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Objective: High Angular Resolution Di�usion Imaging (HARDI) models have

emerged as a valuable tool for investigating microstructure with a higher degree

of detail than standard di�usion Magnetic Resonance Imaging (dMRI). In this

study, we explored the potential of multiple advanced microstructural di�usion

models for investigating preterm birth in order to identify non-invasive markers

of altered white matter development.

Approach: Rather than focusing on a single MRI modality, we studied on a

compound of HARDI techniques in 46 preterm babies studied on a 3T scanner

at term-equivalent age and in 23 control neonates born at term. Furthermore,

we investigated discriminative patterns of preterm birth using multiple analysis

methods, drawn from two only seemingly divergent modeling goals, namely

inference and prediction. We thus resorted to (i) a traditional univariate voxel-

wise inferential method, as the Tract-Based Spatial Statistics (TBSS) approach;

(ii) a univariate predictive approach, as the Support Vector Machine (SVM)

classification; and (iii) a multivariate predictive Canonical Correlation Analysis

(CCA).

Main results: The TBSS analysis revealed significant di�erences between

preterm and term cohorts in several white matter areas for multiple HARDI

features. SVM classification on skeletonized HARDI measures yielded satisfactory

accuracy, particularly for highly informative parameters about fiber directionality.

Assessment of the degree of overlap between the two methods in voting for the

most discriminating features exhibited a good, though parameter-dependent,

rate of agreement. Finally, CCA identified joint changes precisely for those

measures exhibiting less correspondence between TBSS and SVM.

Significance: Our results suggest that a data-driven intramodal imaging

approach is crucial for gathering deep and complementary information. The

main contribution of this methodological outline is to thoroughly investigate

prematurity-related whitematter changes through di�erent inquiry focuses, with

a view to addressing this issue, both aiming toward mechanistic insight and

optimizing predictive accuracy.
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1 Introduction

DiffusionMagnetic Resonance Imaging (dMRI) has established

itself as a cornerstone in the study of brain microstructure,

offering unmatched sensitivity for non-invasive imaging compared

to conventional MRI (Basser et al., 1994; Le Bihan et al.,

2001). The advent of High Angular Resolution Diffusion Imaging

(HARDI) (Descoteaux, 1999) has propelled dMRI into a new era

of precision, enabling the exploration of microstructural features

beyond the capabilities of traditional Diffusion Tensor Imaging

(DTI) (Tournier et al., 2011). By providing deeper insights into

cellular architecture, HARDI-based approaches are particularly

valuable for studying white matter (WM) development in complex

scenarios, such as preterm birth, where structural abnormalities can

be subtle but widespread.

Despite advances in neonatal care, preterm birth remains

a global challenge (Beck et al., 2010; Blencowe et al., 2013).

Approximately 50% of survivors experience long-term

neurodevelopmental impairments, including cognitive, motor,

and behavioral difficulties (Bhutta et al., 2002). These outcomes

are often associated with disruptions in WM integrity, which

can hinder neuronal connectivity and delay brain maturation

(Kimpton et al., 2021; Dyet et al., 2006; Tortora et al., 2018).

Understanding the nature and extent of these disruptions is critical

for improving diagnostics and informing targeted interventions.

Recent developments in dMRI have significantly improved our

understanding of preterm brain development and injury, providing

non-invasive insights into WM microstructure (Pannek et al.,

2014). Studies indicate that preterm birth often leads to disruptions

in cortical microstructure and neuronal connectivity, contributing

to developmental disabilities (Dudink et al., 2015). While cystic

periventricular WM damage has been linked to abnormal motor

development, the relationship between diffuse WM damage and

long-term developmental outcomes remains unclear (Hart et al.,

2008). Advanced dMRI techniques have revealed alterations in

brain region size, volume, and growth rates following preterm birth,

with these changes correlated with diminished motor, cognitive,

and behavioral performance from childhood into adulthood

(Pandit et al., 2013; Volpe, 2003; Counsell et al., 2003; Zhao et al.,

2021; Ouyang et al., 2019b; Shi et al., 2016; Kelly et al., 2016; Pannek

et al., 2018). As these imaging techniques evolve, they possess

potential as biomarkers for predicting outcomes and evaluating

interventions in preterm infants.

To unlock the broader biological implications of these findings,

it is essential to integrate diverse dMRI models and innovative

analytical frameworks. Based on this need, our study employs

several advanced HARDI-based diffusion models to investigate

preterm-related WM abnormalities comprehensively. Specifically,

we focus on a variety of models that have been selected for

Abbreviations: CCA, Canonical Correlation Analysis; CC, Canonical

Component; CV, Canonical Variate; dMRI, Di�usion Magnetic Resonance

Imaging; DTI, Di�usion Tensor Imaging; d‖, Parallel Di�usivity; d⊥,

Perpendicular Di�usivity; FA, Fractional Anisotropy; FDR, False Discovery

Rate; HARDI, High Angular Resolution Di�usion Imaging; ISO, ISOtropic

Volume Fraction; MD, Mean Di�usivity; MK, Mean Kurtosis; RD, Radial

Di�usivity; SVM, Support Vector Machine; TBSS, Tract-Based Spatial Statistics;

TEA, Term-Equivalent Age; WM, White Matter.

their suitability in capturing microstructural changes beyond DTI’s

capabilities (Pecheva et al., 2018). These models include Diffusion

Kurtosis Imaging (DKI) (Jensen et al., 2005), Neurite Orientation

Dispersion and Density Imaging (NODDI) (Zhang et al., 2012),

Multi-Shell Multi-Tissue Constrained Spherical Deconvolution

(MSMT-CSD) (Jeurissen et al., 2014), and FORECAST (Anderson,

2005; Kaden et al., 2016), to capture a more nuanced understanding

of the WM changes associated with prematurity.

To explore these microstructural alterations, we adopt a dual

analytical framework combining inference and prediction. Indeed,

as stated in Bzdok and Ioannidis (2019) and Bzdok et al. (2020), in

the case of complex biological systems, such as the human brain,

resorting to these two seemingly diverging modeling goals provides

a better understanding of their complex interactions. The objective

of inference entails prioritizing the contribution of each input

variable through null hypothesis significance testing. In contrast,

the predictive regime emphasizes on the relevance of the output of

the model for accurate forecasting.

In this study, we employ two state-of-the-art univariate

techniques representing these analytical paradigms: Tract-Based

Spatial Statistics (TBSS) and Support Vector Machines (SVM).

TBSS is a voxel-wise inferential method designed to detect

statistically significant differences in WM microstructure across

cohorts. It is widely recognized for its robustness and observer-

independent nature, making it an effective tool for group-

level analysis. However, its limitations in detecting diffuse

abnormalities and providing personalized metrics highlight the

need for complementary approaches (Smith et al., 2006). SVM,

in contrast, represents a predictive, data-driven method that

offers individualized classification capabilities. By uncovering

discriminatory patterns between preterm and term cohorts,

SVM bridges the gap between group-level analyses and clinical

applications such as early diagnosis and prognosis (Golland et al.,

2002; Lao et al., 2004).

Finally, to address potential redundancies in dMRI models

and uncover biologically interpretable components, we also

move beyond univariate analysis methods, summarizing single

microstructural features at a time, toward a multivariate predictive

model via Canonical Correlation Analysis (CCA) (Hardoon et al.,

2004). This method integrates multiple diffusion metrics to reveal

shared and distinct patterns of WM alterations (Wang et al.,

2020). By capturing higher-order relationships among features,

CCA extends beyond univariate methods such as TBSS or single-

modality approaches, offering deeper insights into the complex

interplay of microstructural changes in preterm birth. For further

details about the three approaches, their strengths and weaknesses,

and their application to this clinical scenario, please refer to

Supplementary Section 1.2.

To sum up, this study adopts a multi-faceted approach

to understanding the biological phenomenon of prematurity

through the following objectives: (i) systemic assessment through

diverse dMRI models: leverage multiple HARDI-based models to

explore WM microstructure comprehensively, capturing a wide

range of microstructural changes beyond traditional metrics; (ii)

complementary analytical strategies: combine inference (TBSS),

prediction (SVM), and multimodal integration (CCA) to identify

significant WM alterations, classify preterm vs. term cohorts, and

uncover cross-metric relationships; (iii) bridging inference and
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prediction: evaluate the alignment and divergence of inferential and

predictive approaches in characterizing prematurity-related WM

changes, emphasizing their combined value in biomedicine.

By integrating these complementary analytical approaches,

the present study emphasizes the importance of utilizing diverse

analytical tools to uncover predictive and mechanistic insights.

This all-encompassing exploration not only highlights the distinct

contributions of inference and prediction but also serves as a model

for tackling complex biological phenomena. This comprehensive

approach positions the study as a critical step toward developing

non-invasive biomarkers and personalized intervention strategies

for preterm infants.

2 Methods and materials

2.1 Subjects

A total of 46 preterms and 23 term-born subjects were enrolled

between November 2017 and August 2021 at the Neuroradiology

Unit of Gaslini Children’s Hospital. Conventional MRI andHARDI

were performed using a 3.0 T MRI scanner (Ingenia Cx, Philips,

Best, the Netherlands) with a 32-channel head array coil.

To minimize macroscopic movement artifacts, all

recommended guidelines for pediatric imaging have been

adopted. To protect infants from acoustic disturbances caused

by MR sequences, we used baby earmuffs and silicone paste

for hearing aids. Furthermore, we avoided most of the motion

by swaddling infants and by placing airbags around the babies’

head. In addition, protective pads have been placed between the

magnet and the patient. All these factors contribute to creating a

comfortable and warm rest environment, minimizing the chance

of free movement. MRI was performed when possible during

spontaneous sleep by administering breast milk or formula about

30 minutes before the start of the exam. In case of spontaneous

sleep failure, to minimize macroscopic movement artifacts, the

instrumental examination was performed under mild sedation

by orally administering midazolam at 0.1-0.2 mg/kg diluted in a

33% glucose solution, subject to signature of informed consent

from parents and applied by expertly trained nurses. The exclusion

criteria included relevant motion artifacts, oblique positioning, an

incomplete imaging process, or a low Signal-To-Noise Ratio (SNR).

Gestational Age (GA) was used as a classifying variable for

preterm (GA < 37 weeks) and term birth (GA ≥ 37 weeks).

We retrospectively identified all preterm neonates with birth

weight <1500 g or at risk (for instance, those with anemia or

intrauterine growth restriction) who underwent brain MRI at

Term-Equivalent Age (TEA) in the setting of our institutional

screening program for identification of prematurity-related lesions.

At term, neonates underwent brain MR imaging for clinical

indications, including minor trauma, suspect meningitis, and

transient neurologic symptoms and signs; all had normal brain

anatomy and neurologic examination. Details of the subjects

demographics are reported in Table 1.

2.1.1 Ethics approval
This single-center study was carried out in accordance with the

recommendations of the Comitato Etico Regione Liguria, Genoa,

TABLE 1 Demographic features of neonatal brain.

Preterm
neonates
(n = 46)

Term-born
neonates
(n = 23)

Gender (M/F) 14/32 15/8

Mean GA (range; week) 31.15±2.54
(25.29–36.71)

39.13±1.49
(37.00–41.71)

Mean PNA (range; week) 8.05±3.26 (1.43–14.29) 2.50±2.48 (0.14–10.14)

Mean PMA (range; week) 39.21±2.49
(32.86–47.57)

41.63±2.61
(34.00–48.43)

Mean HC (range; cm) 28.72±2.52 (24–34) 34.13±1.55
(29.00–37.00)

Mean BW (range; g) 1,581.98±626.92
(730.00–3,790.00)

3,117.48±510.82
(2,270.00–4,096.00)

M/F, number of male and female infants; GA, gestational age; PNA, postnatal age; PMA,

postmenstrual age; HC, head circumference; BW, birth weight.

TABLE 2 Acquisition protocols for structural T1 and HARDI series.

3dT1 HARDI

TR/TE (s) 0.6/0.026337 2.086/0.114

Diffusion scheme (s/mm²) - 5 b = 0, 30 b = 700, 60 b =
2800

Flip angle (◦) 90 90

Reconstruction resolution (mm) 0.38*0.38 1.5*1.5

Reconstruction matrix 512*512 144*144

Multi-band factor - 2

# Averages 2 1

Slice thickness (mm) 0.5 without
gap

2.2, without gap

Slice orientation Sagittal axial

# Slices 251 42

Total scan time 4 min 5 s 3 min 30 s

Partial Fourier Factor - 0.6

Italy, with written informed parental consent obtained for each

infant prior to examination in accordance with the Declaration

of Helsinki.

2.2 MR acquisition

Our acquisition protocol included Turbo Field Echo (TFE) 3D

T1-weighted and HARDI sequences. Details of the acquisition are

reported in Table 2.

2.3 Preprocessing pipeline

2.3.1 Structural images
The first critical step was skull-stripping. When dealing with

neonatal scans, standard skull-stripping methods (Hosseini et al.,

2015; Smith, 2000; Iglesias et al., 2011; Shattuck and Leahy, 2000)

failed to correctly remove non-brain areas, thus requiring manual
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corrections and introducing both a user- and a subject-based bias.

Therefore, we opted for Multi Atlas Skull Stripping (MASS) (Doshi

et al., 2013), which performs brain extraction through a template

selection strategy, obtaining a higher (around 10%) accuracy than

recent state-of-the-art tools and avoiding user intervention. As

a preliminary step, 3D T1-weighted images were FOV-reduced,

processed with Brain Extraction Toolbox (BET) (Smith, 2000), and

then bias-field corrected with the N4 algorithm to suppress low-

frequency inhomogeneities (Tustison et al., 2010). At this phase,

under the supervision of a board-certified neuroradiologist, we

selected six subjects that best represented the anatomical variations

within the dataset and processed this cohort with the developing

Human Connectome Project (dHCP) pipeline (Hughes et al.,

2017). The six 3D T1-weighted brain-extracted images generated

with the dHCP pipeline were subsequently used as a reference

template to train the MASS algorithm. A final re-run of the N4

algorithm ensured bias-field correction using the correct mask

extracted with the MASS framework instead of the rough one

after preliminary brain extraction with BET. All preprocessing

procedures relative to the structural scans are summarized in

Figure 1A.

2.3.2 HARDI scans
HARDI scans in pediatrics are sensitive to low SNR and are

more prone to macro as well as micro sources of movement.

We thus used Patch2Self denoising (Fadnavis et al., 2020) as

the very first preprocessing step for diffusion imaging. This

denoiser turned out to be particularly suitable for higher-order

diffusion models, outperforming other existing methods at visual

and modeling tasks (Schilling et al., 2022). The method was

implemented using DIPY v.1.4.0 (Garyfallidis et al., 2014) and

applied with an OLS regressor, with the threshold for b = 0

shell at 100, given the variability of non-diffusion-weighted b

values. All subsequent preprocessing steps were done in Mrtrix3

v.3.0.1 (Tournier et al., 2019). The standard analysis pipeline

performed well also on neonatal scans thanks to overall good image

contrast—(i) denoising; (ii) unringing; (iii) Echo Planar Imaging

(EPI)—distortion correction (with reversed phase-encoding on b=0

s/mm2), eddy-current and movement distortion correction; (iv)

B1-field inhomogeneity correction. All preprocessing steps relative

to the diffusion images are displayed in Figure 1B.

Regarding co-registration of structural and diffusion scans, for

each subject, the mean b=0 image from the diffusion data was

registered to the 3D T1-weighted structural image using a rigid-

body transformation in FSL (Jenkinson et al., 2012), due to their

high degree of overlap. The resulting inverse transformationmatrix

was exploited to map coordinates or data from the T1 space back

to the diffusion space. This allowed subsequent analyses to be

carried out in the native diffusion space of each subject, avoiding

manipulation or distortion but also maintaining the inherently

higher resolution of structural images.

2.3.3 Microstructural models
All quantitative diffusion features in this study result from

fitting a different model to the measured dMRI signal on a voxel-

wise basis. Despite the multiplicity of existing microstructural

dMRI models, the majority fall under the category of linear

models fitted with linear least-squares, hence the redundancy of

information concealed in diffusion measures. More specifically, all

these models share the representation of the dMRI signal as an

expansion in an appropriately chosen functional basis, where the

coefficients are determined using some variation of least squares

(Sjölund et al., 2018). In virtue of this, in the absence of noise, they

all can be traced back to the same mathematical equation:

y
(
x
)
=

d∑

i=1

ciφi

(
x
)

(1)

where y is the response variable to be modeled, x is a single

measurement, and φi

(
x
)
is the (possibly nonlinear) function with

the corresponding coefficients ci. In practice, given N observations

(xj, yj), we aim to estimate ĉ such that y ≈ 8̂c, where we have

introduced the matrix 8ji = φi(xj).

Multivariate CCA analysis has been applied precisely to further

investigate how each of these diffusion features relates to each other,

given their common starting mathematical formulation (Figure 2).

These microstructural dMRI models have been easily utilized

for this cohort thanks to the overall high image quality (Figure 3).

The outcome produced by each model has been inspected by

two experienced pediatric neuroradiologists (DT and MS) with

10 and 15 years of experience, respectively, and compared with

existing studies on age-matched cohorts. Furthermore, to avoid

spurious contributions from non-representative image portions

and to reduce computational time, all models have been applied

to a masked version of the data derived from averaging and

skull-stripping the non-diffusion weighted pre-processed volumes.

Further details about each specific HARDI microstructural model

are provided in Supplementary Section 1.1.

2.3.3.1 Di�usion Kurtosis Imaging

We estimated DKI maps using DIPY v.1.4.0 (https://dipy.

org) (Garyfallidis et al., 2014). Standard parametric maps—Mean

Kurtosis (MK), Axial Kurtosis (AK), Radial Kurtosis (RK), and

Kurtosis Fractional Anisotropy (KFA)—were thus generated. Since

these measures are susceptible to high-amplitude outliers, we

removed their impact by limiting the extraction of metrics within

the typical range (0, 3).

2.3.3.2 Neurite orientation dispersion and density imaging

We computed NODDI-related measures—Intra Cellular

Volume Fraction (ICVF), ISOtropic Volume Fraction (ISOVF),

and Orientation Dispersion Index (ODI)—with a linear framework

for Accelerated Microstructure Imaging via Convex Optimization

(AMICO) implemented in Python (https://github.com/daducci/

AMICO), which, through a convex optimization approach,

drastically accelerates the fit of advanced dMRI techniques while

preserving accuracy and precision in the estimated parameters,

thus meeting real application demands (Daducci et al., 2015).

2.3.3.3 Fiber Orientation Estimated using Continuous

Axially Symmetric Tensors

We resorted to DIPY also for the computation of measures

derived from the FORECAST model (Anderson, 2005; Kaden

et al., 2016). We used 6 as the spherical harmonics order
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FIGURE 1

Preprocessing pipeline: overview of the main preliminary image processing steps performed on (A) 3D T1-weighted, whose key step is skull-stripping

and (B) HARDI scans, whose core is represented by denoising as well as distortion correction, for an example subject.

(sh_order) for the fiber Orientation Distribution Function (fODF)

and CSD as the spherical deconvolution algorithm for the

FORECAST basis fitting (dec_alg) to extract crossing invariant

tensor indices. These are mean diffusivity (md), perpendicular

diffusivity (d⊥), parallel diffusivity (d‖), and fractional anisotropy

(FORECAST-fa). Using all b-value shells with a basis order of

6 fully leverages the available diffusion-weighted information

across varying diffusion sensitivities. This configuration effectively

captures both large-scale orientations and fine microstructural

details, making it well-suited for robust and computationally

efficient studies of complex white matter architecture (Raffelt

et al., 2012; Jeurissen et al., 2014; Tournier et al., 2007; Anderson,

2005).

2.3.3.4 Multi-Shell Multi-Tissue Constrained Spherical

Deconvolution

Application of MSMT CSD has been performed in MRtrix3

(http://www.mrtrix.org/). For response function estimation, used

as the kernel by the deconvolution algorithm, we resorted to

the dhollander approach, suitable for computing MSMT response
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FIGURE 2

An intuitive visualization of Canonical Correlation Analysis: Let N be the number of observations. n datasets—variable depending on each di�usion

model—Xk ∈ RNxVk are transformed by projections Wk ∈ R VkxD such that each paired embedding (Ai, Aj) is maximally correlated with unit length in the

projected space.

functions in the case of multi-tissue variants of SD and more

reliable in the case of neonates (Dhollander et al., 2016, 2019). We

also maintained the default spherical harmonics order in MRtrix3’s

MSMT CSD implementation to achieve an optimal balance of

angular resolution and noise resilience. This choice aligns with best

practices for neonatal HARDI data and leverages MRtrix3’s robust,

validated parameter defaults to ensure consistency and reliability

in diffusion modeling (Tournier et al., 2007; Jeurissen et al., 2014).

However, given the poor WM/Gray Matter (GM) contrast inherent

to neonatal scans (Dhollander et al., 2018), we were limited to

extracting tissue-specific ODF just for WM and Cerebro-Spinal

Fluid (CSF). Moreover, since we were interested in performing

population studies, we used the same response function for all

our cohorts. To this end, we calculated the average tissue response

function for all subjects exclusively for WM and CSF responses,

named wm and csf, respectively.

2.3.4 Univariate statistics
2.3.4.1 FA skeleton generation

We first used TBSS, a widely used voxel-wise statistical

inference for WM anatomy (Bach et al., 2014), to inspect

potential per-voxel differences across microstructural-derived

markers typical of preterm birth compared to term-born controls.

However, once again neonatal imaging caused the standard TBSS

pipeline developed in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) to

present technical challenges due to smaller anatomical dimension

and lower image contrast and resolution. We thus integrated it

with DTI-TK (http://dti-tk.sourceforge.net/pmwiki/pmwiki.php?

n=Documentation.TBSS), as suggested also in Bach et al. (2014)

and Tokariev et al. (2020).

The latter is a spatial normalization and atlas construction

toolkit optimized for examining WM morphometry

through tensor-based registration able to leverage rich

discriminating features.

The main differences from the standard TBSS pipeline are:

(i) limiting DTI tensor computation through FSL to the b=700

s/mm2 shell rather than the whole multi-shell diffusion volume;

(ii) at the registration phase, bootstrapping a population-specific

DTI template from our whole cohort of study without relying

on an existing one to better capture within-population features

(Supplementary Figure S1); (iii) thresholding the resulting WM

skeleton of the high-resolution population-specific DTI template at

0.1 level, in agreement with other works on neonates (Ball et al.,

2010) (Figure 4).

2.3.4.2 Non-FA metrics

In order to extend TBSS analysis to diffusion-derived measures

other than DTI-FA, we repeated DTI-TK + TBSS steps, similar

to what was done in Timmers et al. (2016). Specifically, these

non-FA metrics include DKI- (MK, AK, RK, KFA), NODDI-

(ICVF, ISOVF, ODI), FORECAST- (md, d‖, d⊥, FORECAST-fa),

and MSMT CSD (wm, csf)—derived measures, respectively. We

thus converted each microstructural scalar map to the DTI-TK

coordinates, and then we reapplied to each measure the previously

obtained nonlinear registration transform to transfer each DTI-

FA map to the population-specific template. This procedure was

repeated for each of the microstructural measures analyzed in

this study.

2.3.5 Univariate predictive model
2.3.5.1 Machine Learning methods for classification

Moving to ML analysis, we performed preterm/term-born

subject classification based on a predictive model.

Given the small amount of data available to train our model,

we thus resorted to an SVM framework to categorize preterm-

born and term-born individuals based on the whole-brain WM

skeleton estimated using TBSS. Indeed, among the variety of

predictive techniques applied so far in neuroimaging settings, SVM

has emerged as one of the most effective methods (Chin et al.,
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FIGURE 3

Microstructural models: parametric scalar maps derived from all the HARDI models employed for this study: (A) Di�usion Kurtosis Imaging (DKI), (B)

Neurite Orientation Dispersion and Density Imaging (NODDI), (C) Fiber Orientation Estimated using Continuous Axially Symmetric Tensors

(FORECAST), (D) Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT CSD).

2018; Chu et al., 2015) in coping with high-dimensional data and

providing good classification results (Vapnik, 1999).

We also carried out a further analysis to investigate how the

performance changes by varying the input dimension of our data

through feature selection, and then we trained a classification

model based on related findings. For the implementation of

ML methods, we resorted to scikit-learn free software in Python

(https://scikit-learn.org/stable/).

2.3.5.2 Experimental design

The experiments we carried out can be subdivided into two

phases (Figure 5).

In the first phase, we adopted SVM to perform binary

classification starting with the DTI-FA map, computed through

DIPY v.1.4.0, warped to common TBSS space, and masked by the

thresholded WM skeleton for all 69 infants involved. We then

split the dataset into learning and testing by stratified 5-fold cross-

validation (outer-CV) to increase the numerosity of our dataset

while preserving the same class ratio throughout the K folds as

the ratio in the original dataset. For each fold, we thus applied

data normalization in the default range [0,1] on both the learning

set and the test sets. We then further split the learning set into

training and validation sets, named inner-CV , to exhaustively tune

the model hyperparameters with the GridSearchCV instance.

We thus looked for the best hyperparameter grid by choosing the

one that produced the lowest prediction error. This set included:

(i) the best penalty term C (among 0.001, 0.01, 0.1, 1, 10, 100, and

106); (ii) the best kernel (among linear, radial basis function and
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FIGURE 4

TBSS pipeline: overview of the main steps of the TBSS framework, from spatial normalization of DTI volumes to bootstrapping the within-population

template to skeletonization of the template DTI-FA map and projection of each subject’s DTI-FA onto the skeleton.

polynomial with default degree=3); and (iii) the optimal number

of features (selecting 20%, 40%, 60%, 80%, and 100% of the input

dataset with the SelectKBest method). For each combination

of hyperparameters, we fitted a model on the training set and

thus evaluated its performance by computing the average F1

score across folds on the validation set. By selecting the set of

parameters whose average F1 score was the best, we then trained

such an SVMmodel on the learning set and subsequently evaluated

its performance in terms of average and standard deviation of

accuracy, precision, recall, F1 score, and Area Under the Receiver

Operating Characteristic (ROC) curve (AUC) across folds on the

unseen test set.

In the second phase, once selected the model classifier offering

the best performance on DTI-FA data was identified, we further

evaluated the classification performance when giving as inputs

the parametric measures from other microstructural models than

DTI. In this phase, we did not perform any inner-CV as we did

not introduce a hyperparameter search. The decision not to re-

optimize the classifier was justified by the desire to maintain a

controlled comparison between the series of measurements, using

the hyperparameters from the first stage. Indeed, this approach

minimizes variability by focusing on how different microstructural

measures affect model performance. Conversely, for each input

variable, we again carried out the outer-CV to provide a more

robust evaluation of the model. We thus trained the model on the

learning set and then assessed the model on the test set, computing

the average and standard deviation of usual scores.

2.3.6 Weight maps extraction and comparison
with TBSS

Finally, to relate the results from inferential speculation

with those from prediction, we extracted weight maps

from the selected SVM classifier within outer-CV , averaged

them across the 5 folds, normalized them between 0 and

1, and reshaped them as the 3D input TBSS skeleton for

mere visual comparison. The weights are SVM coefficients

determining the discriminant hyperplane, which depicts the

relevance of each voxel for classification between positive and

negative conditions.

We thus computed the standard Pearson’s correlation

between the normalized SVM weight maps and TBSS normalized

significance maps (p-maps) for each of the microstructural

measures analyzed. To further inspect the overlap between

WM discriminating features detected by ML and TBSS, we

related Pearson’s correlation with the Wasserstein Distance

(WD) metric to quantify the distance between the two

distributions. Both measures have been computed via the

Python library scipy.
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FIGURE 5

Experimental design for SVM classification: in a first phase, an SVM classification estimator is chosen to best perform on DTI-FA skeletonized data; in

a second phase the, selected model is extended to other non-FA measures.

2.3.7 Multivariate predictive model
Moving to multivariate analysis, the CCA method is based

on establishing linear relationships between two or more sets of

variables to find out inter-subject co-variances. CCA looks for

two or more sets of transformed variates—Canonical Components

(CCs) or Variates (CVs)—to assume maximum correlation across

the two datasets while being uncorrelated within each dataset.

Details about its mathematical formulation are provided in the

Supplementary Section 1.2.

In our study, we resorted to the open-source Python package

Pyrcca (Bilenko and Gallant, 2016) to perform a multi-set CCA

based on fusing all advanced dMRI models under analysis

(Supplementary Figure S2). We used as input all 14 HARDI

measures after filling in missing values and z-scoring. A linear

kernel was used to reduce the computational complexity of the

analysis. Moreover, we opted for a regularized kernel CCA to

avoid overfitting, given the low numerosity of our datasets, and

to relax the orthogonality constraint between the CCs. Finally,

we estimated the optimal set of CCA hyperparameters—the

regularization coefficient and the number of CCs—empirically by

using GridSearchCV. Specifically, the optimal regularization

parameter was chosen from a logarithmically spaced range of 10

values between 1× 10−4 and 1× 102, while the optimal number of

components was chosen between 1 and 5. We selected these ranges

based on pilot analyses performed on an independent dataset that

was not used for this publication.

2.3.7.1 Shared/distinct abnormalities

As in Sui et al. (2013), we inspected group differences between

the two cohorts by performing a non-parametric Mann-Whitney

U Test between each pair of CCs to look for the variates showing

abnormalities associated with preterm birth. The statistical survey

was followed by the Benjamini-Hochberg correction method for

multiple comparisons (Benjamini and Hochberg, 1995). If the

components show group differences inmore than one dMRImodel,

they are called modality-common or joint group-discriminative

CVs. Conversely, if the components show group differences

only in a single model, they are called modality-unique group-

discriminative CVs.

2.3.7.2 Inter-modality correlation

We then investigated the inter-correlation existing between

microstructural dMRI models by looking at the Canonical

Correlation Coefficients (CCC) to establish whether the

joint-group discriminative components additionally have

strong inter-modality correlation, which would reflect

the interaction and correspondence among diffusion

imaging techniques.

3 Results

3.1 TBSS analysis exhibits a significant
decrease in preterm subjects for a
subgroup of HARDI measures

Cross-subject voxel-wise TBSS statistics unraveled significantly

different voxels exclusively on a subset of the microstructural

maps under consideration, using an unpaired voxel-wise t-test

with Family-Wise Error (FWE) correction using Threshold-

Free Cluster Enhancement (TCFE) (Smith and Nichols, 2009).

Specifically, compared with the term cohort, the preterm group

showed a significant decrease in DTI-FA, MK, AK, ICVF,

and FORECAST-fa. The WM regions with significant between-

group differences in diffusion metrics are shown in Figure 6.

Conversely, no significant differences were observed by TBSS

analysis in RK, KFA, ISOVF, OD, MD, d‖, or, d⊥, or in MSMT-

derived measures. Table 3 summarizes the significant clusters

identified by TFCE in WM regions where diffusion metrics

showed decreased values in the preterm group compared with

the term group, highlighting metric-specific spatial patterns and

degrees of sensitivity to WMmicrostructural alterations associated

with prematurity.

More in detail, compared with the term group, the

preterm cohort had significantly decreased DTI-FA values

in widespread WM areas, predominately in the genu, body,

and splenium of the corpus callosum; right internal and

external capsule, corona radiata, and posterior thalamic

radiation. The distribution of areas with decreased MK was

similar with respect to the areas with decreased DTI-FA.

AK exhibited a pattern analogous to MK whilst comprising

a bilateral external capsule. The same applies to the ICVF

metric. The amount of WM areas showing a significant

decrease in prematurity increased for the FORECAST-fa

parameter, which extended to the whole corpus callosum,

bilateral internal capsule, external capsule, anterior corona

radiata, and, finally, posterior thalamic radiation (including the

optic radiation).
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FIGURE 6

TBSS exhibits discriminant white matter areas for a subset of microstructural measures: group-level voxel-wise statistical di�erence maps for DTI-FA

(FA), Mean Kurtosis (MK), Axial Kurtosis (AK), IntraCellular Volume Fraction (ICVF) and FORECAST fractional anisotropy (FORECAST-fa) between

preterm and term-born cohorts. Green indicates the DTI-FA skeleton with a threshold of 0.1, which highlights the tracts used in the comparison.

Red-Yellow indicates the regions with decreased metrics values in the preterm group after an unpaired voxel-wise t-test with Family-Wise Error

(FWE)-corrected p-values using Threshold-Free Cluster Enhancement (TFCE).
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TABLE 3 Summary of significant clusters from TFCE in white matter regions showing reduced values in di�usion metrics in the preterm group compared

with the term group.

Metric Cluster size (voxels) Peak value Max location (MNI) Corrected p-value

DTI-FA

Genu, body, and splenium of CC 182 0.978 (102, 94.5, 83.2) p < 0.022

Right IC, CR 79 0.968 (104, 110, 65.2) p < 0.032

Posterior TR 61 0.966 (87, 133, 67.5) p < 0.034

Right EC 8 0.950 (117, 84, 67.5) p < 0.05

MK

Genu, body, and splenium of CC 308 0.968 (117, 98, 69.8) p < 0.032

Right IC, CR, right EC 279 0.968 (78, 98, 65.2) p < 0.032

Posterior TR 226 0.974 (94.5, 126, 81) p < 0.026

AK

CC, bilateral IC and EC 1,118 0.978 (104, 103, 56.2) p < 0.022

Right CR 39 0.950 (79.5, 116, 65.2) p < 0.05

ICVF

Genu, body, and splenium of CC, right IC 409 0.984 (85.5, 105, 67.5) p < 0.016

Bilateral CR, Posterior TR 360 0.990 (108, 94.5, 99) p < 0.01

FORECAST-fa

CC, bilateral IC and EC, anterior CR, posterior TR 1,494 0.998 (76.5, 107, 63) p < 0.002

Regions are identified using white matter tracts and anatomical labels. Cluster Size describes the spatial extent of the significant region, measured by the number of significant voxels in the

cluster. Peak Value is the highest t-statistic value observed within the cluster, indicating the strongest statistical difference in the region.Max Location (MNI) specifies the exact coordinates (in

MNI space) of the voxel with the peak t-statistic, allowing anatomical localization; corrected p-value reflects the significance of the cluster after correcting for multiple comparisons.

CC, Corpus callosum; IC, Internal capsule; CR, Corona radiata; EC, External capsule; TR, Thalamic radiation.

3.2 SVM classification of group
membership achieves good performance,
especially in terms of area under the curve
score

Since the performance of a model significantly depends

on the value of its hyperparameters, we first focused on

hyperparameter tuning to determine the optimal values for our

classification estimator.

In this respect, Figure 7A shows the result of the cross-

validated grid search over the parameter grid across each of the

five folds. Furthermore, based on the selected hyperparameters,

we fitted our model on the training set and evaluated its

performance on the test set in terms of F1 score, accuracy,

precision, recall, and AUC across each of the five-folds (Figure 7B).

To establish the best estimator possible based on the input data,

we counted how many folds in which a variable was selected

and could thus conclude that penalty term C and linear kernel

were the most frequently selected hyperparameters. Conversely,

the search turned out to be less stable in terms of the optimal

number of features, which varied at every fold (Figure 7C).

Therefore, to set the last missing parameter for our estimator,

we set C and kernel according to their most chosen values

while varying the number of features as a percentage of the

total amount.

Figure 7C confirms that, in our case, feature selection is

not beneficial for improving classification performance. Indeed,

both average value and standard deviation across folds of

each score remain constant with variable subsets of features.

In addition, the average AUC score proves to be maximal

(0.87) when including the whole feature amount. We thus

opted for avoiding feature reduction and kept the whole of

the features to define the final version of our SVM estimator.

As regards this definitive version of the classifier, a detailed

plot of the ROC curve profile for every fold is displayed in

Figure 7D. We subsequently trained a classification model without

hyperparameter search (inner-CV) using as input variables the

metrics derived from other microstructural HARDI models.

Performance in terms of F1 score, accuracy, precision, recall, and

AUC for the whole set of microstructural parameters, including

DTI-FA, is reported in Figure 8. Of note, among the whole

set of measures, the ones exhibiting the highest discriminative

power in terms of SVM classification are those probing overall

anisotropy and directionality of fibers, namely DTI-FA, KFA, OD,

and FORECAST-fa, for which all scores overcome 75%, 74%, 70%,

and 74% levels on average, respectively.

3.3 Comparison between SVM and TBSS
reveals a measure-dependent rate of
agreement between the two approaches

Relating variables identified as statistically significant with

those identified as predictively relevant, a statistically significant
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FIGURE 7

First phase of binary classification: SVM tuning of hyperparameters training on FA skeletonized data: (A) cross-validated search of the best set of

hyperparameters for our SVM estimator on stratified 5-fold data; (B) relative performance for every score across folds; (C) Di�erent sets of selected

features along with relative performance for every score across folds; and (D) area under the ROC curve score.
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FIGURE 8

Second phase of binary classification: SVM testing on non-FA skeletonized data on average shows good performance, especially for the AUC score: a

heatmap containing the average and relative standard deviation, in percentage, of each score and for all the HARDI measures under analysis.

Pearson’s correlation for all microstructural measures considered

(p < 10−2) (see Table 4) arose. This relationship was further

confirmed by inspecting the association between the absolute

Pearson’s correlation coefficient and WD, reported in Figure 9,

showing a trend of indirect proportionality. Overall, an inverse

trend was observed, with measures showing relatively higher

absolute correlations generally corresponding to lower WD,

although this relationship may vary slightly across specific

measures. The correlation was moderate (r = 0.61) for the

d‖ parameter, weakly moderate (r ∈ 0.45 − 0.51) for RK,

KFA, DTI-FA, and OD, low (r ∈ 0.28 − 0.35) for MK, AK,

MD, FORECAST-fa, and ICVF, and very low (r ∈ 0.05 −

0.14) for d⊥, CSD-related measures, and ISOVF (Schober et al.,

2018). These results suggest an overall good, though measure-

dependent, rate of agreement between p-maps derived by the

TBSS approach and weights probing the discriminative power

of SVM.

3.4 Canonical Correlation Analysis unravels
joint group di�erences for parallel
di�usivity and ISOtropic Volume Fraction

Moving to CCA analysis, Pyrcca cross-validated

hyperparameters search detected the optimal regularization

coefficient equal to 0.01, and the optimal number of CVs to

4. Preliminarily, the results of CCA analysis were evaluated

in terms of Canonical Correlations to determine the number

of meaningful CCs recovered by Pyrcca. Figure 10 contains a

heatmap of pairwise correlations between the 14 HARDI measures

for each of the 4 sets of CCs. From the Mann–Whitney U Test,

CCA analysis applied to our cohort unraveled group differences in

the 4th Canonical Component, for which statistically significant

differences between preterm and term subjects have been found

in ISOVF and d⊥ even after outlier removal with the interquartile

range method and FDR correction (p = 0.014,U = 621 and
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p = 0.014,U = 759, respectively, α = 0.05), thus being a joint

group discriminative independent component. This is depicted in

Figure 11A, with violin plots of CVs having statistically significant

TABLE 4 Comparison between inferential TBSS statistics and SVM

prediction.

Pearson’s r p-value Wasserstein
distance

DTI-FA −0.45 <0.0001 0.32

MK −0.34 <0.0001 0.43

AK −0.33 <0.0001 0.41

RK −0.46 <0.0001 0.36

KFA −0.48 <0.0001 0.35

d‖ −0.61 <0.0001 0.20

d⊥ −0.14 <0.0001 0.48

md −0.33 <0.0001 0.36

FORECAST−fa −0.28 <0.0001 0.40

wm −0.14 <0.0001 0.42

csf −0.11 <0.0001 0.55

ICVF −0.35 <0.0001 0.36

ODI −0.51 <0.0001 0.41

ISOVF −0.05 0.013 0.46

differences between preterm and term-born subjects. Interestingly,

the intramodal connection within the joint-discriminative

independent component (4th) indicates a good correlation

(r = 0.62) (see Figure 10). Furthermore, to visually mark out

detected differences between the two groups, we displayed derived

spatial maps only for the specific joint group-differentiative CC. In

Figure 11B, each z-score-transformed input measure is reported

to highlight statistically significant group-discriminating subsets

of voxels.

4 Discussion

In this work, we examined the complexities associated

with preterm birth through a multiplicity of advanced HARDI

models in turn employed at different levels of analysis. To the

best of our knowledge, this study is thus the first to jointly

employ univariate statistics (TBSS) and predictive modeling

(SVM) on intramodal advanced dMRI data to comprehensively

investigate WM alterations associated with preterm birth. Unlike

prior works that have predominantly used these methods

independently, our approach leverages their complementary

strengths—TBSS for robust group-level analysis and SVM for

individualized prediction—providing a multifaceted perspective on

WM microstructure. Additionally, for the first time, we integrate

CCA to uncover hidden relationships among multiple advanced

dMRI models, surpassing traditional statistical tools in capturing

complex interdependencies. By combining these methodologies,

our study represents a significant advancement toward identifying

FIGURE 9

Relationship between Pearson’s correlation and Wasserstein Distance shows a good trend of association throughout all HARDI parameters

considered: those measures exhibiting the highest absolute correlation values correspondingly have a lower Wasserstein Distance.
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FIGURE 10

Canonical Correlation Analysis identifies four Canonical Components maximizing pair-wise Canonical Correlation matrices: (A) first Canonical

Component, (B) second Canonical Component, (C) third Canonical Component, and (D) fourth Canonical Component. For the sake of brevity, FA

stands for DTI-FA, while fa stands for FORECAST-fa.

biologically interpretable and clinically relevant markers of WM

alterations in preterm infants, paving the way formore personalized

and data-driven approaches in neonatal neuroimaging.

The first tool we considered to investigate the potential

characteristics of preterm subjects was TBSS. Through this

inferential data analysis strategy, we demonstrated that both DTI-

FA and non-FA values can be useful measures to distinguish

relevant WM tracts in preterm-born neonates at TEA from

term-born controls. It was particularly notable that there was a

correspondence between the distribution of areas with decreased

DTI-FA and non-FA measures, with an expansion of WM-

discriminating areas over the main tracts, especially in the case

of beyond-DTI measures. This agrees with existing findings in

the literature claiming that: (i) WM maturation is associated with

increasing axonal organization, pre-myelination, and myelination,

which progressively restricts water diffusion perpendicular to the
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FIGURE 11

Perpendicular di�usivity (d⊥) and ISOtropic Volume Fraction (ISOVF) turn out to be joint group-discriminative Components from Canonical

Correlation Analysis: (A) Violin plots of the loading parameters for the 4th component for each dMRI measure after outlier removal, with ∗∗ indicating

the significant p values of the Mann–Whitney U Test between term and preterm participants; (B) Group-discriminating regions across all modalities.

The Z-scored spatial maps exhibit positive Z-values (orange regions), meaning preterm > term subjects, and negative Z-values (blue regions),

meaning term > preterm.

direction of the axonal fiber; (ii) since premature birth may lead to

relatively slow brain development in premature infants, some brain

regions are less developed than the full-term infants. This includes

the corpus callosum, anterior and posterior limb of the internal

capsule, and, more generally, all tracts subject to early myelination

whose metabolism is thus vigorous and the oxygen demand is high,

whichmakes thesemetabolically active areas the first to be damaged

in case of risk factors for preterm birth (Ling et al., 2013). For the

DTI measures, lower FA has been found across the WM in preterm

infants compared with term-born infants (Pecheva et al., 2018;

Hüppi et al., 1998; Anjari et al., 2007; Thompson et al., 2011), which

correlated with increased prematurity (Ball et al., 2010; Partridge

et al., 2004; Ouyang et al., 2019a). Furthermore, WM diffusion

measures in preterm infants at TEA have been related to subsequent

neurodevelopmental performance. Decreased DTI-FA measures,

with an expansion of together with increased MD and RD-FA

measures, with an expansion of in the WM at TEA are associated

with worsened motor, cognitive, and language performance in

early childhood (Counsell et al., 2008; Barnett et al., 2018) as

well as visual function (Bassi et al., 2008; Groppo et al., 2014). In

Zhao et al. (2021), kurtosis-related parameters, especially MK, were

shown to sensitively reflect the brain maturity of premature infants.

Decreased MK values were registered in the preterm cohort due to

the decreased density of cells and axon membranes associated with

impaired brain development.

Similarly, the NODDI model has been applied to investigate

WM and GM maturation in the preterm brain (Kimpton et al.,

2021; Batalle et al., 2019, 2017; Eaton-Rosen et al., 2015), finding

that ICVF increases in theWMwith increasing maturation, mainly

attributed to increasing axonal growth/density/packing/diameter

or pre-myelination/myelination changes, rather than changes in

axon coherence or geometry. Moreover, greater ICVF in childhood

has been associated with better neurodevelopmental outcomes, IQ

(Young et al., 2019; Kelly et al., 2016), visual motor integration

(Young et al., 2019), motor, behavioral, and emotional scores

(Kelly et al., 2016), language (Mürner-Lavanchy et al., 2018),

and maths (Collins et al., 2019). Finally, although not previously

investigated in the case of preterm subjects, the FORECAST-

fa parameter falls into those measures exhibiting significant

differences from preterm to term-born infants, presumably for

being the equivalent of the DTI-FA yet far more sensitive to the

underlying fiber microanatomy.

The second perspective from which we examined our cohort

was an SVM-based approach aimed at a more individualized

classification method to overcome shortcomings of group-wise

investigations. The good achievement of the SVM in correctly

assigning group membership, based on a single MR image,

indicates that the distinct brain development of preterm-born

individuals can be successfully identified by predictive methods.

Indeed, considering the low sample size at disposal, much inferior
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to the number of features (i.e., image voxels), the SVM classifier

managed to handle the issue of overfitting and proved a good

performance on both the DTI-FA skeletonized image, on which

its model was designed, and on the vast majority of non-

FA measures. Specifically, together with DTI-FA, other scalar

parameters derived from DKI, NODDI, and FORECAST exhibited

good scores in terms of both F1/accuracy and, most importantly,

of AUC—a significantly more meaningful measure of classifier

performance than accuracy because it does not bias on size of

test or evaluation data. Of note, preterm vs. term classification

accuracy achieved by the predictive model, however good, was

not optimal. This may be due to the diffuse effect of preterm

birth onWMmicrostructure, being optimally captured by methods

not requiring anatomically constrained ROIs (Baykara et al., 2016;

Blesa et al., 2020). Along with overall good performance scores,

the selected classifier also showed strong robustness (i.e., limited

variability across folds), another important indicator for model

evaluation, assessing its stability. Furthermore, the evidence that

the most discriminating features in terms of SVM classification are

related to fiber anisotropy stands for dysmaturation or delay in

myelination of WM tracts following preterm birth in contrast to

term-born controls.

We then explored the relationship occurring between TBSS-

and SVM-based methods, assessing the degree of overlap between

the two survey methods in attributing relevance to the input

variables. The observed negative Pearson’s correlation is explained

by considering that we compared a significance map from voxel-

wise statistics made up of thresholded p-values and themap of SVM

weight vectors serving as a ranking metric for measuring feature

importance (Gaonkar and Davatzikos, 2013). As a result, voxels

exhibiting a lower p-value correspondingly have a high ranking in

the SVMmodel, which results in the observed inverse trend.

The partial agreement between voxel features identified

by TBSS and SVM reflects the complementary strengths of

inferential and predictive methods. TBSS excels at identifying

group-level differences, while SVM highlights individualized

discriminative features, providing a multifaceted understanding of

WM alterations.

Such findings are in line with Bzdok et al. (2020), who directly

compared explanatory and predictive modeling in both simulated

and common real-world datasets, finding out a certain variability

in feature identification between the two approaches, with

increasing divergence in typical clinical settings. This discrepancy

is attributable to the specific data scenario at hand, including

properties of the data-generating mechanisms (e.g., available

sample size, number of informative input variables, redundancy

of information carried in the input variable about the outcome,

random noise variation, pathological settings), which affect variable

identification in TBSS and SVM in distinct ways. Specifically, small-

to-moderate sample size and collinearity between input measures,

very common in biological data such as in our case, together with

the number of truly relevant variables, commonly unknown in

biomedical data analysis in practice, are those driving experimental

factors causing the largest disagreements in variable identification.

It is on the premise that integrating multiple datasets from

the same participants can increase confidence when making

conclusions to a greater degree than traditional statistical

approaches (Sui et al., 2013) that we extended our investigation

to considering simultaneously multiple microstructural models

through CCA. In this study, we investigated brain co-alterations

from several advanced dMRI across preterm and term-born

cohorts. To our knowledge, this is the first study to clarify preterm

birth-related brain changes in different dMRI modalities via an

intramodal data fusion model. Specifically, two further measures,

d⊥ and ISOVF, emerged as relevant markers discriminative

of preterm birth, other than those highlighted by TBSS or

classification. This proves the capability of CCA to detect

potentially hidden relationships between different imaging

modalities beyond traditional methods, which could not be

detected from a single dMRI model. The brain regions exhibiting

the strongest contributions to coherent changes related to preterm

birth involve the majority of WM tracts detected with TBSS.

More in detail, a simultaneous decrease in both d⊥ and ISOVF is

observed in the term-born group compared to the preterm one.

Such findings are in line with previous studies (Vaher et al., 2022;

Barnett et al., 2018; Pecheva et al., 2017; Thompson et al., 2019)

and consistent with the higher content of extracellular free water

expected in the case of diffuse loss of WMmicrostructural integrity

and organization inherent to preterm birth. Similarly, being d⊥ a

more sensitive variant of DTI’s RD, it proved in turn to be highly

reflective of the lack of tortuosity imposed on water motion due

to the delayed development of the myelin sheath (Knight et al.,

2018).

Through this investigation, we highlight how “importance”,

intended as variable relevance, does not have an unambiguous

definition across different data analysis strategies. Resorting to

p values or prediction accuracies for arguing research claims

both have flaws and each is insufficient per se. Our findings

thus push toward the adoption of a combined approach aimed

at exploring similarities and differences of significance and

predictability to fully exploit the advantages of both methods

in the perspective of a patient-tailored predictive approach,

where the goal of forecasting patient-specific disease symptoms

in turn helps and complements explaining disease-causing

biological mechanisms, finding a common ground between these

two apparently opposed methods. In this sense, inference and

prediction can be seen as two sides of the same coin, both

aimed at understanding and using data to make informed and

better decisions.

We are aware that both voxel-wise statistical methods and,

in particular, the ML approach benefit from large quantities

of data. Our survey is inherently limited by the challenge of

collecting clinical data from the targeted population and thus

provides preliminary, exploratory insights into microstructural

changes associated with prematurity. However, all methodological

strategies to handle this issue have been adopted to balance

interpretability with predictive robustness, such as the

choice of SVM as a classifier and the implementation of

nested cross-validation.

Future studies will focus on extending the current dataset

and introducing stratification by diagnosis, which could enhance

the predictive classification’s ability to detect specific WM tract

patterns across healthy and pathological preterm subjects. This

aligns with our broader goal of developing clinically actionable
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tools for understanding and monitoring prematurity-related

WM changes.

5 Conclusion

Results gathered so far from this study revealed that an

intramodal dMRI approach can be a valuable tool to distinguish

atypical brain microstructure at TEA when compared with a

full-term group, regardless of the specific diagnosis based on

radiological findings. This differentiation is achieved at three

different levels of investigation, to provide a more comprehensive,

detailed, and biologically meaningful interpretation of WM

microstructure changes associated with prematurity. First,

a classical group-level survey tool such as TBSS confirmed

the high sensitivity of advanced dMRI methods. Second,

a state-of-the-art approach based on SVM classification

achieved a high recognition rate. Furthermore,comparing

the two methods revealed a distinct agreement in selecting

the most discriminating WM regions, mainly depending on

the microstructural measure under consideration. Finally,

CCA further represents a powerful tool for identifying the

inter-measure similarities between metrics associated with

preterm birth in a data-driven way, without imposing an

explicit model.

Taken together, these insights suggest that combining synergy

between modalities and analytical tools will allow for a more

thorough investigation of the preterm birth phenomenon

providing an unprecedented supplement to our understanding

of biological mechanisms. Furthermore, these findings should be

added to the body of literature suggesting that there is generalized

dysmaturation of the WM in preterm neonates.

Further studies should focus on investigating how well these

results generalize to data across centers and on what kind of

improvements are needed to reach the end goal of predicting, on

an individual basis, the specific outcome of subjects born preterm.
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