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Epilepsy is an irregular and recurrent cerebral dysfunction that significantly

impacts the a�ected individual’s social functionality and quality of life. This

study aims to integrate cognitive dynamic attributes of the brain into seizure

prediction, evaluating the e�ectiveness of various characterization perspectives

for seizure prediction, while delving into the impact of varying fragment lengths

on the performance of each characterization. We adopted microstate analysis

to extract the dynamic properties of cognitive states, calculated the EEG-

based and microstate-based features to characterize nonlinear attributes, and

assessed the power values across di�erent frequency bands to represent the

spectral information of the EEG. Based on the aforementioned characteristics,

the predictor achieved a sensitivity of 93.82% on the private FH-ZJU seizure

dataset and 93.22% on the Siena Scalp EEG dataset. The study outperforms state-

of-the-art works in terms of sensitivity metrics in seizure prediction, indicating

that it is crucial to incorporate cognitive dynamic attributes of the brain in

seizure prediction.
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1 Introduction

According to International League Against Epilepsy (ILAE), epilepsy is a chronic

cerebral dysfunction resulting from self-limiting abnormal discharges of highly

synchronized neurons, often characterized by recurring, episodic, and transient features

(Fisher et al., 2014). It frequently arises from birth injuries, traumatic brain injuries, brain

infections (e.g., meningitis or encephalitis), and strokes. Seizures typically last from 30

seconds to 2 minutes, followed by a brief interval of confusion and fatigue. Such episodes

can lead to secondary harm, even life-threatening injuries, such as drowning or head

injuries (Secco, 2020). Consequently, enabling patients to anticipate an impending seizure

can significantly mitigate the secondary harm arising from these episodes.

The objective of seizure prediction is to enable patients to anticipate seizures in

advance, facilitating the control or prevention of epileptic episodes through medication.

Current research in seizure prediction encompasses both long-term and short-term

forecasting. Long-term prediction involves investigating the daily and nocturnal cycles,

sleep duration, weather patterns, and behavioral factors (Baud et al., 2023; Stirling et al.,

2021). On the other hand, short-term prediction involves constant assessment of the risk
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of impending seizure risk by analyzing data from EEG,

magnetoencephalography (MEG), and magnetic resonance

imaging (MRI) (Yu et al., 2021). While advancements have

been made, there is recognition that improvements are needed,

particularly in enhancing the accuracy of long-term predictions

and refining the efficacy of short-term warnings. In this study,

EEG was chosen for the short-term prediction task due to its

cost-effectiveness and ease of data collection.

The essence of short-term seizure prediction lies in

distinguishing between interictal(the interval between seizures)

and preictal (the period preceding a seizure) states. Upon

identifying the current preictal state, a warning is issued. The

process of seizure prediction generally involves discerning the

differences between preictal and interictal EEG data. Various

methodologies are employed to extract relevant features, which

are then input into a classifier to achieve prediction outcomes.

The features currently used for seizure prediction are often

considered from the perspective of nonlinear attributes and

spectral information.

Spectral features encompass ample frequency information

embedded within EEG data (Usman et al., 2021). These features can

be effectively extracted using methods such as short-time Fourier

transform (STFT), wavelet transform (WT) or empirical mode

decomposition (EMD). Hussein et al. (2021) used an enhanced

semi-extended convolutional network and wavelet transformed

time-frequency diagrams from raw EEG data to discriminate

preictal periods. Wu et al. (2023) highlighted the feasibility of

direct end-to-end prediction by employing gamma frequency

domain features as input for Long Short-Term Memory (LSTM)

models. These studies further demonstrate that diverse seizures in

epilepsy are strong correlation between the properties underlying

the frequency.

It has been established that a transitional phase precedes

seizures, characterized by dynamic fluctuations within the brain

system (Le Van Quyen et al., 2001), underscoring the necessity of

extracting nonlinear features fromEEG data for accurate prediction

(Lu et al., 2024). For instance, Mel-Frequency Cepstral Coefficients

(MFCCs) were extracted using geometric deep learning (GDL),

achieving 95.38% and 96.05% sensitivity on the CHB-MIT and

Siena datasets, respectively (Dissanayake et al., 2021). Xu et al.

(2022) utilized calculated entropy as input for Gradient Boosting

Decision Tree (GBDT) classification, resulting in an accuracy of

91.76%.

However, the current literature offers limited exploration of

the significant transformations between interictal and preictal

cognitive states, particularly regarding the utilization of their

temporal attributes. We hope to leverage this information to

improve seizure prediction and gain a deeper understanding of the

dynamic alteration mechanisms of the brain during the preictal

period.

The brain’s cognitive network often exhibits short-term

stability, referred to as brain microstates (Koenig et al., 2002).

Research has demonstrated that analyzing different microstates

and their transitions provides insights into the temporal dynamics

of the brain during various cognitive activities or states. This

exploration sheds light on the role of dynamic modularity

in behavioral control and brain disorders, such as Major

Depressive Disorder (MDD) (Zhao et al., 2022; Lei et al., 2022),

Attention-Deficit/Hyperactivity Disorder (ADHD) (Luo et al.,

2023), Autism Spectrum Disorder (ASD) (Takarae et al., 2022), and

Parkinson’s disease (PD) (Chu et al., 2023).

Therefore, within the context of these paper, the utilization of

microstate analysis becomes imperative to explore the pathological

distinctions between the preictal and interictal states, and we

will finalize the seizure prediction task by combining nonlinear

dynamic changes and spectral changes in preictal.

The purpose of this study is to confirm the reliability of

cognitive dynamic temporal attributes as biomarkers for epileptic

seizures, and investigate how different perspective characterization

contribute to seizure prediction across varying data fragment

lengths. At the same time, we explored differences of cognitive

patterns, nonlinear and spectral properties in preictal and interictal

states to assess the underlying pathological mechanisms. As

demonstrated in Figure 1, three distinct types of features were

extracted in our study, namely microstate parameters (mean

duration, time coverage and occurrence frequency), nonlinear

features (EEG-based Lempel-Ziv Complexity, Microstate-based

Lempel-Ziv Complexity, EEG-based Permutation Entropy, and

Microstate-based Permutation Entropy), and spectral features,

specifically the absolute power of four frequency bands (δ,

θ , α ,β), and Theta-to-Beta Ratio (TBR). Based on these, a

comprehensive statistical analysis was performed on both interictal

and preictal states, and the seizure prediction task was achieved

at the individual-level. Compared with the previous literature, the

contributions of this paper are:

1. The cognitive temporal dynamic attribute was first time

introduced to forecast seizures, which yielded satisfactory

sensitivity, FPR and AUC of 93.82%, 0.061/h and 0.98 on FH-

ZJU dataset, and 93.22%, 0.078/h and 0.95 on Siena Scalp EEG

dataset, respectively.

2. A microstate-based nonlinear feature (mPermEn) was

proposed, which can effectively capture and articulate the

random property of cognitive state. The results of the statistical

analysis showed that the difference between interictal state and

preictal state is more significant for the nonlinear attribute

based on cognitive state than for the nonlinear attribute based

on EEG data.

3. An in-depth profiling of microstate parameters, nonlinear

features, and spectral features was conducted, which compared

and analyzed the contribution of seizure prediction from

each type of feature. Furthermore, the contribution of each

perspective characterization in seizure prediction at different

epoch lengths was analyzed.

2 Data collection

2.1 EEG dataset

This paper has trained and tested the predictor on the FH-ZJU

dataset collected from a locate hospital and the Seizure Siena scalp

EEG dataset.

The FH-ZJU dataset comprised outpatients from the

Department at Neurology of the Fourth Affiliated Hospital of

Zhejiang University Medical School between February 2019

and May 2023. The diagnosis adhered to the criteria set by the
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FIGURE 1

The general flow chart of this paper. It is mainly divided into four parts: EEG data, Feature extraction, Statistical analysis and Classification prediction.

The Conclusion learned by the classification prediction and the statistical analysis are combined to explore the seizure pathophysiological

mechanisms.

International League against Epilepsy (ILAE) (Fisher et al., 2014),

determined by experienced neurologists using clinical history

and continuous video EEG recordings. The clinical continuous

EEG recordings utilized in this study were obtained from XLTEK

EEG32U system based on the international 10-20 standard (Klem,

1999). During online recording, the impedance of the recording

electrode consistently remained below 10KΩ , and the recordings

had a bandwidth of 0.05 to 70Hz and a 500Hz sampling rate.

Eligibility led to 19 participants (11 males, 8 females, and an

average age of 21.84 years). Detailed participant information is

shown in Table 1. The study was approved by the Ethics Committee

of the Fourth Affiliated Hospital of Zhejiang University School of

Medicine and participants provided informed consent.

The Siena Scalp EEG dataset collected by the Unit of Neurology

and Neurophysiology at the University of Siena (Detti et al., 2020).

It consists of scalp EEG recordings from 14 patients (8 males,

6 females, and an average age of 43.5 years). The recordings

were captured with a sampling rate of 512 Hz, with electrodes

arranged on the international 10–20 system. Excluding EEG data

with excessive channel noise as well as excessive artifacts, we finally

remained 11 of the subjects for the experiment. Table 1 reports the

details of the selected subjects.

2.2 EEG preprocessing

In this study, EEG preprocessing was accomplished using

the EEGLAB toolbox (Delorme and Makeig, 2004) in MATLAB

(R2021a, MathWorks Inc., USA). The same number of interictal

periods equaling in preictal periods per subject was considered to

ensure a balanced sample size between subjects, which strongly

assure the predictive ability of model. We only used episodes

longer than one hours apart to avoid the effects of postictal

phase. The preprocessing steps included: (1) Selecting 180-second

interictal and preictal EEG segments from each subject; (2)

Locating channels based on the international 10–20 system and

removing redundant channels like A1 and A2. After removing

the useless electrodes, 19 channels remain; (3) Downsampling

the data to 250 Hz and implemented a band-stop filter (48 Hz–

52 Hz) to mitigate power line interference, as well as a band-

pass filter (1 Hz–40 Hz) to remove baseline drift and high-

frequency noise, with these filters being second-order Finite

Impulse Response filters; (4) Implementing an average reference

and performing spline interpolation on channels with peak values

exceeding 150µV for over 20% of data; (5) Employing Independent

Component Analysis (ICA) with a 0.9 probability parameter for

automatic removal of common artifacts; (6) Segmenting data

into 3-second windows with no overlap. The preprocessed data

was utilized for subsequent analysis of microstates, nonlinear

features computation, and absolute power estimation for each

frequency band.

3 Methods

In this section, we present the methodology for microstate

analysis, the extraction of nonlinear and spectral features, the

classification prediction approach, and the statistical analysis

procedure.
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TABLE 1 Subject information of the FH-ZJU dataset and Siena dataset.

Dataset ID Age-sex Number Type ID Age-sex Number Type

FH-ZJU 1 10-F 2 FBTC 11 11-M 1 IAS

2 12-F 3 IAS 12 15-M 1 WIAS

3 4-F 1 IAS 13 13-F 2 WIAS

4 19-M 1 WIAS 14 1-F 2 IAS

5 31-M 1 IAS 15 68-M 1 WIAS

6 12-F 3 IAS 16 31-M 2 IAS

7 4-F 1 IAS 17 16-M 1 WIAS

8 19-M 1 WIAS 18 18-F 1 IAS

9 31-M 1 IAS 19 42-F 1 IAS

10 18-M 1 FBTC

Siena A 46-M 2 IAS G 58-F 1 IAS

B 54-M 2 IAS H 71-M 4 IAS

C 51-F 3 IAS I 34-F 3 IAS

D 36-M 5 IAS J 49-M 4 WIAS

E 27-F 3 IAS K 41-F 2 IAS

F 25-M 9 FBTC

“Number” presents the number of seizure. “M” means male. “F” means female. “IAS” is focal onset impaired awareness. “WIAS” is focal onset without impaired awareness. “FBTC” is focal to

bilateral tonic-clonic.

3.1 Microstate parameters

In this research, microstate analysis was performed using the

Cartool (Brunet et al., 2011) software, which was divided into

five steps: calculating the global field power (GFP), performing

clustering at the individual and group levels, back fitting, and

extracting features. The detailed process is described below:

The original maps were determined by computing the global

field power (GFP) using the following formula:

GFP(x) =

√

√

√

√

n
∑

i=1

[

Vi − V̄
]2

/ n , x = 1, · · · ,N (1)

whereN represents the number of sampling points in the sequence,

n is the number of channels, Vi signifies the value of the i-th

channel, and V̄ means the average of all channel values. EEG

topographic maps around GFP peaks, known for their stable

characteristics, were extracted to best represent microstate topology

at those instances (Khanna et al., 2015).

To overcome the sensitivity of the improved k-means clustering

method to initial values and ensure experimental reproducibility,

the Topographic Atomize & Agglomerate Hierarchical Clustering

(T-AAHC) method (Von Wegner et al., 2018) was adopted. Using

the T-AAHC method, polarity-insensitive clustering analyses were

conducted on the original maps with k values ranging from 3

to 8 (Wang et al., 2022). The selection of optimal categories was

confirmed using a Meta-Criterion which was discussed in Bréchet

et al. (2019), leading to the derivation of the best microstate maps

for individuals (Michel and Koenig, 2018).

The optimal individual cluster maps within the same group

were used as template graphs for further T-AAHC clustering. Using

k = 4, this process yielded the best cluster maps representing group-

level characteristics. Four classes of microstate maps were chosen

as they have been deemed suitable for describing resting state EEG

data and have been frequently used in research on neuropsychiatric

disorders.

Group microstate maps were backfitted to individual

preprocessed data based on GFP peaks. The data was normalized

using the median GFP to mitigate individual scalp potential

disparities arising from variations in skull conductivity (Bagdasarov

et al., 2022) by calculating non-polarity spatial correlations between

group microstate maps and individual EEG topographic maps at

GFP peak positions. The microstate with the highest correlation

was assigned to a data point, with a minimum correlation threshold

of 50%. For smoothing the microstate sequence, segments smaller

than 32 ms were halved, with the halves added to the preceding

and following segments.

Using the microstate sequence, commonly used parameters

(Luo et al., 2023) like average duration (characterizing neuronal

stability), time coverage (revealing dominant neuronal patterns),

and occurrence frequency (explaining activation tendencies of

neurons or the nervous system within each microstate class) were

computed.

3.2 Nonlinear features

In this section, we computed EEG-based Lempel-Ziv

Complexity (LZC) (Lempel and Ziv, 1976), and EEG-based

Permutation Entropy (PermEn) (Bandt and Pompe, 2002) to

investigate the EEG nonlinear dynamics of both interictal and

preictal states. Microstate-based Lempel-Ziv Complexity (mLZC)
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(Zhao et al., 2022) and Microstate-based Permutation Entropy

(mPermEn) are extracted to embody the nonlinear dynamics

of cognitive models. All nonlinear features are evaluated using

custom scripts in MATLAB.

3.2.1 LZC
LZC is a metric used to assess signal compression through

pattern recognition. A lower LZC indicates greater repetition of

patterns and lower complexity. This measure finds application in

mental and neurological disorders (Ibáñez-Molina et al., 2015).

For EEG discretization, a threshold (Td) is established.

Common thresholds include mean, median, and the mean of the

minimum and maximum (mid p) of the EEG sequence:

Tdmean = mean(x1, x2, · · · , xN) (2)

Tdmedian = median(x1, x2, · · · , xN) (3)

Tdmid_p = mean(min(x1, x2, · · · , xN), max(x1, x2, · · · , xN)) (4)

where N means the point number of the sequence. The EEG signal

is subsequently binary-coded based on the threshold Td :

s(i) =

{

0, if xi < Td

1, if xi ≥ Td
(5)

S = [s(1), s(2), · · · , s(i), · · · , s(N)] (6)

where 1 ≤ i ≤ N and xi means the EEG data voltage value. After

discretization, a sequence S composed of 0 and 1 is scanned to count

the number of patterns. If a subsequence different from the scanned

sequence is encountered, the pattern counter Cw is increased by

1, and the subsequent symbol (0 or 1) indicates the beginning of

the next pattern. Upon scanning the complete sequence, LZC is

calculated by normalizing Cw:

LZC =
Cw

N/ log2 N
(7)

In this study, three types of EEG-based LZC (LZCmean,

LZCmid_p, LZCmedian) are calculated by employing thresholds at the

mean, mid_p, and median.

3.2.2 mLZC
LZC quantifies the repetition of EEG signals patterns by

summarizing scalp voltage values, but it may not fully reflect

changes in deep brain function. To address this, we integrate

LZC with microstates, yielding mLZC, which directly represents

repeatability among thought atomic while also resisting noise

interference. Based on microstate analysis, a microstate sequence

can be formulated:

MS = [ms(1),ms(2), · · · ,ms(i), · · · ,ms(N)] (8)

where N means the number of sampling points; ms(i) ∈ {1, 2, 3, 4}

represents microstate A, B, C and D, respectively. We calculated the

number of incompressible pattern to characterize the repeatability

of this microstate sequence. The calculation process is outlined in

Algorithm 1:

Require: MS = [ms(1),ms(2), · · · ,ms(N) ]

Ensure: mLZC value

1: Initialize P = [ms(1)], Q = [ ], Cw = 0

2: for i = 2 to N do

3: Q = [Q, ms(i)]

4: PQ = [P, Q]

5: Remove the last value of PQ as PQv

6: if Q is not in PQv then

7: P = PQ, Q = [ ], Cw = Cw + 1

8: end if

9: end for

10: normalization for pattern counter Cw as mLZC

11: return mLZC

Algorithm 1. mLZC Calculation Algorithm.

3.2.3 PermEn
Permutation entropy serves as a specialized metric for

quantifying time series random. This is achieved by generating

distinct permutation modes through comparisons with

neighboring data points. The computation entails the following

steps:

Initially, the time delay τ and the embedding dimension

m are established using the approach in Ibáñez-Molina

et al. (2015), which to draw upon Recurrence Quantification

Analysis (RQA).

The next step involves the reconstruction of the feature space.

This entails arranging the component vector of the reconstruction

matrix in ascending order of value. This step assists in identifying

the pattern within the pattern group composed of m. The

reconstruction matrix is following:

R =



















x(1) x(1+ τ ) · · · x(1+ (m− 1)τ )
...

...
...

x(k) x(k+ τ ) · · · x(k+ (m− 1)τ )
...

...
...

x(K) x(K + τ ) · · · x(K + (m− 1)τ )



















(9)

where K = N− (m−1)τ ; k = 1, 2, · · · , K and x(k) denotes the EEG

data voltage value. This procedure generates a pattern sequence,

which encapsulates the patterns identified within the dataset, as

shown:

T = [t(1), t(2), · · · , t(k), · · · , t(K)] (10)

where t(k) ∈ {1, 2, · · · ,m!} and t(k) indicates the sequence number

that matches the arrangement pattern. Subsequently, the Shannon

entropy formula is applied as follows:

Hp = −

m!
∑

l=1

pl ln pl (11)
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where pl denotes the probability of each permutation pattern

occurring and l ∈ {1, 2, · · · ,m!}. Finally, the permutation entropy is

estimated using the aforementioned formula. This metric provides

valuable insights into quantifying the inherent complexity within

the time series data.

PermEn =
Hp

ln(m!)
(12)

3.2.4 mPermEn
Permutation entropy can only reveal the randomness of brain

discharge activities by detecting the randomness and dynamic

displacement in time series, which has not been much researched

on the deep-seated functional dynamic changes of the brain.

In this study, we proposed a feature to characterize microstate

randomness, and calculate a index, mPermEn, by using the

probability distribution of the permutation pattern of each

microstate subsequence. It effectively captures the randomness of

microstate permutation patterns, representing the complexity of

brain cognitive changes.

There is a phenomenon of sampling points belonging to the

same microstate class for a period of time, which can seriously

affect the probability distribution of several permutation patterns.

Therefore, before calculating mPermEn, we removed several

sampling points adjacent to the same microstate class in the

microstate sequence (8). A new sequence of microstates is obtained:

MSv = [ms(1),ms(2), · · · ,ms(u), · · · ,ms(U)] (13)

where ms(u) 6= ms(u − 1), ms(u) 6= ms(u + 1) and U ≤ N. We

set the embedding dimension m to be the same as the number

of microstate classes, and keep the time delay τ consistent with

PermEn calculation. Therefore, we can attain a reconstruction

matrix R as (9). And we also construct a mm × m dimensional

permutation pattern matrix X and a zero vector of 1 × mm

dimensional as index vector Y:

X =

















a11 a12 · · · a1m
a21 a22 · · · a2m
a31 a32 · · · a3m
...

...
...

amm1 amm2 · · · ammm

















mm×m

(14)

Y = [ 0, 0, · · · , 0 ]1×mm (15)

where ajh = ⌈ j/mm−h ⌉ mod m, j ∈ {1, 2, · · · , mm}, h ∈ {1, 2, · · · ,

m}. Each row of the reconstructed matrix R is then compared with

each row of the permutation pattern matrix X to determine which

permutation pattern the reconstructedmatrix R belongs to, and add

1 to the corresponding position of the index vector Y.

Finally, calculate the probability distribution for each

permutation pattern and obtain mPermEn using the Equations 11,

12. The calculation process of mPermEn is outlined in Algorithm 2:

Require: MSv = [ms(1),ms(2), · · · ,ms(U) ]; m; τ

Ensure: mPermEn value

1: Build reconstruction matrix R, permutation

pattern matrix X and index vector Y

2: for i = 1 to U − (m− 1)τ do

3: for j = 1 to mm do

4: if the i-th row of R matched with j-th row of

X then

5: Add 1 to the j-th element of Y

6: end if

7: end for

8: end for

9: Remove the value of 0 from Y

10: Calculate each probability distribution of the

remaining patterns in Y

11: Calculate the mPermEn using (11) and (12)

12: return mPermEn

Algorithm 2. mPermEn Calculate Algorithm.

3.3 Spectral features

In this study, absolute power was computed for four distinct

frequency bands: δ (1–4Hz), θ (4–8Hz), α (8–12Hz), and β (12–30

Hz), along with the TBR, which is commonly used in neurological

disease assessment (Luo et al., 2023; Group et al., 2023). The

spectral analysis was carried out in two sequential steps. The initial

step aimed to identify significant differences in frequency bands

between the preictal and interictal states. Subsequently, the analysis

sought to identify channels exhibiting significant differences within

the specific frequency bands.

The power of each segment was computed using FFT, followed

by the summation of power within each frequency band to yield

the power of that band. Averaging across subjects and channels

yielded a matrix of dimensions Ngroup ∗ Nsubj ∗ Nfre, where

Ngroup represents interictal and preictal groups, Nsubj signifies the

number of subjects, and Nfre corresponds to the count of frequency

bands and TBR. By statistically analyzing the power matrix of these

groups, differential frequency bands between the interictal and

preictal periods were identified.

Once a distinct frequency band was ascertained, recalculating

the absolute power within that band resulted in a matrix of

dimensions Ngroup ∗ Nsubj ∗ Nchannel, where Nchannel refers to the

count of EEG recording electrodes. Statistical analysis of this power

matrix across groups highlighted channels exhibiting frequency

band-specific differences.

3.4 Predictive classification

For the seizure prediction task, we undertook both individual-

level classifications over the normalized feature set.

In the individual-level classification task, we focused on

classifying each subject’s data into two states. To avoid evaluation

bias caused by model overfitting, we first set aside 10% of the

data as the test set, while the remaining 90% is used for training

and validation. We applied 5-fold cross-validation to partition the
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training and validation sets, and employed grid search to optimize

the hyperparameters of the support vector machine. This entire

process was repeated 10 times, and the final performance evaluation

was based on the average performance of the test set over the 10

iterations.

We primarily quantified classifier performance using metrics

such as accuracy, sensitivity, false positive rate (FPR), and the

area under the curve (AUC). In traditional classification tasks,

accuracy is often considered a key performance metric. However,

in this study, detecting the preictal class is critical due to its lower

occurrence compared to the interictal class. As the preictal class is

treated as the positive class, sensitivity becomes more important

than specificity and accuracy in evaluating the proposed method.

FPR represents the average number of false seizure predictions

per hour of EEG recording, calculated as the number of predicted

seizure events within 1 hour that do not overlap with actual

reference seizures. AUC was used to assess the overall classifier

performance, with higher values indicating better classification and

discrimination.

In addition, to evaluate the classification effectiveness

across each feature category, we separately inputted microstate

parameters, nonlinear features, and spectral features into the

SVM classifier. In the end, there are epochs of multiple lengths

extracted for seizure prediction to explore the effect of data length

on microstate parameters, nonlinear features and spectral features.

3.5 Statistical analysis

In this study, the R (v4.3.0) (Rahlf, 2017) was used for

statistical analyses to identify and elucidate features with significant

differences between the interictal and preictal states. Initially, the

Kruskal-Wallis test was performed across clusters of microstate

topographic maps to identify variations between the interictal

and preictal conditions. Subsequently, the Shapiro-Wilk normal

distribution test was performed on the each feature. Paired samples

t-test was conducted for data that met the normal distribution,

otherwiseWilcoxon signed rank sum test was used. Throughout the

experiment, a trend emerged where the significance of outcomes

increased with an increase in sample size. This phenomenon results

in, with a substantial sample size, the significance indicated by the

α level of 0.05 deviates from the real-world context. To address

this, the G*Power software (Faul et al., 2009) was used to adjust

the α significance level. The determination of α was guided by the

desired effect size, power, and the extant sample size, ensuring that

it accurately and scientifically mirrored the real-world significance.

Cohen’s d effect size (Terpou et al., 2022) was also adopted to

quantitatively express the distinction between the interictal and

preictal states.

4 Results and discussions

4.1 Prediction performance

We compiled the microstate parameters, nonlinear features,

and spectral features into a consolidated feature matrix, which

was then utilized as input for the SVM classifier. The results

yielded promising individual-level classification metrics, including

an average accuracy of 94.80%, sensitivity of 93.82%, FPR of

0.061/h, and AUC of 0.98 on FH-ZJU dataset; accuracy of 92.32%,

sensitivity of 93.22%, FPR of 0.078/h, and AUC of 0.95 on Siena

Scalp EEG dataset.

Table 2 portrays a comparison of the performance of existing

methods of predicting seizures with scalp EEG dataset in recent

years. At present, the most widely used dataset for seizure

prediction is the CHB-MIT dataset (Lu et al., 2023a), whose EEG

dataset of patients with medically uncontrollable seizures was

collected by the Children’s Hospital Boston in collaboration with

the Massachusetts Institute of Technology and contains 22 subjects

(5 males and 17 females). It can be seen from the table, majority

of the researches achieved a sensitivity of 91% or more, implying

that their methods are good at seizure prediction. One of the

more notable performances is the method of Usman et al. (2021)

and Lu et al. (2023b). Fusing the automatic features extracted

by convolutional neural network (CNN) with manually extracted

temporal features, Usman et al. (2021) trained using SVM, CNN

and LSTM respectively, and achieved a sensitivity of 96.28% over

CHB-MIT dataset. Lu et al. (2023b) used 3D CNN model to

automatically extract information from EEG signals after STFT and

later used Bi-LSTM for classification. Finally, a sensitivity of 98.40%

and an accuracy of 97.95% were achieved on the CHB-MIT dataset.

Both of them achieve a excellent performance by automatically

extracting features using CNNs, however, the involved perspectives

embracing time or spectral attributions are slightly single.

Since themicrostate analysis method used in this paper requires

channel localization for single-lead EEG data. Therefore, we tested

the proposedmethod on the Siena Scalp EEG dataset and compared

it with previous works using the same dataset. Jiang et al. (2023)

proposed a method based on frequency-domain analysis and

phase-amplitude coupling (PAC) combined with a random forest

classifier for seizure prediction and ultimately achieved an accuracy

of 85.71% and a sensitivity of 83% on Siena EEG dataset. Kapoor

et al. (2022) used a seizure prediction algorithm consisting of

hybrid optimization control integrated classifier to classify wavelet

and entropy based features in each frequency band and finally

achieved accuracy of 95.31% and sensitivity of 93.18% on Siena

dataset. Similar to Jiang et al. (2023) and Kapoor et al. (2022), this

study does not employ a data-driven prediction approach. Instead,

it bases predictions on the features that exhibit the most significant

differences between the interictal and preictal periods. However,

unlike these previous works, this study not only incorporates

spectral information and nonlinear properties but also integrates

the microstate temporal dynamics properties, achieving higher

sensitivity.

To further assess the predictive efficacy of different feature

types, we subjected microstate parameters, nonlinear features,

spectral features, and their combined fusion features (referred

to as “fusion features”) to classification at the individual level.

The results as displayed in Table 3. Besides, to better compare the

classification performance between different features visually, the

results are shown in the radar plot of Figure 2. The figure shows

that whether in the FH-ZJU dataset or the Siena dataset, it is with

the same trend. Apart from fusion features, microstate features

demonstrating the most pronounced classification performance,
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TABLE 2 Comparison of existing individual-level seizure prediction methods using scalp EEG signals.

Dataset Num Reference Accuracy (%) Sensitive (%) FPR (/h) AUC

CHB-MIT dataset 22 (Zhang et al., 2019) 90.00 92.20 0.120 0.90

13 (Yang et al., 2021) 92.07 89.33 - 0.91

22 (Usman et al., 2021) - 96.28 - -

12 (Gao et al., 2022) - 94.60 0.060 0.94

13 (Wu et al., 2023) - 91.76 0.290 -

11 (Lu et al., 2023b) 97.95 98.40 0.017 -

Siena dataset 12 (Jiang et al., 2023) 85.71 83.00 - -

13 (Kapoor et al., 2022) 95.31 93.18 - -

11 this work 92.32 93.22 0.078 0.95

FH-ZJU 19 this work 94.80 93.82 0.061 0.98

“Num” presents the number of subjects. The symbol “-” represents that the author did not use the indicator during forecasting.

TABLE 3 Individual-level predictive performance results for multiple types of features.

Dataset Feature Accuracy (%) Sensitive (%) FPR (/h) AUC Kappa

FH-ZJU dataset Fusion-Features 94.80 93.82 0.061 0.98 89.48

Microstate 92.62 91.61 0.083 0.97 84.38

Nonlinear 82.45 81.88 0.181 0.87 63.15

Spectrum 81.99 81.96 0.180 0.87 62.42

Siena dataset Fusion-Features 92.32 93.22 0.078 0.95 82.50

Microstate 87.53 84.89 0.151 0.93 74.96

Nonlinear 75.10 77.39 0.226 0.80 59.28

Spectrum 73.09 74.66 0.253 0.80 55.72

Kappa: Cohen’s Kappa is a statistical measure of the degree of agreement between the classifier output and the clinical labels.

FIGURE 2

(a) Comparison of the individual-level performance of multiple types of features on the FHZJU dataset. (b) Comparison of the individual-level

performance of multiple types of features on the Siena dataset.

followed by nonlinear features and spectral features. The accuracy

of fusion features and microstate parameters was more than

10% higher than that of nonlinear and spectral features across

both the FH-ZJU and Siena datasets. Besides, the accuracy of

fusion and microstate features was quite similar, with differences

of only 2.18% on the FH-ZJU dataset and 3.79% on the Siena

dataset. It highlights that the fusion feature matrix primarily

derives its potency from microstate features. This means that the

microstate temporal dynamic properties of EEG data are more

suitable for seizure prediction tasks than nonlinear and spectral

information. Besides, it can be seen from the performance

of fusion features that the complementary information
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FIGURE 3

Bar charts of individual-level predictive performance of di�erent length epochs on FH-ZJU dataset. (a) Performance of fusion features. (b)

Performance of microstate parameters. (c) Performance of nonlinear features. (d) Performance of spectral features.

from multiple feature types can significantly improve the

prediction performance.

Furthermore, we conducted subject-individual prediction

experiments with different data lengths on the FH-ZJU dataset

to verify the influence of data lengths on these features. From

Figure 3a, it is seen that 3s data length have the optimum

performance, 4s and 5s had a similar performance between

that of 3 s and 2 s. To explore why the fundamental reason

for the optimal performance of 3s data length, we separately

conducted experiments on each features with different lengths

at the individual-level. The results of microstate parameters,

nonlinear features and spectral features are depicted respectively

in Figures 3b–d. Comparing the four bar charts, we found that the

distribution of microstate parameters in Figure 3b is nearly close to

that of fusion features in Figure 3a, which reveals that the advantage

of fusion features with 3s data lengthmainly comes frommicrostate

features with 3s data length. These results gave a further verification

on the significance of microstate temporal dynamic properties in

seizure prediction. From Figures 3c, d, we can see that the results

of different fragment lengths of nonlinear features and spectral

features hold steady, which indicated that the nonlinear features

and spectral features are less sensitive to the data length.

Notably, despite using a basic SVM model in this experiment,

the prediction performance was remarkably high. This outcome

can likely be attributed to two key factors. First, the dataset

used in this study contained relatively few seizure events,

and SVMs are well-suited for binary classification tasks with

small sample sizes, allowing the model to maintain reliable

prediction accuracy even with limited data. Second, the length

of the preictal prediction window also significantly impacts

the model’s performance (Lu et al., 2021). Longer prediction

windows may provide more advanced warnings but could

introduce additional noise and uncertainty, while shorter

windows may improve prediction accuracy by focusing on more
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FIGURE 4

Four canonical microstate topographic maps of Interictal and

Preictal.

TABLE 4 Statistics of microstate parameters between interictal and

preictal states.

Parameter Type P-value Cohen’s d

Duration Class A 4.62e-15
∗∗∗

-0.4508

Class B 0.0425 -0.1154

Class C 3.54e-11
∗∗∗

0.3796

Class D 0.2600 0.0640

Coverage Class A 4.59e-17
∗∗∗

-0.4839

Class B 0.0018 0.1775

Class C 2.16e-15
∗∗∗

0.4564

Class D 0.0031 -0.1685

Occurrence Class A 3.58e-05
∗ 0.2356

Class B 2.57-07
∗∗∗ 0.2943

Class C 0.1375 0.0844

Class D 7.51e-05
∗ -0.2256

P-Value: ∗ for p<5e-4, ∗∗∗ for p<1e-6.

Cohen’s d: Black bold means Cohen’s d<-0.3 or Cohen’s d>0.3.

immediate preictal changes. Therefore, optimizing the length of

the prediction window is crucial for further enhancing the model’s

predictive capabilities.

4.2 Microstate properties between
interictal and preictal

Microstate analysis of scalp electroencephalogram in the

interictal and preictal groups yielded four canonical microstate

topographic maps, as shown in Figure 4. These maps are consistent

with those reported in previous studies on neurological disorders

and are characterized as follows: class A (right-frontal and left-

posterior topographies), class B (left-frontal and right-posterior

topographies), class C (midline and frontal-occipital topographies),

and class D (midline and frontal topographies). The four canonical

microstate structures, often aligned with inherent brain functional

networks (class A linked to the auditory network, class B to the

visual imagination network, class C to the salience network, and

class D to the attention network), exhibit general consistency

between interictal and preictal states. The microstate maps showed

overall consistency between the interictal and preictal states,

accounting for 76.11% and 78.12% of the global explained

variance (GEV) in the interictal and preictal groups, respectively.

Consistent with Takarae et al. (2022), Kruskal-Wallis tests indicated

no statistically significant differences between the interictal and

preictal groups for any of the microstate maps [p(A) = 0.78, p(B)

= 0.53, p(C) = 0.92, p(D) = 0.80].

Three parameters were obtained to capture the dynamic

shifts in thought atom by applying microstate map backfitting

to EEG data. We set the effect size, the power, and the

sample size to 0.3, 0.95 and 600, and the adjustment of α was

adjusted to 0.0005 using G*Power software. The test results and

Cohen’s d value highlighted significant alterations in microstate

dynamics between the interictal and preictal states, as depicted

in Table 4. We thought that only when the P-value is less

than 0.0005 and the absolute value of Cohen’s d exceeded 0.3,

there are significant difference between preictal and interictal.

The findings revealed that during the preictal phase, class A

exhibited markedly elevated duration and coverage compared to its

interictal counterpart. Conversely, class C displayed considerably

reduced duration and coverage relative to interictal observations.

Furthermore, the analysis of occurrence characteristics revealed

that class A and class B microstates were lower in preictal states

than interictal states, while occurrences of class D microstates

were higher in preictal states than interictal states. Based on

these phenomena, we hypothesize that seizures may result

from changes that make microstate C more likely to shift to

microstate A. We will continue to explore this point in our

next work.

4.3 Nonlinear attributes between interictal
and preictal

To quantify the nonlinear dynamic changes between interictal

and preictal states, six nonlinear features were extracted: mLZC,

LZCmean, LZCmedian, LZCmid_p, mPermEn, and PermEn. As

shown in Figures 5a, b, the test revealed that preictal complexity

generally exhibited lower values compared to interictal complexity,

along with greater numerical dispersion, which was consistent

with Lehnertz (2008) as well as Babloyantz and Destexhe (1986),

suggesting that epileptogenicity involves complexity reduction.

Seizure activity is characterized by weakened nonlinearity,

whereas interictal EEG demonstrates higher nonlinearity.

Furthermore, we hypothesize that synchronized abnormal

neuron firing seizures leads to this reduction in nonlinearity.

In the 3 minutes preceding a seizure, nonlinearity displayed

a decreasing trend, indicating a gradual loss of autonomous

brain function. Additionally, individual EEG variations in

the preictal state were greater than those in the interictal

state, where complexity values tended to cluster within a

normal range.

As shown in Figures 5a, b, the proposed microstate-

based features, mPermEn (p = 0.0037) and mLZC (p =

1.23e-4), more effectively distinguished between interictal
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FIGURE 5

(a) Comparison of LZCmean, LZCmedian LZCmid_p with mLZC between interictal and preictal. (b) Comparison of PermEn and mPermEn between

interictal and preictal (∗ for p <5e-4).

FIGURE 6

Results of statistical analysis of spectral features. (a) Comparison of power in each frequency band. (b) Significantly di�erent of the δ band power on

each channel.

and preictal states compared to the EEG-based features

PermEn (p = 0.0059), LZCmean (p = 0.0522), LZCmedian (p

= 0.0703), and LZCmid_p (p = 0.0120). This highlights that

mPermEn and mLZC aptly capture the complexity changes

in brain cognitive activity, going beyond the traditional

exploration of epilepsy pathology based solely on EEG

signal complexity.

4.4 Spectral information between interictal
and preictal

For statistical analysis of spectral characteristics, we calculated

the power of each frequency band and adjusted the significance

level α to 0.05. The paired t-test results indicated no significant

difference in absolute power across frequency bands between
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interictal and preictal states (Figure 6a). However, upon closer

examination, the δ bands showed decreased power in preictal states,

while θ band power and TBR exhibited an increasing trend prior

to seizures. Among the frequency bands, the δ band displayed

the most substantial variation between the interictal and preictal

states.We further analyzed differences in the δ band across different

channels (Figure 6b), revealing significant disparities in the right

frontal brain regions, specifically in the F4 (p = 0.0203), C4 (p =

0.0372), and F8 (p = 0.0113) channels.

A comparison of the statistical analysis results of the

microstate parameters, nonlinear features and spectral

features reveals that the microstate parameters exhibited

the most significant differences between interictal and

preictal phases, followed by the nonlinear features, which

aligns with the predictive results. These findings underscore

that epileptic seizures result in abnormal changes in brain

microstate dynamics.

5 Conclusion

In this paper, we employed cognitive dynamic attributes

to delineate the preictal state. By integrating nonlinear

and spectral characteristics, a remarkable performance was

achieved on both the FH-ZJU and Siena dataset. Besides,

we proposed a novel microstate-based nonlinear feature,

mPermEn, to effectively capture and articulate the randomness

at the microstate level between interictal and preictal states.

Comparative analysis revealed that changes in cognitive pattern

dynamics using microstates better characterized the preictal

period than nonlinear attributes and spectral information.

Moreover, microstate properties within 3-second fragments

proved more suitable for seizure prediction tasks. In all,

microstate analysis not only elucidates temporal dynamic

alterations in neurological diseases but also serves as a

foundational approach for other EEG analysis methods,

offering substantial potential for exploring the brain’s

cognitive mechanisms.

6 Limitation

The research method employed in this article has

certain limitations. Specifically, relying solely on LZC,

permutation entropy, and power as nonlinear and spectral

features limits our ability to comprehensively capture

such information. Consequently, our findings only

preliminarily suggest that cognitive dynamic attributes

may be superior to nonlinear and spectral metrics in

characterizing the preictal phase. Moving forward, we

will use additional, more representative features in these

perspective characterization.

As the aim of this article is to introduce brain cognitive

dynamic attributes into seizure prediction, assessing their

potential as seizure biomarkers. To this end, we chose a basic

SVM classifier rather than more intricate models. In future

work, we plan to explore complex models to enhance seizure

prediction accuracy.
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