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Objective: To systematically review the literature on radiomics for predicting 
intracranial aneurysm rupture and conduct a meta-analysis to obtain evidence 
confirming the value of radiomics in this prediction.

Methods: A systematic literature search was conducted in PubMed, Web of 
Science, Embase, and The Cochrane Library databases up to March 2024. The 
QUADAS-2 tool was used to assess study quality. Stata 15.0 and Review Manager 
5.4.1 were used for statistical analysis. Outcomes included combined sensitivity 
(Sen), specificity (Spe), positive likelihood ratio (+LR), negative likelihood ratio 
(−LR), diagnostic odds ratio (DOR), and their 95% confidence intervals (CI), as 
well as pre-test and post-test probabilities. The SROC curve was plotted, and 
the area under the curve (AUC) was calculated. Publication bias and small-study 
effects were assessed using the Deeks’ funnel plot.

Results: The 9 included studies reported 4,284 patients, with 1,411 patients with 
intracranial aneurysm rupture (prevalence 32.9%). The overall performance of 
radiomics for predicting intracranial aneurysm rupture showed a combined Sen 
of 0.78 (95% CI: 0.74–0.82), Spe of 0.74 (95% CI: 0.70–0.78), +LR of 3.0 (95% CI: 
2.7–3.4), −LR of 0.29 (95% CI: 0.25–0.35), DOR of 10 (95% CI: 9–12), and AUC 
of 0.83 (95% CI: 0.79–0.86). Significant heterogeneity was observed in both Sen 
(I2 =  90.93, 95% CI: 89.00–92.87%) and Spe (I2 =  94.28, 95% CI: 93.21–95.34%).

Conclusion: Radiomics can improve the diagnostic efficacy of intracranial 
aneurysm rupture. More large-sample, prospective, multicenter clinical studies 
are needed to further evaluate its predictive value.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/
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1 Introduction

Intracranial aneurysm is a tumor-like protrusion formed when the lumen of an 
intracranial artery gradually expands and bulges due to localized damage to the arterial wall 
caused by congenital developmental abnormalities or acquired injuries, under the influence 
of hemodynamic load or other factors (Etminan and Rinkel, 2016). With the development of 
imaging technology, the detection rate of unruptured intracranial aneurysms is increasing 
annually (Greving et al., 2014). However, the treatment decision for unruptured intracranial 
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aneurysms remains controversial. Many intracranial aneurysms are 
asymptomatic and do not rupture for an extended period (Korja 
et  al., 2014). Currently, preventive treatment for unruptured 
intracranial aneurysms includes endovascular treatment and 
neurosurgical interventional treatment, both associated with the 
inevitable risk of treatment-related complications (Naggara et al., 
2010; Zhu et al., 2020). Conversely, once an intracranial aneurysm 
ruptures, it leads to subarachnoid hemorrhage (SAH), a severe 
subtype of stroke often accompanied by high mortality and disability 
rates (Vlak et al., 2011). Therefore, early screening of patients with 
intracranial aneurysms at high risk of rupture and providing them 
with timely preventive treatment are crucial for improving 
patient prognosis.

Previous studies have demonstrated that the risk of intracranial 
aneurysm rupture is associated with its morphological characteristics 
(Lindgren et al., 2016). Researchers have measured and defined these 
characteristics, such as neck width, aneurysm angle, and height, on 
computed tomographic angiography (CTA) or digital subtraction 
angiography (DSA) images of intracranial aneurysms (Zhang et al., 
2019; Chen et  al., 2020). Radiomics, a new computer-assisted 
technology, extracts quantitative features (e.g., shape, intensity, and 
texture) from biomedical images in an objective, reproducible, and 
high-throughput manner (Zhou et  al., 2018; Hua et  al., 2020; 
Tomaszewski and Gillies, 2021). The principle is that 
pathophysiological changes of certain diseases are manifested in 
digital medical images, and radiomics can extract this information 
through quantitative analysis and subsequent biological information 
mining (Gillies et al., 2016). Recently, the application of radiomics in 
cerebrovascular diseases has increased (Chen et al., 2021; Zhu et al., 
2021; Zhu et al., 2021). Some studies have demonstrated an association 
between radiomics characteristics of aneurysms and the risk of 
intracranial aneurysm rupture (Liu et  al., 2019; Ou et  al., 2021). 
However, these studies did not analyze the stability of the imaging 
features, which can be affected by differences in scanning parameters 
or image segmentation methods (Mackin et al., 2015; Choe et al., 
2019). Furthermore, most previous studies on imaging features of 
intracranial aneurysms have not been validated by external datasets, 
leaving the reproducibility and generalizability of their results 
uncertain (Zhu et al., 2021; Luo et al., 2023; Turhon et al., 2023).

Recently, the rapid development of computer science, particularly 
the progress of artificial intelligence, has led to algorithms such as 
machine learning and deep learning playing an increasingly important 
role in medical data processing (Chen et  al., 2021). Algorithms, 
including support vector machines, random forests, and artificial 
neural networks, have been successfully applied to disease diagnosis, 
metastasis prediction, and treatment prognosis evaluation (Orru et al., 
2012; Beig et al., 2019; Khorrami et al., 2019). Appropriate algorithms 
can maximize the mining of data information and assist in disease 
diagnosis. To date, many radiomic models have been used to predict 
ruptured intracranial aneurysms. However, no relevant meta-analysis 
has been reported, and its sensitivity and specificity remain 
undetermined. Therefore, this study systematically searched Pubmed, 
Embase, Cochrane and Web of Science to obtain all literatures on 
radiomics in predicting intracranial aneurysm rupture, and conducted 
a meta-analysis for the first time to obtain the latest and most 
comprehensive evidence-based confirmation of the value of radiomics 
in predicting intracranial aneurysm rupture.

2 Methods

2.1 Protocol and registration

This systematic review and meta-analysis, prospectively registered 
in PROSPERO (CRD42024453092), was performed following the 
PRISMA 2020 statement (Page et al., 2021).

2.2 Search strategy

A systematic literature search was conducted in PubMed, Web of 
Science, Embase, and The Cochrane Library databases using medical 
subject headings and free words, including “radiomics,” “aneurysm,” 
“rupture,” and “intracranial.” The search strategies for PubMed were 
as follows: ((“Intracranial Aneurysm”[Mesh]) OR 
(((((((((((((((((((((((((((((((((((((Aneurysms, Intracranial) OR 
(Intracranial Aneurysms)) OR (Aneurysm, Intracranial)) OR 
(Aneurysm, Anterior Communicating Artery)) OR (Anterior 
Communicating Artery Aneurysm)) OR (Aneurysm, Basilar Artery)) 
OR (Aneurysms, Basilar Artery)) OR (Artery Aneurysm, Basilar)) 
OR (Artery Aneurysms, Basilar)) OR (Basilar Artery Aneurysms)) 
OR (Basilar Artery Aneurysm)) OR (Aneurysm, Middle Cerebral 
Artery)) OR (Middle Cerebral Artery Aneurysm)) OR (Aneurysm, 
Posterior Cerebral Artery)) OR (Posterior Cerebral Artery 
Aneurysm)) OR (Berry Aneurysm)) OR (Aneurysm, Berry)) OR 
(Aneurysms, Berry)) OR (Berry Aneurysms)) OR (Brain Aneurysm)) 
OR (Aneurysm, Brain)) OR (Aneurysms, Brain)) OR (Brain 
Aneurysms)) OR (Cerebral Aneurysm)) OR (Aneurysms, Cerebral)) 
OR (Cerebral Aneurysms)) OR (Aneurysm, Cerebral)) OR (Giant 
Intracranial Aneurysm)) OR (Aneurysm, Giant Intracranial)) OR 
(Aneurysms, Giant Intracranial)) OR (Giant Intracranial 
Aneurysms)) OR (Intracranial Aneurysm, Giant)) OR (Intracranial 
Aneurysms, Giant)) OR (Aneurysm, Anterior Cerebral Artery)) OR 
(Anterior Cerebral Artery Aneurysm)) OR (Aneurysm, Posterior 
Communicating Artery)) OR (Posterior Communicating Artery 
Aneurysm))) AND (((radiomic*) OR (Histogram*)) OR (Texture*)). 
The search time was up to March, 2024. Furthermore, we manually 
screened the bibliography lists of all included studies. Two authors 
retrieved and assessed eligible articles independently. Any differences 
in literature retrieval were resolved by discussion. All retrieved 
literature was manually reviewed and verified through EndNote X9.

2.3 Inclusion and exclusion criteria

This study included prospective and retrospective studies 
investigating the predictive value of radiomics for intracranial 
aneurysm rupture. Inclusion criteria:

P: patients with suspected or confirmed ruptured 
intracranial aneurysms.

I: radiomics as the evaluated experiment, regardless of model 
and method.

C: gold standard, including CTA, MRA, or DSA.
O: sensitivity (Sen), specificity (Spe), positive likelihood ratio 

(+LR), negative likelihood ratio (−LR), diagnostic odds ratio (DOR), 
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pre-test probability, post-test probability, summary receiver operating 
characteristic (SROC) area under the curve (AUC).

S: prospective and retrospective studies focusing on the predictive 
value of radiomics for intracranial aneurysm rupture.

Exclusion criteria: (Etminan and Rinkel, 2016) duplicate 
publications; (Greving et al., 2014) irrelevant articles; (Korja et al., 
2014) reviews, meta-analyses, conferences, letters, comments; 
(Naggara et al., 2010) animal models, studies with low sample size; 
(Zhu et al., 2020) articles with no or incomplete data; (Vlak et al., 
2011) non-English articles.

2.4 Data extraction

Two independent reviewers extracted data from eligible studies, 
including first author, publication year, study design, subjects’ age, 
gender, radiomics models, gold standard, sample size of case and 
control groups, true positives (TP), false positives (FP), true negatives 
(TN), false negatives (FN), Sen, Spe, +LR, −LR, DOR, pre-test 
probability, post-test probability, and AUC value. Disagreements 
between the two reviewers were resolved by consulting a third party. 
Corresponding authors were contacted for full data if research data was 
insufficient. All data were summarized in a Microsoft Excel spreadsheet.

2.5 Quality assessment

The quality assessment of the included literature was conducted 
using the QUADAS-2 tool, following the guidelines in the Cochrane 
Handbook for systematic reviews of diagnostic trials. The final 
evaluation findings were presented using the Review Manager 5.4.1 
software (Qu et al., 2018). Two reviewers independently assessed the 
literature quality, with disagreements resolved through discussion or 
adjudication by a third reviewer when necessary. The QUADAS-2 tool 
assesses literature quality from two aspects: risk of bias and clinical 
applicability. The risk of bias comprises four aspects: patient selection, 
index test, reference standard, and flow and timing. The clinical 
applicability questions consist of three aspects: patient selection, index 
test, and reference standard. Each evaluation domain in the risk of bias 
contains signaling questions with “yes/no/unclear” answer options. If 
all signaling questions in a domain are answered “yes,” the risk of bias 
in that aspect is considered low. If one answer is “no,” there is a 
possibility of bias. Clinical applicability has no signaling questions, 
only an overall assessment with “high risk/low risk/unclear” answer 
options. The “unclear” option can only be selected when the literature 
provides incomplete information during the assessment process. In 
addition, the Radiomics Quality Score (RQS) was used to assess the 
characteristics and quality of each included radiomics study. This 
scoring scale has 36 potential scores based on 16 criteria, with 36 
indicating the highest quality (Spadarella et al., 2023).

2.6 Data analysis

Stata 15.0 and Review Manager 5.4.1 software were used for 
statistical analysis. A bivariate mixed-effects regression model was 
employed after the random-effects model to combine Sen, Spe, +LR, −
LR, DOR, and their 95% confidence intervals (95% CI), as well as pre-test 

and post-test probabilities. The SROC curve was plotted, and the AUC 
was calculated. The χ2 test, with a test level of α = 0.05, was used to analyze 
the statistical heterogeneity among studies, and the I2 value quantitatively 
determined the heterogeneity. An I2 ≤ 50% indicated low heterogeneity, 
while a higher value suggested high heterogeneity. The Deeks’ funnel plot 
assessed publication bias and assumed small-study effects, with p < 0.05 
indicating publication bias in the included literature. When publication 
bias is present, the trim-and-fill method is used to assess the effect of the 
bias on the combined statistics (Zhang and Zhong, 2008).

3 Results

3.1 Literature screening process and results

A total of 248 articles were obtained using the literature search 
strategy. After removing duplicates using EndNote X9, 156 articles 
remained. Following the exclusion of 138 articles based on titles and 
abstracts, 18 articles underwent initial screening. Among these, 9 
articles were further excluded after full-text review due to incomplete 
information and not meeting the requirements, resulting in a final 
inclusion of 9 articles (Ou et al., 2021; Alwalid et al., 2021; Zhu et al., 
2021; Li et al., 2022; Ou et al., 2022; Yamanouchi et al., 2022; Luo et al., 
2023; Turhon et al., 2023; Yang et al., 2023). Figure 1 illustrates the 
literature screening process flowchart, and Table  1 presents the 
fundamental characteristics of the included studies. For studies with 
multiple models or cohorts, separate extraction was performed, 
distinguished by adding the letters “a, b, c, or d” after the study names.

3.2 Quality assessment of included studies

The QUADAS-2 tool was used to assess the risk of bias and the 
RQS was used to assess the quality of each included study. Figure 2 
presents the methodological quality evaluation results for the included 
studies. Overall, the included studies showed high quality, with most 
exhibiting low or unclear risk of bias. Detailed RQS of each study was 
presented in Supplementary Table S1.

3.3 Meta-analysis results

The 9 included studies reported 4,284 patients, with 1,411 patients 
having intracranial aneurysm rupture, resulting in a prevalence of 
32.9%. The overall performance of radiomics for predicting intracranial 
aneurysm rupture showed a combined Sen of 0.78 (95% CI: 0.74–0.82), 
Spe of 0.74 (95% CI: 0.70–0.78), +LR of 3.0 (95% CI: 2.7–3.4), −LR of 
0.29 (95% CI: 0.25–0.35), and DOR of 10 (95% CI: 9–12) (Figure 3). 
The overall forest plot revealed significant heterogeneity in both 
sensitivity and specificity, with I2 = 90.93% (95% CI: 89.00–92.87%) for 
Sen and I2  = 94.28% (95% CI: 93.21–95.34%) for Spe (Figure  3). 
Figure 4 presented the SROC with prediction and confidence contours, 
yielding an AUC value of 0.83 (95% CI: 0.79–0.86).

3.4 Publication bias

Deeks’ test was employed to assess publication bias in the included 
studies, yielding a p value of 0.03. As the p value was less than 0.05, it 
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suggested that this meta-analysis was affected by significant 
publication bias (Figure 5). After the number of missing published 
papers was filled by the “trim-and-fill method,” the results showed that 
the values of the corresponding variables did not change significantly 
before and after filling, suggesting that publication bias did not affect 
the overall effect size of the merger (Figure 6).

3.5 Post-test probability

Before the application of radiomics, the pre-test probability of 
intracranial aneurysm rupture was 33%. The post-test probability of 

diagnosing ruptured intracranial aneurysms with positive radiomics 
results was 60%, while negative radiomics results yielded a post-test 
probability of 13%. When radiomics was positive, the prevalence of 
ruptured intracranial aneurysms was 60%, and when radiomics was 
negative, the prevalence was 13% (Figure 7).

4 Discussion

Radiomics and traditional morphological features of 
intracranial aneurysms are both derived from CTA images but differ 
in their biological significance and analysis methods. Radiomics 

FIGURE 1

PRISMA flow-chart for the systematic review and meta-analysis.
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TABLE 1 Characteristic of included studies.

Author Year Cohort Region Study 
design

Population Feature 
extraction soft

Alwalid 2021a Training China Prospective/

retrospective

(1) Adult patient over 18 years old and (2) a diagnosis of intracranial aneurysm on CT angiography regardless of the rupture status of the 

aneurysm.

Pyradiomics package

Alwalid 2021b Test China Prospective/

retrospective

(1) Adult patient over 18 years old and (2) a diagnosis of intracranial aneurysm on CT angiography regardless of the rupture status of the 

aneurysm.

Pyradiomics package

Li 2022a training China Prospective (1) confirmed diagnosis of one or more unruptured saccular cerebral aneurysms at baseline by CTA (positive diagnosis in the clinical 

record by experienced radiologist); (2) aneurysm maximum diameter > 2 mm and lesion morphology that is differentiable from 

infundibulum; (3) image quality allowed detailed depiction of aneurysm morphology and parent vessels, and was sufficient for the 

segmentation without substantial artifacts.

Pyradiomics package

Li 2022b test China Prospective (1) confirmed diagnosis of one or more unruptured saccular cerebral aneurysms at baseline by CTA (positive diagnosis in the clinical 

record by experienced radiologist); (2) aneurysm maximum diameter > 2 mm and lesion morphology that is differentiable from 

infundibulum; (3) image quality allowed detailed depiction of aneurysm morphology and parent vessels, and was sufficient for the 

segmentation without substantial artifacts.

Pyradiomics package

Li 2022c training China Prospective (1) confirmed diagnosis of one or more unruptured saccular cerebral aneurysms at baseline by CTA (positive diagnosis in the clinical 

record by experienced radiologist); (2) aneurysm maximum diameter > 2 mm and lesion morphology that is differentiable from 

infundibulum; (3) image quality allowed detailed depiction of aneurysm morphology and parent vessels, and was sufficient for the 

segmentation without substantial artifacts.

Pyradiomics package

Li 2022d test China Prospective (1) confirmed diagnosis of one or more unruptured saccular cerebral aneurysms at baseline by CTA (positive diagnosis in the clinical 

record by experienced radiologist); (2) aneurysm maximum diameter > 2 mm and lesion morphology that is differentiable from 

infundibulum; (3) image quality allowed detailed depiction of aneurysm morphology and parent vessels, and was sufficient for the 

segmentation without substantial artifacts.

Pyradiomics package

Luo 2023a Internal China Retrospective (1) ruptured or unruptured saccular CAs located in the anterior circulation arteries and, the subarachnoid hemorrhage can be explicitly 

attributed to aneurysm rupture; (2) a minimum aneurysm diameter > 3 mm; and (3) good- quality cerebrovascular imaging—CTA or 

MRA data—that can adequately be used to reconstruct the aneurysm and 3–5 mm of its adjacent parent arteries with clear boundaries.

Pyradiomics package

Luo 2023b Internal China Retrospective (1) ruptured or unruptured saccular CAs located in the anterior circulation arteries and, the subarachnoid hemorrhage can be explicitly 

attributed to aneurysm rupture; (2) a minimum aneurysm diameter > 3 mm; and (3) good- quality cerebrovascular imaging—CTA or 

MRA data—that can adequately be used to reconstruct the aneurysm and 3–5 mm of its adjacent parent arteries with clear boundaries.

Pyradiomics package

Luo 2023c Internal China Retrospective (1) ruptured or unruptured saccular CAs located in the anterior circulation arteries and, the subarachnoid hemorrhage can be explicitly 

attributed to aneurysm rupture; (2) a minimum aneurysm diameter > 3 mm; and (3) good- quality cerebrovascular imaging—CTA or 

MRA data—that can adequately be used to reconstruct the aneurysm and 3–6 mm of its adjacent parent arteries with clear boundaries.

Pyradiomics package

Luo 2023d External China Retrospective (1) ruptured or unruptured saccular CAs located in the anterior circulation arteries and, the subarachnoid hemorrhage can be explicitly 

attributed to aneurysm rupture; (2) a minimum aneurysm diameter > 3 mm; and (3) good- quality cerebrovascular imaging—CTA or 

MRA data—that can adequately be used to reconstruct the aneurysm and 3–7 mm of its adjacent parent arteries with clear boundaries.

Pyradiomics package

Luo 2023e External China Retrospective (1) ruptured or unruptured saccular CAs located in the anterior circulation arteries and, the subarachnoid hemorrhage can be explicitly 

attributed to aneurysm rupture; (2) a minimum aneurysm diameter > 3 mm; and (3) good- quality cerebrovascular imaging—CTA or 

MRA data—that can adequately be used to reconstruct the aneurysm and 3–8 mm of its adjacent parent arteries with clear boundaries.

Pyradiomics package

(Continued)
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TABLE 1 (Continued)

Author Year Cohort Region Study 
design

Population Feature 
extraction soft

Luo 2023f External China Retrospective (1) ruptured or unruptured saccular CAs located in the anterior circulation arteries and, the subarachnoid hemorrhage can be explicitly 

attributed to aneurysm rupture; (2) a minimum aneurysm diameter > 3 mm; and (3) good- quality cerebrovascular imaging—CTA or 

MRA data—that can adequately be used to reconstruct the aneurysm and 3–9 mm of its adjacent parent arteries with clear boundaries.

Pyradiomics package

Ou 2021a China Prospective A confirmed diagnosis of one or more intracranial aneurysms Pyradiomics package

Ou 2021b China Prospective A confirmed diagnosis of one or more intracranial aneurysms Pyradiomics package

Ou 2022 China Retrospective A confirmed diagnosis of one or more intracranial aneurysms Pyradiomics package

Turhon 2023a Trainin China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (3) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023b Trainin China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (4) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023c Trainin China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (5) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023d Internal 

validatio

China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (6) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023e Internal 

validatio

China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (7) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023f Internal 

validatio

China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (8) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023 g External 

validation

China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (9) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023 h External 

validation

China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (10) 

accessibility of morphological and radiomics data.

Pyradiomics package

Turhon 2023i External 

validation

China Retrospective (1) at least one intracranial aneurysm confirmed by digital subtraction angiography (DSA) imaging; (2) older than 18 years; and (11) 

accessibility of morphological and radiomics data.

Pyradiomics package

Yamanouchi 2022 Test Japan Prospective Patients who underwent MRA for intracranial aneurysms examination Pyradiomics package

Yang 2023a Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023b Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023c Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023d Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023e Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023f Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023 g Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

(Continued)
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TABLE 1 (Continued)

Author Year Cohort Region Study 
design

Population Feature 
extraction soft

Yang 2023 h Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023i Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023j Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023 k Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Yang 2023 L Validation China Retrospective Patients diagnosed with intracranial aneurysms by CTA or digital subtraction angiography (DSA) Pyradiomics package

Zhu 2021a Training China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021b Training China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021c Training China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021d Temporal 

validation 

dataset

China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021e Temporal 

validation 

dataset

China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021f Temporal 

validation 

dataset

China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021 g External 

validation 

dataset

China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021 h External 

validation 

dataset

China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

Zhu 2021i External 

validation 

dataset

China Retrospective MCA aneurysms with available computed tomography angiography (CTA) data were included Pyradiomics package

(Continued)
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TABLE 1 (Continued)

Author Model 
(Machinelearning)

Imaging omics Gold 
standard

Clinic patient information

Patients Age Gender

Positive Negative Ruptured Unruptured Male Female

Alwalid LR 1.Wavelet-HHL.firstorder.Entropy, 2.LBP-3D-m1.firstorder.90Percentile, 

3.LBP-3D-m2.firstorder.Skewness, 4.LoG-sigma-20 mm-3D.GLCM.ID, 

5.LoG-sigma-20 mm-3D.GLSZM.SmallAreaHighGrayLevelEmphasis, 6.

LoG-sigma-30 mm-3D.GLCM.InverseVariance, 7.Wavelet-LHH.

firstorder.RootMeanSquared, 8.Wavelet-LHL.firstorder.Median, 9.

Wavelet-LLH.GLDM.SmallDependenceEmphasis

1.spontaneous 

subarachnoid 

hemorrhage, 

2.CTA, 3.DSA

152 241 55 ± 9 57 ± 11 159 234

Alwalid LR 1.Wavelet-HHL.firstorder.Entropy, 2.LBP-3D-m1.firstorder.90Percentile, 

3.LBP-3D-m2.firstorder.Skewness, 4.LoG-sigma-20 mm-3D.GLCM.ID, 

5.LoG-sigma-20 mm-3D.GLSZM.SmallAreaHighGrayLevelEmphasis, 6.

LoG-sigma-30 mm-3D.GLCM.InverseVariance, 7.Wavelet-LHH.

firstorder.RootMeanSquared, 8.Wavelet-LHL.firstorder.Median, 10.

Wavelet-LLH.GLDM.SmallDependenceEmphasis

1.spontaneous 

subarachnoid 

hemorrhage, 

2.CTA, 3.DSA

152 241 55 ± 9 57 ± 11 159 234

Li Radiomics derived features wavelet.HLL_glcm_Correlation wavelet.HLH_glszm_

SizeZoneNonUniformityNormalized original_glszm_

SmallAreaLowGrayLevelEmphasis wavelet.HLL_glszm_

GrayLevelNonUniformity wavelet.LHL_firstorder_Median wavelet.

HHL_gldm_LargeDependenceHighGrayLevelEmphasis

CTA 11 216 61 (49–68) 78 149

Li Radiomics derived features wavelet.HLL_glcm_Correlation wavelet.HLH_glszm_

SizeZoneNonUniformityNormalized original_glszm_

SmallAreaLowGrayLevelEmphasis wavelet.HLL_glszm_

GrayLevelNonUniformity wavelet.LHL_firstorder_Median wavelet.

HHL_gldm_LargeDependenceHighGrayLevelEmphasis

CTA 11 216 61 (49–68) 78 149

Li Radiomics derived morphological 

features

wavelet.HLL_glcm_Correlation wavelet.HLH_glszm_

SizeZoneNonUniformityNormalized original_glszm_

SmallAreaLowGrayLevelEmphasis wavelet.HLL_glszm_

GrayLevelNonUniformity wavelet.LHL_firstorder_Median wavelet.

HHL_gldm_LargeDependenceHighGrayLevelEmphasis

CTA 11 216 61 (49–68) 78 149

Li Radiomics derived morphological 

features

wavelet.HLL_glcm_Correlation wavelet.HLH_glszm_

SizeZoneNonUniformityNormalized original_glszm_

SmallAreaLowGrayLevelEmphasis wavelet.HLL_glszm_

GrayLevelNonUniformity wavelet.LHL_firstorder_Median wavelet.

HHL_gldm_LargeDependenceHighGrayLevelEmphasis

CTA 11 216 61 (49–68) 78 149

Luo Ridge regression / CTA and MRA 148 270 58.62 ± 12.48 60.99 ± 12.9 164 254

(Continued)
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TABLE 1 (Continued)

Author Model 
(Machinelearning)

Imaging omics Gold 
standard

Clinic patient information

Patients Age Gender

Positive Negative Ruptured Unruptured Male Female

Luo SVM / CTA and MRA 148 270 58.62 ± 12.48 60.99 ± 12.9 164 254

Luo NN / CTA and MRA 148 270 58.62 ± 12.48 60.99 ± 12.9 164 254

Luo Ridge regression / CTA and MRA 105 221 / / / /

Luo SVM / CTA and MRA 105 221 / / / /

Luo NN / CTA and MRA 105 221 / / / /

Ou Model constructed with addition of 

shape features derived from 

radiomics

CTA 29 93 54.20 ± 13.10 55.75 ± 10.37 50 72

Ou Model constructed with further 

inclusion offirst-order histogram 

features and second-order texture 

features

CTA 29 93 54.20 ± 13.10 55.75 ± 10.37 50 72

Ou Radiomics with clinical info + 

LASSO regression

DSA, CTA, and 

MRA

29 91 54.20 ± 13.10 55.75 ± 10.37 48 72

Turhon Radiomics morphological feature DSA 272 885 54.35 ± 12.20 55.50 ± 9.40 394 763

Turhon Radiomics morphological feature DSA 272 885 54.35 ± 12.20 55.50 ± 9.40 394 763

Turhon Radiomics morphological feature DSA 272 885 54.35 ± 12.20 55.50 ± 9.40 394 763

Turhon Clinical and radiomics / DSA 80 214 55.40 ± 9.73 84 210

Turhon Clinical and radiomics / DSA 80 214 55.40 ± 9.73 84 210

Turhon Clinical and radiomics / DSA 80 214 55.40 ± 9.73 84 210

Turhon Clinical, morphological, and 

radiomics

DSA 85 273 56.84 ± 10.52 119 239

Turhon Clinical, morphological, and 

radiomics

DSA 85 273 56.84 ± 10.52 119 239

Turhon Clinical, morphological, and 

radiomics

DSA 85 273 56.84 ± 10.52 119 239

Yamanouchi LASSO (Energy.1 (texture/

GLCM) + LLH Variance.1 (texture/

GLCM) + LLH ZP (texture/

GLSZM))

MRA 10 18 35–92 

(median: 63)

9 19

Yang Random forest / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

(Continued)
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TABLE 1 (Continued)

Author Model 
(Machinelearning)

Imaging omics Gold 
standard

Clinic patient information

Patients Age Gender

Positive Negative Ruptured Unruptured Male Female

Yang Support machine learning CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang Decision-making tree / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang eXtreme gradient Boosting CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang Gaussian Naive Bayes / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang Logistic regression / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang K-nearest neighbor / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang Bagging classifier / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang AdaBoost / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang Gradient boosting / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang Light gradient boosting Machine CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Yang CatBoost / CTA and DSA 67 106 58.37 ± 11.76 64.23 ± 13.18 75 98

Zhu Radiomics / CTA 297 141 55.0 (48.0, 

64.3)

59.0 (53.0, 69.0) 188 250

Zhu Radiomics-morphological CTA 297 141 55.0 (48.0, 

64.3)

59.0 (53.0, 69.0) 188 250

Zhu Clinical-radiomics-morphological CTA 297 141 55.0 (48.0, 

64.3)

59.0 (53.0, 69.0) 188 250

Zhu Radiomics / CTA 83 72 56.0 (51.0, 

65.0)

65.0 (54.3, 73.0) 72 83

Zhu Radiomics-morphological CTA 83 72 56.0 (51.0, 

65.0)

65.0 (54.3, 73.0) 72 83

Zhu Clinical-radiomics-morphological CTA 83 72 56.0 (51.0, 

65.0)

65.0 (54.3, 73.0) 72 83

Zhu Radiomics / CTA 43 32 57.9 (11.9) 67.5 (11.3) 34 41

Zhu Radiomics-morphological CTA 43 32 57.9 (11.9) 67.5 (11.3) 34 41

Zhu Clinical-radiomics-morphological CTA 43 32 57.9 (11.9) 67.5 (11.3) 34 41
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features describe the shape and texture characteristics of intracranial 
aneurysms from a microscopic perspective (Collins et al., 2015; Xu 
et al., 2019), while traditional morphological features reflect the 
macroscopic observation. Radiomics features are three-
dimensional, high-throughput biomarkers, but lack biological 
interpretability. Despite being based on two-dimensional image 
measurements and containing relatively little information, 
traditional morphological features remain an important tool for 
evaluating intracranial aneurysm stability in clinical practice due to 
their operability and intuitiveness. Numerous studies support the 
complementary role of combining radiomics and traditional 
morphological features.

This study combined existing clinical data on the use of radiomics 
to predict intracranial aneurysm rupture through a systematic review 
and meta-analysis, obtaining the combined diagnostic efficacy to 
comprehensively evaluate the predictive value of radiomics. The 
results suggest that radiomics can be used as an additional tool in 

assessing the rupture risk of intracranial aneurysms in clinical 
practice, with a combined Sen of 0.78, Spe of 0.74, +LR of 3.0, −LR of 
0.29, and DOR of 10. However, considering the significant publication 
bias in the study conclusions, further research is needed to confirm 
the predictive value of radiomics for intracranial aneurysm rupture.

Machine learning, a subfield of artificial intelligence, can identify 
and process complex relationships between multiple variables in large 
data sets through computer algorithms, applying them to predict 
unknown data. Yang et  al. (2023) demonstrated that 12 machine 
learning models established using radiomics features could predict the 
risk of intracranial aneurysm rupture in 576 cases (AUC: 0.713–0.889), 
with varying predictive performance among algorithms. The ensemble 
learning algorithm, particularly the adaptive enhancement model, 
exhibited the best predictive performance, with an AUC of 0.889 (95% 
CI: 0.842–0.936) in the training set. When the validation set underwent 
3-fold cross-validation, repeated 5 times, the AUC of the adaptive 
enhancement model ranged from 0.842 to 0.918. Turhon et al. (2023) 

FIGURE 2

Risk of bias and applicability concerns summary.
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analyzed clinical data and DSA images of 1740 patients with 
intracranial aneurysms, confirming the importance of radiomics in 

assessing aneurysm rupture risk. The deep learning model, constructed 
by combining clinical, morphological, and imaging features, 
significantly outperformed the machine learning model (AUC: 0.878, 
95% CI: 0.840–0.916) and the traditional Logistic regression model 
(AUC: 0.849, 95% CI: 0.808–0.890) in predicting aneurysm rupture 
(AUC: 0.929, 95% CI: 0.893–0.965; all p < 0.01). The deep learning 
model’s performance was also verified in internal and external data.

Ou et al. (2022) proposed a self-supervised and pre-trained deep 
learning model to predict the rupture risk of unruptured intracranial 
aneurysms in a follow-up of 2 years or more. The morphologically 
aware deep embedding method outperformed the deep learning model 
trained from scratch and the traditional morphological and imaging 
genomics models in predicting aneurysm rupture. The study also 
developed a computer-assisted risk assessment system based on the 
model. Preliminary tests by 5 neurosurgeons showed that the system 
could improve their ability to predict intracranial aneurysm rupture 
and assist in making clinical decisions based on case reasoning. This 
study overcame the influence of morphological changes before and 
after aneurysm rupture, enabling the training of deep neural networks 
with limited data, and has the potential to become an auxiliary tool for 
clinical intracranial aneurysm rupture risk assessment. Feng et  al. 
(2023) first applied a three-dimensional convolutional neural network 
for automatic detection, segmentation, and morphological 
measurement of intracranial aneurysms on CTA. Morphological and 
radiomic features related to aneurysm rupture were input into machine 

FIGURE 3

The forest map of the combined sensitivity, specificity of the predictive value of radiomics for intracranial aneurysm rupture.

FIGURE 4

SROC curve of radiomics for predicting intracranial aneurysm rupture.
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learning models (support vector machines, random forests, and 
multilayer perceptrons) for training, resulting in a well-performing 
model on the training and test sets (AUC: 0.85–0.90). This method can 
automatically analyze CTA images of intracranial aneurysms and 
evaluate their rupture status within 1 min, improving clinical work 
efficiency. Radiomics demonstrates great application potential in 

assessing intracranial aneurysm stability, and combining machine 
learning, particularly deep learning, with radiomics is expected to 
enhance the ability to predict intracranial aneurysm stability.

This study has several limitations. First, most of the included 
studies are retrospective, which may have potential uncontrollable bias 
risks. Second, the majority of studies are from Asia, and further 

FIGURE 5

Detection of publication bias in predicting intracranial aneurysm rupture using radiomics.

FIGURE 6

Funnel plot of “trim-and-fill method”.
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research is needed to confirm whether the predictive value of 
radiomics for intracranial aneurysm rupture can be extended to other 
regions or countries. Additionally, the numerous and scattered types 
of radiomics models involved in this study contribute to the significant 
overall heterogeneity. However, due to data limitations, subgroup 
analysis based on the model to explore potential sources of 
heterogeneity could not be  performed. The lack of biological 
interpretability of radiomics is also one of the limitations of this paper, 
and in order to address the challenge of biological interpretability, 
future research can focus on combining radiomics with genomic or 
molecular data to improve the interpretability and clinical relevance 
of models. Lastly, some studies included in this meta-analysis 
contained images from external validation populations, obtained by 
different scanning parameters and machines, which may affect the 
results and heterogeneity of model validation. In the future, more 
research is needed to explore the radiomics of different types of 
aneurysms and to develop models that combine clinical data with 
radiomics while testing these models in real-world clinical scenarios.

5 Conclusion

Although the results of this study suggest that radiomics can 
be used as an auxiliary tool to improve the diagnostic efficacy of 

ruptured intracranial aneurysms to some extent, the quality of the 
evidence is limited by significant heterogeneity, potential publication 
bias, small sample size, and retrospective study design. In the future, 
more large-scale, prospective, multicenter clinical studies are needed 
to further evaluate the value of radiomics in predicting intracranial 
aneurysm rupture.
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