity 
of both workspaces may result in strain injury. Other research studies 
prefer to try a standardized but small workspace according to the 
experience of the therapists (Squeri et  al., 2009; Najafi et  al., 2020). 
Although this one-size-fits-all approach can ensure the training safety by 
avoiding overstretch, the range of joint motion would not be sufficient, 
which may reduce the rehabilitation effectiveness. To address this 
problem, our previous study developed a subject-specific workspace 
determination method (Miao et al., 2020). The workspace was created 
based on a subject-specific upper-limb kinematic model. An attractive 
field was generated to guide the movement toward a predefined circle 
trajectory, and a repulsive field was defined to constrain deviated motion. 
Nevertheless, the diameter and position of the circle were set by the 
subjective opinion, which did not take into account individual 
adaptability. In addition, the variation of the resistance in the repulsive 
workspaces was uniformed rather than customized for the subjects. The 
inappropriate resistance levels may cause negative training, even 
“slacking” owing to the attractive field.

With regard to the training effectiveness, “assist-as-needed (AAN)” 
control techniques have been employed by providing only appropriate 
assistance during movement execution, which provides subjects more 
movement freedom. Pehlivan et al. (2016) proposed a minimal AAN 
controller for wrist rehabilitation robots in which the adaptive input 
estimation scheme included an extended Kalman filter with Lyapunov 
stability analysis. Zarrin et al. (2024) proposed a two-port admittance 
controller to address the lack of control frameworks for upper-limb 
rehabilitation exoskeletons. Cao et  al. (2024) proposed a position-
constrained AAN control method by introducing a constructed global 
continuous differentiable function incorporating dead zone and 
saturation characteristics to quantify the robotic assistance and facilitate 

seamless operation. It should be noted that the above-mentioned studies 
achieved good results; resorting to one-dimensional data, such as 
trajectory tracking error, movement velocity, or interactive force, is not 
comprehensive enough to support real estimation on subjects’ motor 
functions. This case would misguide device’s behavior of providing 
unsuitable assistance, which may cause patients’ negative emotions or 
intermittent slack during the training. Thus, it is important to evaluate the 
motion state accurately to formulate robotic subject-specific assistance for 
maximizing active participation of the patients.

To address this issue, performance-based control strategies have been 
proposed. These strategies are dependent on multiple kinematic indicators 
to comprehensively evaluate subjects’ motor functions, and adaptive 
controllers are designed to optimize robotic assistance based on the 
evaluation results. Krebs et al. detailed a concept of performance-based 
progressive robot therapy with MIT-MANUS, which included four 
diverse indicators in task-oriented training (Krebs et  al., 2003). A 
piecewise function was adopted as an adaptive algorithm to tune the task 
difficulty. Similarly, Papaleo et al. presented a patient-tailored approach 
by using a seven degrees of freedom (DOFs) robot arm for three-
dimensional (3D) upper-limb training (Papaleo et  al., 2013). Three 
different performance indicators were developed to evaluate motor ability 
through a weighted sum method. Although these objective measures 
appear to be useful, they are not tightly linked to widely accepted clinical 
scales, such as the Fugl-Meyer Assessment (FMA), the Motor Status Score 
(MSS), or the modified Ashworth Scale, which may reduce the evaluation 
reliability of limbs’ motor ability. In addition, little attention was paid to 
the combination of the training safety and effectiveness, which affects the 
development of user-centered robotics.

This article contributes to the bilateral upper-limb rehabilitation by 
proposing an integrated framework for safe and feasible 
neurorehabilitation training. On the one hand, the framework introduces 
a subject-specific workspace design method based on human’s kinematic 
information at first; then, an iterative learning-based repulsive force field 
is established to perform optimal compliance motion constraints. On the 
other hand, a performance-based robotic assistance strategy is 
implemented to tailor subject-specific training task planning for various 
individuals. Three kinematic parameters of a clinical macro-metric model 
are applied as the performance indicators for accurate evaluation of 
subjects’ motor functions, and a radial basis function neural network 
(RBFNN)-based multi-objective optimization method is implemented to 
tailor training difficulty level.

The article is organized as follows: In Section 2, a detailed robot-
assisted bilateral upper-limb training system is described, a safe 
interactive workspace with an iterative learning strategy is analyzed 
based on an end-effector robotic device, and an overall control 
architecture of the robotic device is described, including performance 
indicator acquisition and robotic assistance decision. Section 3 gives 
the experimental protocol and experimental results, and discussions 
and conclusion are included at the last section.

2 Methods

2.1 Robotic system configuration

In this study, a robotic platform is applied for bilateral coordination 
training of human upper limbs, as shown in Figure 1 (Miao et al., 2021). 
The platform is a 6-DOF (two unilateral 3 DOF) end-effector device that 
comprises six linear modules and two handles with the aim of bilateral 3D 
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movement. Each end-effector device is equipped with a three-axis force 
sensor to acquire interactive force data. In terms of software, the host 
computer of the system adopts LabVIEW developed by the NI company 
to set the control parameters, and it communicates with the lower 
controller CompactRIO in real time through an Ethernet cable. The 
communication mode between the servo system and CompactRIO is 
based on analog signal transmission. Then, the servo system provides 
position feedback to the controller in the form of a pulse signal via a 
digital acquisition module. The device is not only furnished with a stop 
button for emergency braking but also integrated with photoelectric 
switches for safety limits.

2.2 Workspace constraint construction

The mirror symmetry training has been widely used through the 
bilateral upper-limb rehabilitation, particularly useful for people 
suffering from hemiparesis. There are clear clinical findings that 
mirror training can improve therapy effectiveness against unilateral 
neglect. A schematic diagram of the bilateral training pattern is 
presented in Figure 2.

The global coordinate directions are described as the orange arrows, 
and the origin of global coordinate (OGC) is defined at the center of the 
four modules (as well as the center of the table). It is assumed that the 
dimensional positions of the robot and the subject are fixed. 1D  and 2D  
indicate width and height of the table, respectively. During the training, 
the subject is asked to stand on the designated location (the center of the 
shoulder joints and OGC are on the same YZ plane), keep the body 
straight, grasp the handles, and focus on the training task presented on 
the visual interface. 3D  represents the distance between the shoulder joints 

and the table. 4D  is the height of the shoulder joint. aL  is the distance 
between the handle center and the table. bL  is the initial length between 
the modules on Y-axis. In this case, the reachable workspace of the 
handles can be obtained by coordinate transformation of the positions of 
the shoulders as given in Equations 1, 2.
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where , ,S S S S
l lx ly lzP P P P =    denotes the coordinates of the left 

shoulder joint, and , ,S S S S
r rx ry rzP P P P =  

 denotes the coordinates 

of the right shoulder joint. S is the horizontal distance between each 
shoulder joint to the body center, which can be expressed as 0.179 
times as the body height (Miao et al., 2018).

Therefore, the reachable interactive workspace can be described by 
quantitative upper-limb workspace. Our previous study proposed a 
three-stage method to determine human hands’ workspace on a 
subject-specific basis (Miao et al., 2018). This considered the human 
upper limb as a model with seven degrees of freedom and used the 
Denavit–Hartenberg (D-H) method to derive the human left-hand 
workspace S lP and the right-hand workspace S rP  as given in Equation 3.

Handle
Holders

Control
Box

Linear 
Modules

Force 
Sensors

Visual 
Interface

Linear 
Modules

FIGURE 1

Bilateral upper-limb training system. It includes a visual interface, two handle holders, two three-axis force sensors, six linear modules, and a control 
box.
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where iα , ia , id , and iθ  are the D-H parameters of the ith upper-limb 
joint. 1i

iA−  is the homogeneous transformation matrix, as given in 
Equation 4. Then, the reachable interactive workspace can be plotted as 
shown in Figure 3.

To limit the movement into this workspace in safety, an optimized 
repulsive potential field concept is adopted to yield compliant constraint. 
Take the X-Y plane as an instance. It is assumed that the current position 
of the left handle is ( ),l lx lyP P P= , and the right side is ( ),r rx ryP P P= . To 
extend the line segment between handles and the geometric centers of the 
workspaces they located, we can obtain two points of intersections on the 
boundaries, and the ones positioning closer the boundaries are 
corresponding obstacles, denoted as ( ),O O O

l lx lyP P P=  for the left side 
and ( ),O O O

r rx ryP P P=  for the right side. The repulsive potential 
function can be presented as given in Equations 5, 6.
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where 0d  is the maximum influence length of each obstacle, and 
η  is a positive scalar. Afterward, the repulsive forces can 
be calculated by the gradient descent method as given in Equation 7.
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In the context of rehabilitation training, 0d  is generally fixed, while 
the parameter η  should be customized to individual subjects based on 
their control ability of muscular strength. A big ηgenerates an extensive 
but flat repulsive potential field, which limits interference range for a 
freedom movement and affects activities of limbs. However, a small ηwill 
form a narrow but steep repulsive potential field, which may reduce the 
compliance of the movement. As a consequence, it is essential to explore 
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FIGURE 2

Schematic diagram of the proposed training strategy.
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the most appropriate η that leads the trajectories of the handles stabilizing 
in a certain area. We assume that each repulsive force field consists of 
numerous repulsive force lines, as shown in Figure 4a. It is observed that 
the maximum curvatures of the lines, as well as the inflection points, are 
capable of balancing the repulsive force gradient and its range of influence. 
Hence, it needs to quantify the maximum curvature regions, which are 
described by colored surfaces, as shown in Figure 4b.

In response to this problem, an iterative learning method is used 
to hunt for the optimal η  round by round, which can be described as 
given in Equation 8.

 1η η δ η+ = + ∆k k  (8)

where δ  is the learning rate, and subscript k  means the k th 
positive scalar.

Denoting ( ) ( )2 2
k
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( ) ( )2 2
k

O O
r rx i rx ry i ryd P P P Pη η= = − + − , the maximum curvature 

of the ith line for each side can be  calculated as given in 
Equation 9.
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The corresponding plane coordinates of the maximum curvatures 
can be  expressed as ( ),C C C

i l i lx i lyP P P=  for the left side and 
( ),C C C

i r i rx i ryP P P=  for the right side. Then, the distances between the 
maximum curvature points and the boundary points are obtained 
as follows:
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The subject who intends to train is asked to move the handles 
along the workspace boundary, and sampling distances 
( ),

k kl rd dη η η η= =  will be recorded to compare with distances given 
in Equation 10 as follows:

 1

1 || ||η η η η ε= =
=

− <∑ k k
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l i l
i

d d
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(11)

where ε  is a predefined deviation threshold. If the inequality in 
Equation 11 is not satisfied, kη  will not be used; then, the iteration 
continues ( 1k k→ + ); otherwise, the iteration stops, which means kη  
is the optimal scalar.

2.3 Training strategy and performance 
indicators

In mirror symmetry rehabilitation, reaching-task training is 
commonly implemented. To precisely evaluate the training 
performance, one clinical study established a linear regression model 
based on hundreds of stroke patients’ behavior information in Fugl-
Meyer Assessment (FMA) scales. It emphasized three key indicators, 
including peak speed, smoothness, and duration (Bosecker et  al., 
2010). The peak speed represented the maximum velocity in one 
reaching training round, as defined in Equation 12. The smoothness 
signified the ratio of mean to peak speed, as denoted in Equation 13. 
The duration is the completion time of one target-to-target task, as 
described in Equation 14.
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FIGURE 3

Workspaces of the handles.

https://doi.org/10.3389/fnins.2024.1473755
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Miao et al. 10.3389/fnins.2024.1473755

Frontiers in Neuroscience 06 frontiersin.org

where the subscript n  means the nth raining round, and 
the parameter m represents the sample number in one round. Ä id  is 
the displacement deviation between two contiguous samples, 

denoted as follows: ( ) ( )2 2
1 1− −∆ = − + −i i x x i y yi id P P P P . ∆ it  is 

the corresponding time deviation.
To scientifically define standard performance indicators, Fitts’s 

law was involved to determine desired duration at first (Fitts and 
Peterson, 1964), as given in Equation 15.

 
2·log 1d

LD a b
R

 = + + 
  

(15)

where R denotes the radius of the targets, and L represents the 
distance between any two targets. The parameters a and b are constant 
values, which are commonly set according to clinical training requirements.

Because desired peak speed and smoothness are both dependent 
on velocity, it is significant to define an appropriate trajectory between 
the two targets. There is clear evidence that the minimum jerk principle 
is able to characterize the reaching trajectory of upper limbs, which can 
be expressed as given in Equation 16 (Flash and Hogan, 1985).

 ( ) ( )3 4 510 15 6q t L τ τ τ= − +
 

(16)

where the parameter / dt Dτ = . Then, the first-order derivative of 
Equation 16 can be acquired as given in Equation 17.
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Furthermore, the parameter dP  can be  calculated as given in 
Equation 18.
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Finally, the desired smoothness can be  written as given in 
Equation 19.
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2.4 Control system design

Based on the above concepts, it is obvious that the smaller the 
gap between the desired and the measured performance indicators, 
the better the training effectiveness. For this purpose, the difficulty 
of training should be subject-specific. We assume that there exists the 
nth difficulty level nk +∈ such that the nth comprehensive 
performance error is minimum in each indicator’s limited range of 
variation, as given in Equation 20.

(a)

(b)
FIGURE 4

Maximum curvature dots of the repulsive potential field. (a) The maximum curvature dots of the different repulsive curves. (b) The repulsive potential field.
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where ∆ = −n d nP P P , ∆ = −n d nS S S  and ∆ = −n d nD D D  are 
the performance indicator errors, as given in Equation 21. thrP , thrS , and 

thrD  are the threshold values of the corresponding variations. To make the 
thresholds appropriate, a physiotherapist is involved to give basic 
references at first. Then, they are further adjusted according to the 
feedbacks of the subjects after a series of previous experiments. Therefore, 
the mapping from the human functional ability to the robot resistance 
level and the multi-objective optimization should be considered. Based 
on this, the RBFNN method is employed to obtain the optimal difficulty 
level, as shown in Figure 5.

It assumed that [ ], ,= ∆ ∆ ∆n n nx P S D , the input is the single 
performance indicator error n

ix ∈ℜ . The output of the network is the 
difficulty level, which is the scalar function of the input indicator as 
given in Equation 22.
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where N  is the number of the nodes in the hidden layer, which is 
set at 20. jµ  is the center field, and jω  is the j th weight. The radial 
basis function is defined as Gaussian form as given in Equation 23.
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where σ  is the standard deviation of the function. The RBF 
networks are trained by indicators, and the difficulty levels are 
sampled from previous experiments. Specifically, the chosen jµ  is the 
k-means clustering, and the σ  can be obtained as given in Equation 24.

 
max
2N

µσ =
 

(24)

The least squares function is used to calculate the weights between 
the hidden layer and the output layer as given in Equation 25.
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The technique for order of preference by similarity to ideal 
solution (TOPSIS) method is employed for multi-objective 
optimization. It is assumed that the desired minimum errors are 

∗∆ nP , 
∗∆ nS , and 

∗∆ nD . The model can be written as in Equation 26.

 
( ) ( )
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1 1
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(26)

where , ,∗ ∗ ∗ ∗ = ∆ ∆ ∆ n n nx P S D , and iλ  is the ith weight of the ith 
objective function. ( )1

i if x−  is the ith inverse function of the ith 
performance indicator error.

The admittance law module makes the device operate with specific 
inertia, specific damping, and unfixed stiffness by measuring and 
controlling the force from two force sensors. These parameters are 
equal on the X-axis and the Y-axis. The admittance equation is written 
as given in Equation 27.
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where ,
Tyx

l l lF F F =    denotes the measured interactive force 
vector on the left handle along the X-axis and the Y-axis, and 

,
Tx y

r r rF F F =    corresponds to the right handle. The parameters 

( ),l rm m , ( ),l rb b , and ( ),l rk k  represent the predefined robotic handle’s 
mass, damping, and stiffness factors depending on specific tasks, 
respectively. Setting the trajectories caused by the interactive forces, the 
admittance law can be simplified into Equation 28 as a linear spring, 
where the acceleration and the velocity are ignored (Ott et al., 2015).
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Combined with the repulsive potential function and the training 
difficulty level, Equation 28 can be modified as given in Equation 29.

 

˜

˜


= +


 = +

ll l lrep

rr r rrep

F k q F

F k q F
 

(29)

3 Experimental results

3.1 Experimental protocol

The experiments were conducted with the end-effector-based 
bilateral robot to validate the feasibility of the developed safety metrics. 
Two healthy subjects (two male participants: age 29.00 ± 4.24 years, 
height 1765.00 ± 21.21 mm, and weight 83.00 ± 9.90 kg) volunteered to 
participate in this study. The study was approved by the Southern 
University of Science and Technology, Human Participants Ethics 
Committee (20190004), and consent was obtained from the participant.

To test the performance of the proposed safety strategy, the 
experiments were divided into two blocks. The first experiment was 
conducted to search for the most appropriate η  values of each subject. 
The subjects were required to execute a reaching-task training between 
two pre-set points for the first 20 rounds. Then, the subjects needed to 
move the left handle along the workspace boundary in an anticlockwise 
direction and synchronously move the right side in an anticlockwise 
direction (mirror symmetry training mode) during the next 20 
rounds. In this context, the positions of the targets were set at 
[−400.00 mm, 200.00 mm] and [−230.00 mm, 50.00 mm] for the left 
side and [400.00 mm, 200.00 mm] and [230.00 mm, 50.00 mm] for the 
right side. The admittance parameters were fixed as 

˜ ˜
0.08l rk k= = , 

which could make subjects’ movements more compliant. The starting 
η  value was set at 400. The deviation η∆  was set at 30. Due to the 
large learning rate δ  causing large η  that limits interference range for 
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TABLE 2 Definition of the desired performance indicators and the 
training results of the admittance parameters for the second subject.

Round 
(No.)

Pd (mm/s) Sd Dd (s) kl kr

0–10 94.46 0.53 4.5 0.0232 0.0245

10–20 121.45 0.53 4.5 0.0312 0.0337

20–30 170.05 0.53 4.5 0.0582 0.0611

30–40 283.39 0.53 4.5 0.0776 0.0808

a freedom movement but the small learning rate δ  extending the 
optimization time, the learning rate δ  was finally set at 0.5 to combine 
the rate of convergence of η  and the training efficiency after proceeding 
numbers of preliminary experiments and seeking advice from a 
physical therapist.

In the second experiment, the performance-based robotic 
assistance strategy was added to validate whether it is effective to 
approximate the training tasks, including four difficulty levels with 
40 rounds of training (each for 10 rounds). The positions of the 
targets were set as in the first experiment. According to a series of 
preliminary training tests, the parameters a and b in Fitts’s law were 
set both at 1. Combined with Equations 15 to 19, the desired 
performance indicators can be worked out, as shown in Table 1. Due 
to all the subjects being healthy individuals, the initial 

˜
lk  and 

˜
rk  were 

set at 0.1, and the range of admittance values was limited in [0, 0.12]. 
The desired minimum errors were set as 

∗∆ nP =15 mm/s, 
∗∆ nS =0.15, 

and 
∗∆ nD =0.5 s. After acquiring 1,200 groups of the performance 

indicators of each subject and corresponding admittance parameter, 
the customized values can be obtained (as shown in Table 1 for the 
first subject and Table 2 for the second subject).

3.2 Experimental results

Figure  6 reports the results of the first experiment, where 
Figures  6a,b the trajectories, respectively, being generated by two 
subjects. Figures 6c,d display their interactive forces (red lines) and 

repulsive forces (blue lines) on X-axis, while Figures 6e,f correspond 
to the forces on Y-axis.

It is found that the trajectories in the first 20th training rounds 
consist of straight lines, which reflect that the subjects adapted well 
to the mirror symmetry training, and repulsive forces appear only if 
the handles approach the targets. Owing to the small η , the repulsive 
forces exponentially increase when the handles are close to the 
boundaries of the workspaces at the beginning of the last 40 rounds. 
However, the repulsive forces gradually reduce with the η  
continuously modulating in approximately 8–10 rounds, which 
verifies that the trajectories can converge to maximum 
curvature points.

In detail, the iterative processes of the η  are given in Figure 7, 
where the blue bars represent the position deviations, and the gray 
dots are corresponding η . To make it clearer to analyze, the values 
of η  in Figure 7 are multiplied by 0.02. The data are recorded from 
the 21th round and provided in Table 1. The results in Figure 7a 
show that the position deviations from the 21th rounds to the 29th 
rounds are far more beyond the predefined ε =30 mm, so the η  
increases from 400 to 530. In contrast, the η  holds when the 
position deviation is below 30 mm, which means iteration stops, 
and η=530 ought to be  the optimal scalar for the first subject. 
Although some position deviations, such as in the 33–35th round, 
are not completely smaller than ε =30 mm, their difference values 
are in few millimeters, which can be  assumed to be  effective. 
Similarly, the most appropriate η  for the second subject can 
be determined as 560 in Figure 7b.

Admittance Law Position Controller

Encoder

Robot

∑λ ∙

∆ ∗

∆ ∗

∆ ∗

min

 

FIGURE 5

Overall control architecture of the robotic system.

TABLE 1 Definition of the desired performance indicators and the 
training results of the admittance parameters for the first subject.

Round 
(No.)

Pd (mm/s) Sd Dd (s) kl kr

0–10 94.46 0.53 4.5 0.0159 0.0166

10–20 121.45 0.53 4.5 0.0231 0.0241

20–30 170.05 0.53 4.5 0.0492 0.0498

30–40 283.39 0.53 4.5 0.0764 0.0791
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Figures 8,9 present the results of the second experiment, where 
Figure 8 shows the measured performance indicators applied by the 
subjects in the second experiment. The black and gray imaginary lines 
represent different desired performance indicators. Figure 8a uses blue 
lines to represent the measured performance indicators of the first 
subject and applies light blue shadows to describe the standard deviations. 
Figure 8b represents the results performed by the second subject. Figure 9 
gives measured interactive forces in the second experiment.

A statistical analysis with a paired t-test is used for comparisons 
among the trials. It is denoted that four training tasks correspond to 
T1, T2, T3, and T4. The results given in Figure  10 show that the 
p-values of the t-test are all larger than 0.05, which means there are no 
significant differences represented between any two tasks, either for 
the left hand or the right side.

Overall, it can be seen that the measured indicators approximate 
the desired values. For more specific information, in a total of 40 
rounds, the values of the root-mean-square error (RMSE) for the first 
subject are 26.24 mm/s, 0.06, and 0.02 s, and 22.41 mm/s, 0.04, and 
0.12 s for the second subject, which shows the feasibility of the RBFNN-
based method. The average forces in Figure 8 vary steadily during the 
whole training, which implies that the training difficulty levels fit the 
subjects well, and the training effectiveness tends to be positive.

4 Discussion

Robot-assisted upper-limb training plays an important role in 
reducing the burden of labor and improving the training efficiency. To 
guarantee the safety of the robotic system and provide appropriate 
assistance, previous studies preferred to define uniformed workspace 
and rigid motion restraint as the safe metrics. However, these 
strategies ignored the human specificity and motion smoothness. To 
improve the accuracy of performance evaluation, some studies used 
multi-performance-based control methods to synthetically adjust 
parameters of the robotic system (Krebs et al., 2003; Papaleo et al., 
2013), while few studies focus on exploring subject-specific training 
methods to maximize subject participation.

The developed integrated framework can benefit robot-assisted 
rehabilitation training in three aspects. First, this study developed 
subject-specific workspaces based on human kinematic information and 
the robot characteristic to ensure the training safety. Second, the 
proposed iterative learning-based repulsive force field is capable of 
providing optimal motion constraints, which can reduce the risk of 
secondary injury and avoid unbalance between movement freedom and 
compliance. Finally, the designed robotic assistance strategy introduces 
three performance measures that are closely linked to clinical scales to 
improve the evaluation accuracy of training, and a learning method 
combined with the repulsive force field is developed to obtain customized 
control parameters for various that can approximate any 
training requirements.

Experiments on healthy subjects are enrolled to validate the safety 
and feasibility of the proposed framework. The results show that the 
framework is capable of guaranteeing safe and natural movements and 
providing different subject-specific parameters for individuals to 
conduct various training tasks. Furthermore, the results shown in 
Figure 8 in this article present better rapidity than the results in our 
previous study (Miao et al., 2023). The fuzzy-based methods need 
several iteration times to lock appropriate robotic assistance, while the 

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 6

Results of the first experiment. (a) The trajectories being generated by 
the first subject. (b) The trajectories being generated by the second 
subject. (c) The interactive and repulsive forces performed by the first 
subject on X-axis. (d) The interactive and repulsive forces performed 
by the first subject on Y-axis. (e) The interactive and repulsive forces 
performed by the second subject on X-axis. (f) The interactive and 
repulsive forces performed by the second subject on Y-axis.
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(a)

(b)
FIGURE 7

Iterative process of the first experiment. (a) The results of the first subject. (b) The results of the second subject.

(a)

(b)
FIGURE 8

Results of measured performance indicators applied by the subjects in the second experiment. (a) The results of the first subject. (b) The results of the 
second subject.

RBFNN-based control structure can skip the convergence procedure, 
which can increase training efficiency.

However, there are still some limitations to this study. First, the 
training tasks are defined only in a two-dimensional space, while 
most activities of daily living belong to the category of three-
dimensional space. Second, the learning strategy relies on long time 
for offline training. Third, the experiments only include healthy 
individuals. However, it should be noted that the human kinematic 
upper-limb model can be achieved according to the FMA scales, and 

all involved control parameters are able to be  trained or further 
optimized for various groups of subjects; hence, the system is also 
applicable to patients.

5 Conclusion

This study proposes an integrated framework for robot-assisted 
upper-limb training, which not only includes human kinematic-based 
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compliant motion constraints for safe interactive training but also 
develops a performance-based adaptive control strategy to provide 
appropriate robotic assistance. Experimental results demonstrated 
that the proposed framework can avoid unsafe motion and prompt the 
acquisition of appropriate subject-specific parameters. Future studies 
will consider the optimization of the proposed framework with 
advanced algorithms, as well as its clinical application with a larger 
sample size of patients.
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FIGURE 9

Results of measured interactive forces in the second experiment. Figure 9 (a) represents the mean interactive forces performed by the left hands of 
both subjects. The light blue shadows represent measured forces, and the blue dots represent corresponding mean values. Figure 9 (b) shows the 
results of the right side.
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FIGURE 10

Statistical analysis results of average measured forces on the left handle and the right handle during the training. Mean Ti (i  =  1,2,..., 4) represents the 
mean force performed by both subjects during the ith trial.
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