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1 Introduction

The prevalence of mild cognitive impairment (MCI) is rapidly increasing with the
growing global elderly population. Approximately 15% to 20% of individuals aged 65
and above suffer from MCI (Petersen et al., 2018). Nowadays, the Mini-Mental State
Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) are commonly
used scales for MCI detection (Nasreddine et al., 2005; Ciesielska et al., 2016). Except
for the scales, the fluid biomarkers, such as plasma phospho-tau217 and total-tau in
cerebrospinal fluid, can also be used for MCI detection (Olsson et al., 2016; Palmqvist et al.,
2020; Moscoso et al., 2021). Even though the diagnosis of MCI based on these biomarkers
demonstrates outstanding accuracy and stability, it is not without its limitations. Lumbar
puncture stands as a frequently conducted invasive procedure in clinical practice, of
cerebrospinal fluid samples (Doherty and Forbes, 2014). It requires a relatively long
postoperative recovery time andmay lead to complications, such as headache, cranial nerve
palsy, and reversible tonsillar descent (Evans, 1998).

Although the main symptom of MCI is memory impairment, motor dysfunction
has been previously described as a common characteristic in the patients with cognitive
impairments (Montero-Odasso et al., 2014). In comparison to normal subjects, individuals
with MCI exhibit differences in some motions, such as walking and balance. According
to Shin et al. (2011) and Rosenberg et al. (2023), motion performance indices extracted
from them can be used for diagnosing MCI. However, as the physical activity is only
weakly associated with the global cognition (Iso-Markku et al., 2024), motion performance
tests could not be used to directly detect subtle alterations in the cognitive functions of
MCI patients. To address the aforementioned issues, it is imperative to discover a novel
approach to enhance both diagnostic efficiency and accuracy.

We postulate on the combination of EEG and motion performance tests as a
crucial tool for MCI diagnosis. The electroencephalogram (EEG) is a non-invasive
electrophysiological monitoring technique used to monitor brain electrical activity,
offering superior temporal resolution. Owing to distinctions in EEG features between
individuals with MCI and the normal ones, such as power spectral density (PSD) and
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band power, EEG can be independently utilized in the diagnosis
of MCI (Meghdadi et al., 2021; Mitsukura et al., 2022). The
application of automated feature learning techniques (such as deep
learning and machine learning) in MCI diagnosis enables EEG-
based diagnostic methods to achieve high accuracy and AUC
(Al-Nuaimi et al., 2018, 2021; Meghdadi et al., 2021). Therefore,
combining motion with EEG for MCI diagnosis can compensate
for the lack of accuracy and AUC when using motion alone to
diagnose MCI (You et al., 2020). Moreover, although MCI patients
can maintain relatively independent activities in daily life, they
are often affected to varying degrees when performing tasks with
high cognitive load (Jekel et al., 2015; Klotzbier and Schott, 2017).
Mainstream EEG-based MCI diagnostics typically use resting-state
EEG, which makes it difficult to assess which daily activities are
affected in MCI patients. This study comprehensively reviews the
literature on the MCI diagnosis with EEG and motion performance
tests. In consideration of prior studies, we additionally delve into
the combination of EEG and motion performance indices for
diagnostic purposes, and propose our own opinions about the
development trends of this diagnostic strategy. Finally, we propose
recommendations to advance research in the diagnosis of MCI.

2 MCI diagnosis with motion
performance

Motion is governed by the brain and spinal cord nerves. The
connection between motion, cognition, and the nervous system is
closely intertwined (Gentsch et al., 2016). Extensive study indicates
that many non-cognitive symptoms, such as motor function loss,
major depression and disruptive behaviors, are associated with
neurodegenerative diseases (Goldman et al., 1999; Lopez et al.,
2005; Haaxma et al., 2010; Buchman and Bennett, 2011).

In recent years, a plethora of study findings has shown that
gait dysfunction is a prevalent characteristic among patients with
MCI. As gait plays a crucial role in discriminating pathology and
identifying the progression of the disease (Morris et al., 2016), gait
parameter can serve as one of the motion performance indices for
diagnosing MCI (Montero-Odasso et al., 2014). In this study, an
electronic walkway was utilized to assess the gait performance of
individuals with MCI as well as that of normal individuals. The
participants carried out dual-tasks walking, and the coefficient of
variation for stride time was recorded, respectively. It is a motor-
divided attention task that requires individuals to walk while doing
a cognitively demanding task (reciting words or calculations). The
results indicated deficits in gait speed and stride time variability for
MCI patients, demonstrating the feasibility of gait as a diagnostic
tool for potential MCI patients. Moreover, the differences in gait
patterns between patients with MCI and normal individuals can
be validated through the trail walking test (TWT) under different
cognitive loads, and becomemore pronounced as the cognitive load
increases during walking (Klotzbier and Schott, 2017). Therefore,
the diagnosis of MCI in elderly adults can be achieved through
the evaluation of completion time and errors as long as the TWT
is sufficiently sensitive.The development of technologies such as
machine learning allows researchers to process these movement
data more quickly and effectively. Based on a machine learning
model, researchers diagnose MCI by analyzing only a few seconds

of computer mouse movement data, with the model achieving an
average accuracy of 79.8% (Hanczár et al., 2022).

Furthermore, static postural balance during standing is another
motor function that is critical to quality of life and seems to have
a direct association with cognitive function (Tell et al., 1998).
In the eyes-open condition, there is no significant difference in
balance function between MCI patients and the normal control
group (Leandri et al., 2009). However, in the eyes-closed condition,
MCI patients exhibit early changes in balance function, particularly
in the parameters of anterior-posterior sway. Moreover, the study
results indicate a trend of increasing dependence vision among
normal individuals, aMCI and AD patients. This implies that MCI-
related balance deficits are related to impaired central processing of
visual information.

3 MCI diagnosis with resting-state
EEG

Quantitative analysis of EEG rhythms is a low-cost and
potentially useful neurophysiological approach to the study of
normal aging and dementia. This type of analysis includes the
estimation of the power density of selected resting-state EEG
frequency bands (Moretti et al., 2004; Jiang, 2005). Growing
evidence indicates that the resting-state EEG can be utilized for
detecting early abnormalities in neuronal function (Schaul, 1998;
Musha et al., 2013). Hence, there is potential to extract biomarkers
from the resting-state EEG of individuals with MCI for the
purpose of early diagnosis. Compared to normal subjects, MCI
patients are known to have differences in EEG frequency bands,
namely delta (0.5−4 Hz) and theta (4−8 Hz) power increase,
and alpha (8−13 Hz) power decrease (Moretti et al., 2004).
Based on these differences, features extracted from EEG frequency
bands have been utilized in diagnosing MCI and have enhanced
diagnostic performance (Al-Nuaimi et al., 2021, 2018; Besthorn
et al., 1997).

It is noteworthy that when comparing MCI with different
neurodegenerative diseases, biomarkers derived from resting-state
EEG may lack specificity. A study assessed the five traditional EEG
frequency bands of 38 patients with neurodegenerative diseases in
the resting state condition (Fonseca et al., 2013). The findings of
EEG in Parkinson’s disease dementia (PDD), Parkinson’s disease
(PD), and MCI demonstrate similar tendency in the changes
of delta and theta frequency bands. Furthermore, another study
with individual estimation of EEG frequency indicates an increase
in alpha band power among MCI patients, contrary to the
aforementioned conclusion (Meghdadi et al., 2021).

Complex network analysis treats brain networks as intricate
network structures and investigates the interactive relationship
between groups of neurons or across different regions of the
brain (Bassett and Bullmore, 2009; Sporns, 2013). An important
finding in EEG analysis of cognitive impairment is the decreased
synchronization between brain regions (Azami et al., 2023). The
power ratio between different frequency bands is also a biomarker
for distinguishing between MCI and Healthy Controls (HC).
Compared to the healthy control group, patients with Mild
Cognitive Impairment (MCI) show a significantly lower beta/theta
power ratio in the occipital region.
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4 MCI diagnosis with the combination
of motion performance and EEG

Cognitively demanding tasks such as dual-task walking aids
in isolating the cognitive control component of locomotion,
offering valuable information into the detection of cognitive decline
(Hausdorff et al., 2008; Montero-Odasso et al., 2014). According
to the above-mentioned limitations when using resting-state EEG
alone, we believe that the combination of EEG and motion has
resulted in higher diagnostic accuracy compared to using a single
data source for classification. For example, a study revealed the
capability of combining EEG data with gait kinematic parameters
to differentiate individuals with MCI from those with normal
cognitive function (You et al., 2020). The experiment was designed
with two sequential steps to enhance the speed and accuracy of
classification by concurrently utilizing gait and EEG data. First,
healthy controls (HC) and patients were categorized based on gait
data, and then directly extracting spatial and temporal features
from original EEG data for distinguishing between MCI and AD
patients. The findings suggested that the classification accuracy
based on the fusing features from EEG and gait in the three-
way classification of HC, MCI, and AD reaches 91.07%. The
value is much higher than the method using one modal, because
the classification accuracy when using gait data alone is 68.18%.
Individuals with high risk of cognitive impairment and low risk
of cognitive impairment may exhibit different underlying neural
signatures while performing walking tasks under visual interference
(De Sanctis et al., 2023). Specifically, Individuals at higher risk
for cognitive impairment amplified theta localized to frontomedial
and right central gyrus. In contrast, the brain response in lower
risk individuals was specific to visually perturbed input and
characterized by left central beta suppression. Furthermore, higher
theta power was related to lower scores on the MoCA and stronger
beta power suppression was related to higher scores on the MoCA.
Another study combined gait with EEG has also demonstrated that
multimodal signals combining EEG with gait kinematic parameters
improved the ability to discriminate MCI individuals from normal
controls (Min et al., 2022).

Compared to resting-state EEG, utilizing EEG collected during
motion performance tests requires addressing the challenge
caused by artifacts. To minimize artifacts interference, motion
performance tests that allow concurrent EEG recording often
impose restrictions on participants’ movement amplitudes
compared to traditional motion performance tests. For example,
simple finger-tapping test (FTT) performed with a keyboard
(Sharma et al., 2021). In this study, all subjects tapped the space-bar
key for 10 s continuously until they were interrupted, while using
the device (SOMNOscreen EEG 32) to collect data during this
period. A total of 16 MCI patients aged 40 and above participated
in the experiment. The results indicate that the FFT event provided
the highest scores of classification, 91.23% accuracy and 92.38%
specificity (the results under resting conditions show 87.22%
accuracy and 79.49% specificity).

EEG collected during motion performance tests is susceptible
to artifacts. Both physiologic and nonphysiologic sources of
artifact may act as source of confusion with abnormality and
lead to misinterpretation (Tatum et al., 2011). We advocate for

researchers to continue improving the performance of movement-
induced EEG artifacts removal methods. For example, in visual
stimulation task, electrooculography (EOG) can be recorded and
adaptive filtering can be employed to generate estimations of
signals associated with eye movement artifacts. Subtraction of EEG
recordings from these estimated signals helps to reduce the impact
of artifacts. Alternatively, the head movements can be detected and
quantified through sensor data analysis. The motion information
can be correlated with EEG data collected during the same time
period to identify and correct artifacts caused by head movements.

5 Discussion

As previously mentioned, research methods in this field are
primarily classified into two types: one focuses on the combination
of motion performance indices with resting-state EEG, while the
another focuses on the analysis of EEG signals during motion
performance tests. In future research, we suggest that researchers
may attempt more diverse combinations. For example, researchers
can collect EEG data from subjects during motion performance
tests as well as resting-state EEG data before and after the tests, and
analyze them with the kinematic characteristics of the MCI patients
during the tests.

As previously mentioned, dual-task tests effectively links
physical activity capacity with cognitive ability, offering more
valuable information for diagnosing MCI patients. Due to the
typically higher cognitive load experienced by humans during
dual-task testing compared to single-task testing, we posit that
the assessment of cognitive fatigue in MCI patients under dual-
task conditions could be a promising diagnostic target. Cognitive
fatigue is a psychobiological state with subjective, behavioral, and
physiological consequences for an individual, such as heightened
feelings of tiredness, increased reaction physical energy (Díaz-
García et al., 2021). The symptoms of cognitive fatigue include
obvious changes in EEG signals (Li et al., 2020). Under the
same cognitive loads, MCI patients endure more cognitive fatigue
compared to the normal individuals (Kukla et al., 2022; Zhang et al.,
2023). According to our investigation, cognitive fatigue has been
barely considered as one of the diagnostic criteria in the field of
MCI diagnosis. In future research, we can analyze the EEG data of
patients in dual-task tests to calculate the level of cognitive fatigue
as an auxiliary diagnostic approach.

Disturbed interactions among brain regions have been shown
to be associated with virtually all brain and mental disorders,
as well as with brain injury and recovery (Sporns, 2013; San-
Martin et al., 2021; Wen et al., 2019). From the previous
discussion, it is evident that analysis of the EEG data for MCI
patients under the dual-task tests will offer identifying diagnostic
targets for MCI. In future research, we suggest researchers
explore the interactions between brain regions of subjects during
motion performance tests to achieve more accurate diagnosis
and personalized treatment strategies. The diagnostic approach
combining motion performance indices with EEG holds immense
potential, yet it still faces several challenges. With ongoing in-depth
study in this direction, the optimal solution for diagnosing MCI
patients may be discovered in the future.
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