
TYPE Original Research

PUBLISHED 20 November 2024

DOI 10.3389/fnins.2024.1480871

OPEN ACCESS

EDITED BY

Maria Elisa Serrano Navacerrada,

King’s College London, United Kingdom

REVIEWED BY

Jaeseok Park,

Sungkyunkwan University, Republic of Korea

Guangyu Dan,

University of Illinois Chicago, United States

*CORRESPONDENCE

Yang Gao

yanggao@buaa.edu.cn

Defeng Wang

dfwang@buaa.edu.cn

RECEIVED 14 August 2024

ACCEPTED 24 October 2024

PUBLISHED 20 November 2024

CITATION

Liu Y, Wang L, Ning X, Gao Y and Wang D

(2024) Enhancing early Alzheimer’s disease

classification accuracy through the fusion of

sMRI and rsMEG data: a deep learning

approach. Front. Neurosci. 18:1480871.

doi: 10.3389/fnins.2024.1480871

COPYRIGHT

© 2024 Liu, Wang, Ning, Gao and Wang. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Enhancing early Alzheimer’s
disease classification accuracy
through the fusion of sMRI and
rsMEG data: a deep learning
approach

Yuchen Liu1,2, Ling Wang1, Xiaolin Ning1,2,3, Yang Gao1,2* and

Defeng Wang1*

1School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing,

China, 2Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang

University, Beijing, China, 3Hefei National Laboratory, Hefei, China

Objective: Early detection and prediction of Alzheimer’s Disease are paramount

for elucidating neurodegenerative processes and enhancing cognitive resilience.

Structural Magnetic Resonance Imaging (sMRI) provides insights into brain

morphology, while resting-state Magnetoencephalography (rsMEG) elucidates

functional aspects. However, inherent disparities between these multimodal

neuroimaging modalities pose challenges to the e�ective integration of

multimodal features.

Approach: To address these challenges, we propose a deep learning-based

multimodal classification framework for Alzheimer’s disease, which harnesses

the fusion of pivotal features from sMRI and rsMEG to augment classification

precision. Utilizing the BioFIND dataset, classification trials were conducted on

163 Mild Cognitive Impairment cases and 144 cognitively Healthy Controls.

Results: The study findings demonstrate that the InterFusionmethod, combining

sMRI and rsMEG data, achieved a classification accuracy of 0.827. This accuracy

significantly surpassed the accuracies obtained by rsMEG only at 0.710 and sMRI

only at 0.749. Moreover, the evaluation of di�erent fusion techniques revealed

that InterFusion outperformed both EarlyFusion with an accuracy of 0.756 and

LateFusion with an accuracy of 0.801. Additionally, the study delved deeper into

the role of di�erent frequency band features of rsMEG in fusion by analyzing six

frequency bands, thus expanding the diagnostic scope.

Discussion: These results highlight the value of integrating resting-state rsMEG

and sMRI data in the early diagnosis of Alzheimer’s disease, demonstrating

significant potential in the field of neuroscience diagnostics.

KEYWORDS

Alzheimer’s disease, structural MRI, magnetoencephalography, deep learning,

multimodal fusion

1 Introduction

Alzheimer’s disease (AD) constitutes a formidable healthcare challenge, marked by

a progressive decline in cognitive function. This decline typically begins with memory

impairment and subsequently extends to affect behavior, speech, and motor skills. As

the most prevalent form of dementia, AD currently affects approximately 50 million
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individuals globally, a number projected to double every two

decades, potentially reaching 152 million by 2050 (Dementia,

2024). Mild cognitive impairment (MCI) is recognized as the

prodromal stage of AD, characterized by cognitive decline that

does not yet significantly disrupt daily activities (Petersen Ronald,

2011). Although a cure for AD remains elusive, early detection

is critical for optimizing management strategies and may delay

the progression to dementia. The identification of accurate and

sensitive biomarkers associated with brain alterations in dementia

is essential for facilitating early-phase clinical trials.

Neuroimaging, particularly Structural Magnetic Resonance

Imaging (sMRI), plays a crucial role in evaluating brain structure,

specifically the volume of gray matter in regions impacted by AD,

such as the medial temporal lobes (Frisoni et al., 2010). However,

atrophy often signifies late-stage changes, manifesting years after

the initial molecular alterations (Frisoni et al., 2017; Woo et al.,

2017). Magnetoencephalography (MEG) presents a promising

alternative for the identification of functional biomarkers in

early-stage AD, owing to its superior temporal resolution and

reliability, which are not confounded by neurovascular effects

(Hornero et al., 2008; Schoonhoven et al., 2022). In contrast

to Electroencephalography (EEG), MEG offers enhanced spatial

resolution, facilitating the detection of alterations in the brain’s

functional connectome. This capability is vital for the application

of machine learning techniques aimed at distinguishing features of

MCI (Maestú et al., 2015).

Recent years have seen a proliferation of sophisticated

computer-aided diagnosis techniques leveraging Artificial

Intelligence (AI) for the accurate diagnosis and classification of

Alzheimer’s disease (AD) and other forms of dementia. Lopez-

Martin et al. (2020) introduced a deep learning model utilizing

synchrony measurements from MEG to detect early symptoms of

Alzheimer’s disease. This model, a novel deep learning architecture

based on random block ensembles, processes neural activity-

reflected magnetic signal characteristics through a series of 2D

convolutions, batch normalization, and pooling layers. Zhu et al.

(2021) proposed a deep learning network named DA-MIDL,

which employs local brain atrophy areas to extract discriminative

features, combined with multi-instance learning and a global

attention mechanism, for the early diagnosis of Alzheimer’s

disease and mild cognitive impairment. Giovannetti et al. (2021)

proposed a new Deep-MEG method, transforming MEG data

into an image-based representation and employing an ensemble

classifier based on deep convolutional neural networks for the

prediction of early Alzheimer’s disease (AD). Fouad and El-Zahraa

M. Labib (2023) explored the use of EEG signals for the automatic

detection of Alzheimer’s disease, demonstrating the superior

performance of deep learning over traditional machine learning

methods such as Naive Bayes and Support Vector Machines. Nour

et al. (2024) proposed a novel method combining Deep Ensemble

Learning (DEL) and a two-dimensional Convolutional Neural

Network (2D-CNN) for the accurate diagnosis and classification

of Alzheimer’s disease (AD) and healthy controls (HC) through

EEG signals. The proposed method achieved superior performance

compared to traditional machine learning methods, demonstrating

the potential of deep learning in the early detection of

Alzheimer’s disease.

Multimodal classification methods that utilize different

modalities offer significant advantages over traditional single-

modality-based approaches for diagnosing AD and its prodromal

stage, MCI. The integration of complementary information from

various imaging modalities can enhance the comprehensive

understanding of AD-associated changes and improve diagnostic

accuracy. For instance, Ferri et al. (2021) detected Alzheimer’s

disease patients using artificial neural networks and stacked

autoencoders from resting-state EEG (rsEEG) and structural MRI

(sMRI) variables, achieving classification accuracies of 80% (EEG),

85% (sMRI), and 89% (both). Deatsch et al. (2022) developed a

generic deep learning model to differentiate between Alzheimer’s

disease patients and normal controls through neuroimaging scans,

evaluating the impact of imaging modalities and longitudinal

data on performance. The study revealed that models trained

on 18F-FDG PET outperformed those trained on sMRI, and

incorporating longitudinal information into the 18F-FDG PET

model significantly enhanced performance. Qiu et al. (2024)

proposed a Multi-Fusion Joint Learning (MJL) module to enhance

the model’s discriminative capability in AD-related brain regions

by integrating PET and sMRI features across multiple scales. Xu

et al. (2023) introduced a multilevel fusion network for identifying

MCI using multimodal neuroimaging, achieving superior

performance over existing methods by extracting local and global

representations and establishing long-range dependencies.

The review of existing research clearly indicates a predominant

reliance on unimodal methodologies in the field to date,

despite the acknowledgment of multimodal techniques in prior

discussions. An analysis of the progression of multimodal strategies

underscores significant unresolved challenges. These include a

constrained participant pool and the complexities associated

with high-dimensional feature spaces, where the prevalent

diagnostic strategy involves the mere amalgamation of multimodal

features. This limitation hampers the advancement of multimodal

classification techniques. Additionally, the diagnosis of patients

with cognitive impairments frequently necessitates consideration of

both brain atrophy and functional cognitive alterations. However,

certain multimodal methodologies exclusively focus on structural

transformations, disregarding functional variations. This oversight

neglects the synergistic potential of multimodal imaging data.

Vaghari et al. (2022b) highlighted the significance of rsMEG data

in detecting MCI at an early stage, demonstrating that rsMEG

can augment sMRI-based classification for MCI, thereby playing a

crucial role in the preliminary identification of Alzheimer’s disease.

On this basis, this study endeavors to introduce an innovative

deep learning-driven multimodal feature selection approach that

not only minimizes irrelevant and redundant features but also

harmonizes the complementary aspects of multimodal data.

In this study, we introduce a complex diagnostic network

that utilizes sMRI and rsMEG modalities. Using the BioFind

dataset, we developed an innovative CNN-transformer framework

that combines cross attention mechanisms for feature fusion,

aiming to improve the diagnosis of attention deficit disorder

and prediction of mild cognitive impairment (MCI) through

multimodal brain imaging. Our method uniquely employs sMRI

and rsMEG as multimodal images and proposes the Spatial-

Channel Cross-Attention Fusion (SCCAF) module. This module
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includes Multi-Modal Patch Embedding (MMPE) block to enhance

the feature representation of multimodal data, Spatial-wise

Cross-modal Attention (SCA) block to capture global feature

correlations across multimodal data efficiently via cross-modal

attention, and Channel-wise Feature Aggregation (CFA) block

to dynamically integrate and fuses cross-modal data based

on channel correlations, enabling the framework to discern

non-local dependencies and amalgamate complementary cross-

modal information effectively. Its superiority is validated through

comparisons with single-modal methods, decision fusion methods,

and reference comparison studies, demonstrating significant

advancements in MCI progression prediction. Additionally, we

delve into the rsMEG features of six frequency bands (delta,

theta, alpha, beta, low gamma, or high gamma), enriching the

comprehensiveness of the diagnostic model.

The specific contributions of this paper can be summarized as

follows:

• We proposed a multimodal approach integrating sMRI and

rsMEG for the enhanced early diagnosis and prediction of

Alzheimer’s disease (AD). To the best of our knowledge, this is

the first study to utilize deep learning techniques to combine

sMRI and rsMEG for disease diagnosis.

• We introduced an advanced diagnostic network that employs

a Spatial-Channel Cross-Attention Fusion module for

effective feature fusion within multimodal data. This method

significantly outperforms unimodal approaches and other

fusion techniques in both AD diagnosis and the prediction of

mild cognitive impairment (MCI) progression.

• Weperformed a thorough comparative analysis of Alzheimer’s

diagnosis using sMRI and rsMEG images. This analysis

encompassed unimodal comparisons, three fusion strategy

comparisons, and an in-depth exploration of rsMEG features

across six frequency bands, thereby demonstrating the

diagnostic model’s effectiveness and comprehensiveness.

2 Method

In this section, we begin by introducing the source of

the dataset and detailing the dataset preprocessing steps.

Subsequently, we provide a description of the proposedmultimodal

classification framework, including its constituent components

and loss function.

2.1 Materials and preprocessing

Table 1 summarizes the sample used in this study. The BioFIND

dataset (Vaghari et al., 2022a) was utilized, consisting of individuals

with MCI and Healthy Controls (HC) from two sites: the MRC

Cognition and Brain Sciences Unit (CBU) in Cambridge, England,

and the Center for Biomedical Technology (CTB) inMadrid, Spain.

Controls at CBU were selected from the CamCAN cohort and

underwent health status verification through screening processes

(Shafto et al., 2014). At CTB, controls underwent a comprehensive

neuropsychological evaluation and received sMRI scans. MCI

diagnosis at CTB followed the criteria set by Frisoni et al. (2011),

TABLE 1 Summary of data characteristics.

Characteristic HC MCI T /X 2 and p value

Site (CBU/CTB) 91/75 68/90 X
2 = 4.04, p= 0.04

Sex (M/F) 82/84 80/78 X
2 = 0.01, p= 0.91

Age (years) 71.3 (7.0) 72.9 (6,7) T= -2.04, p= 0.04

Education (years) 14.5 (4.4) 10.8 (5.3) T= 6.7, p < 0.001

MMSE 28.8 (1.2) 26.1 (2.8) T= 11.11, p < 0.001

Recording duration

(seconds)

481.5(262) 180.0(305) Z= 4.19, p < 0.001

Recording hour (24 h) 12.8 (2.4) 12.6 (2.1) T= 1.13, p= 0.26

Number of bad

epochs

4.1 (2.8) 4.7 (3.8) T= -1.74, p= 0.08

For Site and Sex, the data are presented as counts; for Recording Duration, medians are

displayed alongside interquartile ranges (in parentheses). Means, accompanied by standard

deviations (in parentheses), are provided for all other variables. Abbreviations used include:

CBU for Cognition& Brain Sciences Unit; CTB for Center for Biomedical Technology;MMSE

for Mini-Mental State Examination; MCI for Mild Cognitive Impairment; M for Male; F for

Female; and SD for standard deviation.

which involved clinical assessment and quantitative metrics. After

excluding cases with missing sMRI data and dental sMRI artifacts,

the final dataset included 163 HC and 144 MCI records.

The rsMEG data was acquired in magnetically shielded rooms

at both sites. Environmental noise was suppressed through signal

space separation utilizing MaxFilter 2.2.12 as described by Taulu

and Kajola (2005). Data importation was facilitated by the SPM12

toolbox (available at http://www.fil.ion.ucl.ac.uk/spm/; Penny et al.,

2011). A minimum of 120 s of resting-state data was used for all

subjects. Data processing involved down-sampling to 500 Hz and

band-pass filtering from 0.5 to 98 Hz. Artifact detection and the

marking of bad epochs were performed through OSL’s automatic

detection mechanism, as outlined in Vaghari et al. (2022a). The

analysis focused on sensor-level features without reconstructing

the sources of the rsMEG data, specifically utilizing data from

magnetometers (MAGs) due to their sensitivity to deeper brain

signals, which is crucial in the study of Alzheimer’s disease given its

significant impact on brain structures (Garcés et al., 2017). Despite

MAGs’ susceptibility to noise, their selection was justified by their

relevance in examining alterations in deep brain regions associated

with Alzheimer’s disease. The rsMEG data was segmented into a

size of 102× 8,192.

The sMRI data was collected using T1-weighted sMRIs.

The CBU participants were scanned using a Siemens 3T TIM

TRIO or Prisma MRI scanner using a Magnetization Prepared

RApid Gradient Echo (MPRAGE) sequence with the following

parameters: Repetition Time (TR) = 2250 ms; Echo Time (TE) =
2.99 ms; Inversion Time (TI)= 900 ms; flip angle= 9 degrees; field

of view (FOV) = 256 mm × 240 mm × 192 mm; voxel size = 1

mm isotropic; andGRAPPA acceleration factor= 2. In contrast, the

CTB participants were scanned on a General Electric 1.5 Tesla MRI

scanner using a high-resolution antenna and a homogenization

PURE filter, specifically employing a Fast Spoiled Gradient Echo

sequence with the following parameters: TR/TE/TI = 11.2/4.2/450

ms; flip angle = 12 degrees; slice thickness = 1 mm; matrix size

= 256 × 256; and FOV = 25 cm. The sMRI data was processed
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exclusively through diffeomorphic registration using the DARTEL

toolbox (Ashburner, 2007) to the MNI152 template. The sMRI data

was resized to a resolution of 192 × 192 × 182 voxels to align with

the resolution of the rsMEG features.

2.2 Fusion strategies

In this study, we investigate three distinct fusion strategies:

EarlyFusion, InterFusion, and LateFusion, as illustrated in

Figure 1, which provides a comprehensive overview of the

methodologies employed.

EarlyFusion: EarlyFusion integrates raw data from various

sources prior to feature extraction by the network. In this approach,

MEG and sMRI data are downscaled to a uniform dimension

and concatenated at the input layer. The fused information from

these two modalities is subsequently processed by the feature

extraction branch and classifier to generate the output. The

feature extraction branches utilize four ResNet modules for feature

extraction, comprising convolutional layers, normalization layers,

and ReLU activation functions. The classifier produces the final

output through two linear-ReLU layers.

LateFusion: LateFusion combines the individual classification

results from each modality, which are then processed by a

final classifier. Specifically, the rsMEG branch begins with a

1 × 15 strip convolution kernel for each channel, followed by

a 3 × 3 kernel for inter-channel processing. The initial sMRI

convolution employs a larger 7 × 7 × 7 kernel to achieve a wider

receptive field and utilizes instance normalization to maintain

inter-sample variance. Subsequent ResNet blocks for both branches

incorporate downsampling layers to reduce feature size, with

specific strides and kernel dimensions tailored to each modality,

yielding rsMEG features of size (C, 102, 128) and sMRI features of

size (C, 24, 24, 24), where C represents the number of channels. The

features from both modalities are classified through two separate

classifiers, with the final result produced by a concluding classifier.

This approach allows for independent processing of features from

each modality before their results are combined for classification.

InterFusion: InterFusion employs a dedicated fusion module

to amalgamate the features extracted from these modalities. The

proposed InterFusion network, as depicted in Figure 2, consists of

four primary components: the rsMEG feature extraction branch,

the sMRI feature extraction branch, the cross-attention fusion

module, and the classifier. Unlike LateFusion, the extracted

features are combined via a cross-attention fusion module, which

captures the relationships between patterns, with the fusion results

subsequently processed by a classifier. The specific structure of the

fusion module will be detailed in the following subsection.

2.3 Spatial-channel cross-attention fusion
module

Figure 3 illustrates the Spatial-Channel Cross-Attention Fusion

(SCCAF) Module. Initially, the module introduces a Multi-

Modal Patch Embedding (MMPE) block designed to enhance

the feature representation of multimodal data, thereby facilitating

the subsequent cross-modal attention and feature aggregation

processes. The procedure commences with patch extraction

to merge rsMEG and sMRI features through the MMPE

block. To reconcile feature dimension discrepancies, it applies

GlobalAvgPool2d and GlobalAvgPool3d as initial steps, with pool

sizes Ps1 = (64, 64) for rsMEG features FrsMEG and pool size Ps2 =
(16, 16, 16) for sMRI features FsMRI , respectively. Subsequently, it

utilizes projection via kernel size 1 depth-wise convolutions on the

flattened 2D and 3D patches, culminating in the concatenation of

both feature sets:

FrsMEG = DwConv1d(flatten(GAP2d(FrsMEG))),

FsMRI = DwConv1d(flatten(GAP3d(FsMRI))),
(1)

where FrsMEG, FsMRI ∈ R
P×C represents the flattened fusion rsMEG

and sMRI feature patches. P is calculated as 64 × 64 = 16 ×
16 × 16 = 4096, which is the size of the flattened patches.

DwConv1d represents depth-wise convolutions. flatten is used to

reshape the input tensor into a 1-dimensional vector, and GAP

symbolizes GlobalAvgPool, which represents the global average

pooling operation.

To foster informative feature exchanges across modalities, the

SCCAF module employs both Spatial-wise Cross-modal Attention

(SCA) and Channel-wise Feature Aggregation (CFA) blocks.

The SCA block leverages an enhanced cross-modal attention

mechanism to map the global feature correlations between rsMEG

and sMRI features. This block offers a broader receptive field

compared to conventional CNN modules, thus aiding in the

complementary aggregation of data. The advent of Transformer-

based architectures (Dosovitskiy et al., 2020; Li et al., 2023)

has demonstrated significant prowess in computer vision tasks,

primarily through multi-head attention, which comprises several

parallel non-local attention layers. The SCA Block processes a

pair of images from different modalities, with its Key and Value

derived from the same modality, while the Query originates from

an alternate modality. For instance, the Key and Value might stem

from the rsMEGmodality, with theQuery produced from the sMRI

modality, and vice versa.

Za = Softmax(
QbK

T
a√
C

)Va,

Zb = Softmax(
QaK

T
b√
C

)Vb,

(2)

where a indicates the rsMEG modality and b denotes the sMRI

modality. The SCCAF block’s output, derived by multiplying the

Value by attention weights, elucidates the similarity between the

Query in modality b and all Keys in another modality a, thereby

aggregating and aligning information from both modalities.

To complementarily amalgamate cross-modal features based

on their characterization capabilities, the CFA block is proposed

to fuse cross-modal features and discern channel-wise interactions.

Initially, it concatenates the SCA block outputs to obtain Fc.

Subsequently, it employs an MLP layer and softmax function to

deduce the weight vectors wa,wb ∈ RC×N , which recalibrate

the rsMEG and sMRI features across channels. This process not

only maximizes the utilization of aggregated information but also
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FIGURE 1

Overview of three fusion strategies. (a) Earlyfusion: Combines data from rsMEG and MRI before network processing. (b) Interfusion: Merges features

extracted from these modalities using a specialized fusion module. (c) Latefusion: Combines the final outputs from each modality.

FIGURE 2

Overview of the proposed InterFusion multimodal classification framework for Alzheimer’s disease. The proposed framework structure extends

existing models from unimodal classification to multimodal scenarios. Our SCCAF module serves as a cross-modal solution to leverage multimodal

complementarities.
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FIGURE 3

Overview of the proposed SCCAF module. Specifically, the SCCAF consists of MMPE to add position information and dimension expansion to the

data, SCA to model global feature correlations among multimodal data and CFA to dynamically aggregate complementary features.

concurrently mitigates feature noise and redundancy. The final

output of the CFA block is calculated as follows:

[wa,wb] = Softmax(MLP(Fc)),

Ffusion = wa · FrsMEG + wb · FsMRI .
(3)

2.4 Loss function

In our study, we have chosen to use the CrossEntropyLoss to

optimize our model. The CrossEntropyLoss calculates the loss by

comparing the predicted probability distribution, denoted as Q,

with the true probability distribution, denoted as P. It quantifies

the information lost when using Q to approximate P. The formula

for the CrossEntropyLoss is as follows:

L(P,Q) =
∑

x

P(x) log

(

1

Q(x)

)

, (4)

where P(x) represents the true probability of class x, and Q(x)

represents the predicted probability of class x. The loss is calculated

for each class and summed up to obtain the total loss. By

minimizing the CrossEntropyLoss, the model is guided to make

more accurate predictions by reducing the divergence between the

predicted distribution and the true distribution.

3 Experiments and results

In this section, we present the experimental setup and results

of our multimodal classification framework. We begin by detailing

the experimental setup, including the implementation details

and the evaluation metrics. Subsequently, we provide a detailed

analysis of the classification performance across unimodal models,

different fusion strategies, rsMEG frequency bands in fusion and

complexity analysis.

3.1 Implementation details

The proposed multimodal classification framework was

implemented using the PyTorch deep learning library. Experiments

were conducted at Dementias Platform UK. The network was

trained using the Adam optimizer with a learning rate of 0.001,

a batch size of 2, and a weight decay of 0.0001 over 100 epochs.

Evaluation utilized a 5-fold cross-validation strategy, with the

dataset partitioned into training and validation sets. Training data

were utilized to train the network, while the validation set was used

to evaluate its performance. Reported results represent the average

of the five validation sets.

3.2 Evaluation metrics

In the evaluation of our model’s performance, a comprehensive

set of metrics was employed to ensure a holistic assessment. These

metrics include Accuracy (ACC), F1-score, Sensitivity, Specificity,

and the Matthews Correlation Coefficient (MCC).

• Accuracy (ACC)measures the proportion of true results (both

true positives and true negatives) among the total number of

cases examined. It is defined as:

ACC =
TP + TN

TP + TN + FP + FN
, (5)

where TP, TN, FP, and FN represent the numbers of true

positives, true negatives, false positives, and false negatives,

respectively.

• F1-score, is a measure that combines both precision and recall

to provide a single value that conveys the balance between the
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two. It is given by:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1-score = 2×
Precision× Recall

Precision+ Recall
,

(6)

• Sensitivity, or recall, measures the proportion of actual

positives correctly identified. The formula is:

Sensitivity =
TP

TP + FN
, (7)

• Specificity assesses the proportion of actual negatives that are

correctly identified and is calculated as:

Specificity =
TN

TN + FP
, (8)

• The Matthews Correlation Coefficient (MCC) is a more

informative measure of the quality of binary classifications,

which takes into account true and false positives and negatives

and is generally regarded as a balanced measure which can be

used even if the classes are of very different sizes. The MCC is

defined as:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (9)

3.3 Results

In this section, we present the results of our multimodal

classification framework for Alzheimer’s disease. Initially, we

assessed the differences in classification performance between

existing methods and our proposed method when using a single

modality, either rsMEG or sMRI. Subsequently, we compared

the impact of different data fusion strategies, including rsMEG

only, sMRI only, and three different fusion strategies (EarlyFusion,

InterFusion, and LateFusion), on classification performance.

Furthermore, we conducted a comparison with Vaghari et al.

(2022b)’s study to validate the effectiveness of our method in

MCI prediction. Next, we investigated the performance of rsMEG

features across six different frequency bands and the potential

influence of these features when fused with sMRI data on

classification performance. Lastly, we analyzed the complexity of

the models.

3.3.1 Evaluation of unimodal classification
performance

We have developed unimodal networks specifically tailored for

rsMEG and sMRI data to showcase the robust performance of our

proposed method in single-modality settings. As shown in Table 2,

our rsMEG-only network achieves superior performancemetrics in

comparison to other deep learning methods, attaining an accuracy

of 0.710 and an F1-score of 0.615. Similarly, our sMRI-only

network demonstrates exceptional performance, with an accuracy

of 0.749 and an F1-score of 0.667. These metrics surpass those

achieved by other methods. The notable improvements in F1-

score and sensitivity underscore the efficacy of our method in

accurately identifying relevant features. Our paired t-test results,

adjusted using the Bonferroni correction, yielded significantly

lower p-values (below 0.05), indicating that our method statistically

significantly enhances performance.

Figure 4 illustrates the confusion matrix comparison between

our proposed method and other methods in classifying HC

and MCI. Notably, our models utilizing rsMEG and sMRI data

(e, j) exhibit superior performance. The rsMEG-only model

demonstrates accurate identification of 29.4 HC and 14.2 MCI

cases, while the sMRI-only model achieves even higher accuracy,

correctly identifying 30.6 HC and 15.4 MCI cases. It is important to

note that these results are obtained through 5-fold cross-validation,

ensuring robustness and reliability in the evaluation process. These

results underscore the robustness and precision of our unimodal

networks in neuroimaging-based diagnostics.

3.3.2 E�ect of di�erent fusion strategies on
classification performance

Table 3 presents a comparative analysis of our proposed

method against the reference method (Vaghari et al., 2022b),

under various fusion strategies. Initially, our method demonstrates

significant advantages compared to single-modality approaches.

When using rsMEG and sMRI modalities independently, our

method achieves accuracies of 0.710 and 0.749, respectively, and

performs well across other metrics such as F1-score, sensitivity,

specificity, and MCC. However, the performance is further

enhanced with fusion strategies. Notably, under the InterFusion

strategy, our method achieves the highest values in accuracy of

0.827, F1-score of 0.785, sensitivity of 0.678, specificity of 0.957, and

MCCof 0.669 (p≤ 0.001), indicating the efficacy of fusion strategies

in improvingmodel performance and validating the effectiveness of

our proposed SCCAFModule. EarlyFusion achieves an accuracy of

0.756 (p ≤ 0.01), and LateFusion achieves 0.801 (p ≤ 0.05), both of

which are improvements over using sMRI alone by 0.007 and 0.052,

respectively, demonstrating the feasibility of multimodal fusion in

providing more comprehensive information.

Figure 5 illustrates the ROC curve and PR curve of different

data fusion strategies, including rsMEG only, sMRI only, and

three fusion strategies (EarlyFusion, InterFusion, and LateFusion).

The results indicate that the InterFusion strategy outperformed

both EarlyFusion and LateFusion, with an area under the

receiver operating characteristic curve (AUC) of 0.883, surpassing

EarlyFusion’s AUC of 0.844 and LateFusion’s AUC of 0.866. Similar

trends are observed in the area under the precision-recall curve

(AP), with InterFusion achieving 0.889. The consistency between

AUC and AP performance underscores the robustness of our

method on imbalanced datasets.

3.3.3 Comparision with Vaghari et al.’s method
In this section, we present a comparative analysis between

our proposed method and the method introduced by Vaghari

et al. (2022b) using various fusion strategies. Table 3 provides

a comprehensive comparison of the two methods in terms of

accuracy, F1-score, sensitivity, specificity, and MCC. Regarding
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TABLE 2 Comparison of the proposed method with other deep learning methods on unimodal data.

Modal Method Accuracy F1-score Sensitivity Specificity MCC P-values

rsMEG EEGNet (Lawhern et al., 2018) 0.689 0.580 0.458 0.893 0.394 p ≤ 0.001

WaveNet (Oord et al., 2016) 0.697 0.601 0.486 0.883 0.406 p ≤ 0.001

2D ResNet-18 (He et al., 2016) 0.704 0.606 0.485 0.896 0.423 p ≤ 0.01

2D EfficientNet-b0 (Tan and Le, 2019) 0.708 0.608 0.483 0.908 0.436 p ≤ 0.001

Ours (rsMEG only) 0.710 0.615 0.493 0.902 0.437 -

sMRI 3D ResNet-18 (He et al., 2016) 0.726 0.625 0.486 0.939 0.483 p ≤ 0.01

3D EfficientNet-b0 (Tan and Le, 2019) 0.731 0.637 0.503 0.933 0.489 p ≤ 0.01

3D SENet (Hu et al., 2018) 0.730 0.639 0.510 0.923 0.482 p ≤ 0.001

3D Unet (Ronneberger et al., 2015) 0.741 0.651 0.514 0.942 0.511 p ≤ 0.001

Ours (sMRI only) 0.749 0.667 0.535 0.939 0.524 -

FIGURE 4

Confusion matrices between our proposed method and other methods when using a single modality. (a–E) Represent the confusion matrices using

rsMEG data, while (f–j) represent the confusion matrices using sMRI data. The diagonal elements indicate the number of correctly classified samples,

while the o�-diagonal elements indicate the number of misclassified samples.

TABLE 3 Comparison of the proposed method with Vaghari et al.’s method on di�erent fusion strategies.

Method Strategy Accuracy F1-score Sensitivity Specificity MCC P-values

Ours rsMEG only 0.710 0.615 0.493 0.902 0.437 p ≤ 0.01

sMRI only 0.749 0.667 0.535 0.939 0.524 p ≤ 0.001

EarlyFusion 0.756 0.686 0.569 0.920 0.528 p ≤ 0.01

InterFusion 0.827 0.785 0.678 0.957 0.669 p ≤ 0.001

LateFusion 0.801 0.749 0.632 0.951 0.622 p ≤ 0.05

Vaghari et al. rsMEG only 0.684 - - - -

sMRI only 0.714 - - - - -

EarlyFusion 0.698 - - - - -

InterFusion 0.743 - - - - -

LateFusion 0.772 - - - - -

Reference results directly sourced from Vaghari et al.’s study.
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FIGURE 5

Performance on di�erent data fusion strategies including rsMEG only, sMRI only, and three di�erent fusion strategies (EarlyFusion, InterFusion, and

LateFusion). Mean AUC was computed for each curve. The mean ROC/PR curve and its standard deviation are depicted as bold lines and shaded

regions, respectively, in each plot. Dotted lines in each plot represent the classifier with random performance level.

unimodality, Vaghari et al. achieves accuracies of 0.684 and

0.714 for the rsMEG and sMRI modalities, respectively.

In contrast, our unimodality method significantly improves

these metrics to 0.710 and 0.749, which is an improvement of

0.026 and 0.035, respectively. Furthermore, when considering

fusion strategies, our method outperforms the reference

results across all comparable strategies. Particularly, under

InterFusion and EarlyFusion, our method achieves accuracies

of 0.827 and 0.756, respectively, compared to Vaghari

et al.’s 0.743 and 0.698. These improvements of 0.085 and

0.058, respectively, highlight the notable advancements

of our approach in multimodal data fusion. Meanwhile,

we note that our LateFusion and highest InterFusion are

improved by 0.029 and 0.055, respectively, compared to the

highest LateFusion of Vaghari et al. These results clearly

demonstrate the superior efficacy of our method, proving

the effectiveness of the deep learning method in multimodal

fusion approaches.

3.3.4 Analysis of the role of di�erent frequency
band features of rsMEG in InterFusion

In this investigation, we extend our analysis to encompass

the exploration of rsMEG features across six distinct frequency

bands: delta, theta, alpha, beta, low gamma, and high gamma.

This detailed exploration aims to expand the depth and breadth of

diagnostic models to provide a more nuanced and comprehensive

understanding of MCI and AD diagnosis. As shown in Table 4,

our research findings reveal interesting patterns and performance

metrics for each frequency band. The High-Gamma frequency

band (52–86 Hz) demonstrates the best results, with an accuracy

of 0.818 and an F1-score of 0.775 (p ≤ 0.001). Its sensitivity is

0.670, and specificity is 0.948, indicating its potential in enhancing

the diagnostic capabilities of the model, surpassing other frequency

bands. The Delta frequency band (2–4 Hz) has an accuracy of

0.801 (p ≤ 0.01), which is the lowest among the six frequency

bands. However, compared to the accuracy of 0.749 for MRI only,

it shows an improvement of 0.052, indicating the effectiveness of

combining rsMEG and MRI. Similarly, other encouraging results

are observed, with an accuracy of 0.803 (p ≤ 0.001) for the Theta

frequency band (4–8 Hz), 0.809 (p ≤ 0.01)for the Alpha frequency

band (8–12 Hz), and 0.816 (p ≤ 0.05) for the Beta frequency

band (12–30 Hz). The Low-Gamma frequency band (30–48 Hz)

has an accuracy of 0.814 (p ≤ 0.01). It is worth noting that in

terms of sensitivity, the high gamma frequency band (52–86 Hz)

achieves the highest value of 0.677, demonstrating high gamma

frequency band’s potential in enhancing the diagnostic capabilities

of the model.

3.3.5 Complexity analysis
We also further analyzed the complexity of the model and

compared the number of model parameters and floating point

operations (FLOPs) between different fushion strategies, and

the result is shown in Table 5. It is evident that although

ResNet serves as the feature extraction backbone, the complexity

of our work is significantly lower than that of 2D or 3D

ResNet. This reduction in complexity is attributed to the

smaller number of channels and layers in the feature extraction

backbone. Specifically, InterFusion and LateFusion require the

fusion of features extracted from two modalities, whereas

EarlyFusion downsamples the two modalities before inputting

them into the feature extraction branch. Consequently, the

parameter count and FLOPs for InterFusion and LateFusion

are higher than those for EarlyFusion, approximately equal to

the sum of the parameters for rsMEG only and sMRI only.

Additionally, it is noted that InterFusion has a little higher

FLOPs than LateFusion due to the use of the SCCAF module.

However, InterFusion has significantly much fewer parameters

than LateFusion, indicating that the SCCAF module does not

introduce excessive computational overhead, but rather reduces

model parameters.
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TABLE 4 Exploring the rsMEG feature space in InterFusion.

rsMEG frequency band Accuracy F1-score Sensitivity Specificity MCC P-values

Delta (2–4 Hz) 0.801 0.754 0.649 0.936 0.617 p ≤ 0.01

Theta (4–8 Hz) 0.803 0.758 0.656 0.933 0.619 p ≤ 0.001

Alpha (8–12 Hz) 0.809 0.764 0.656 0.945 0.634 p ≤ 0.01

Beta (12–30 Hz) 0.816 0.772 0.663 0.951 0.648 p ≤ 0.05

Low-Gamma (30–48 Hz) 0.814 0.774 0.677 0.936 0.640 p ≤ 0.01

High-Gamma (52–86 Hz) 0.818 0.775 0.670 0.948 0.650 p ≤ 0.001

TABLE 5 Method complexity analysis.

Method Input size #Param (M) FLOPs (G)

2D ResNet-18 (1,102,8192) 11.169 117.854

3D ResNet-18 (1,192,192,192) 33.141 707.935

rsMEG only (1,102,8192) 3.811 17.164

sMRI only (1,192,192,192) 7.105 108.145

EarlyFusion (1,102,8192) &

(1,192,192,192)

3.483 18.163

InterFusion (1,102,8192) &

(1,192,192,192)

9.235 138.251

LateFusion (1,102,8192) &

(1,192,192,192)

11.067 137.167

Greater values imply a greater degree of computational complexity.

4 Discussion

In this study, we explored the application of deep learning

techniques in the early diagnosis of Alzheimer’s disease, specifically

through the fusion of rsMEG and sMRI data using a multimodal

approach. Multimodal learning is a technique that combines

multiple modalities through shared representations and has

been successfully applied in various fields such as natural

language processing, speech recognition, computer vision, and

drug discovery. Recently, multimodal learning has been introduced

in the field of medical imaging, with attention mechanisms and

Transformer structures being applied in multimodal classification

tasks. However, research on Transformers in medical tasks is

still in its early stages, and previous studies have mostly used

statistical or traditional methods to handle the discrimination task

of MCI patients, highlighting the challenges posed by this problem

compared to other classification tasks. In this work, we proposed a

deep learning model that combines convolutional neural networks

and cross-modal attention mechanisms to handle multimodal data

and accurately identify Alzheimer’s disease.

Firstly, we observed that the accuracy of using MRI data

for classification is significantly higher than that of using

rsMEG data. Based on Figure 4, compared to MRI data, the

results using rsMEG data diagnosed more HC as MCI, with

an average increase of 1.2 cases. This is not surprising as

clinical doctors typically rely on MRI to support the diagnosis

of MCI (Yang et al., 2021; Dubois et al., 2016; Frisoni et al.,

2010). Although our rsMEG and MRI feature extraction branches

are based on ResNet blocks, we achieved performance beyond

ResNet by redesigning the convolutional kernel size and stride,

highlighting the effectiveness of convolutional neural networks if

devised properly.

Secondly, we compared different fusion strategies and found

that the InteFusion method, which combines rsMEG and MRI

data, achieved the best performance in multimodal classification,

outperforming EarlyFusion or LateFusion. The main reason why

the InterFusionmethod performs best inmulti-modal classification

tasks is primarily attributed to its ability to fully utilize the

complementary information from both rsMEG and sMRI data.

Specifically, rsMEG data provides supplementary information

about functional activity and/or connectivity changes, while sMRI

data provides structural information. Through our SCCAFmodule,

the InterFusion method achieves effective cross-modal feature

fusion and recognition of non-local dependencies in multi-modal

feature representation. First, the InterFusion method employs the

Multi-Modal Patch Embedding (MMPE) module, which performs

initial pooling of rsMEG and sMRI features using GlobalAvgPool2d

and GlobalAvgPool3d, and aligns the feature dimensions through

deep convolutional projection. Second, the Spatial Cross-Modal

Attention (SCA) module captures global feature correlations

between rsMEG and sMRI features through an enhanced cross-

modal attention mechanism, providing a wider receptive field that

facilitates complementary data aggregation. Finally, the Channel

Feature Aggregation (CFA) module dynamically fuses cross-

modal features and adjusts feature weights through MLP layers

and softmax function, maximizing the utilization of aggregated

information while reducing feature noise and redundancy.

Experimental results demonstrate that the InterFusion method

outperforms other fusion strategies in terms of accuracy, F1-score,

sensitivity, specificity, and MCC, validating the effectiveness of the

SCCAF module in multi-modal fusion. Therefore, the InterFusion

method significantly improves model performance by efficiently

exchanging and fusing information between multi-modal data,

demonstrating its superiority in addressing multi-modal medical

classification problems.

Finally, our analysis of the rsMEG feature space in six

frequency bands provides valuable insights into the performance

of the diagnostic model. We found that low-frequency and high-

frequency gamma waves performed the best, with accuracies of

0.814 and 0.818, respectively, demonstrating that rsMEG provides

complementary information to MRI. This is consistent with

previous M/EEG studies that emphasize the importance of gamma

waves in research on MCI or genetic risk (Missonnier et al., 2010;

Luppi et al., 2020). By integrating these different frequency bands,

our method paves the way for a comprehensive understanding
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of MCI and AD, providing possibilities for improving diagnostic

accuracy and clinical decision-making.

Recent multi-modal studies have highlighted the efficacy

of integrating diverse neuroimaging techniques to enhance the

classification and diagnosis of AD. sMRI offers intricate anatomical

insights that facilitate the evaluation of brain structural alterations

associated with neurodegeneration, particularly in the medial

temporal lobes. In contrast, MEG captures the functional dynamics

of brain activity in real-time, elucidating neural processes linked to

cognition. The synergistic application of sMRI and MEG markedly

enhances diagnostic precision for AD by amalgamating structural

and functional data, fostering a more holistic understanding

of the disease’s trajectory. Compared to alternative multi-modal

fusion strategies, such as the integration of sMRI with PET

or EEG, the sMRI and MEG fusion paradigm is distinguished

by MEG’s superior temporal resolution and its ability to gauge

brain activity independent of neurovascular coupling effects. This

distinctive advantage positions the sMRI and MEG combination

as a promising avenue for early diagnosis and monitoring

of AD, potentially facilitating more effective intervention and

management strategies.

In Vigari’s studies, the authors primarily employedmulti-kernel

learning with support vector machines (SVM) for classification,

utilizing LateFusion strategies akin to ensemble learning. While

both studies examined three fusion methods, the features

extracted and fusion techniques applied diverge significantly.

Our approach capitalizes on deep learning methodologies,

which inherently allow for more sophisticated feature extraction

and representation learning. This foundational methodological

divergence likely accounts for the discrepancies in our findings.

Notably, our experimental results indicate that our fusion

methods achieve significantly heightened accuracy compared to

Vigari’s work, underscoring the effectiveness of our approach

and the advantages of deep learning in the context of disease

diagnosis. This suggests that deep learning not only enhances

the extraction of complementary information between sMRI and

MEG but also augments classification performance in identifying

Alzheimer’s disease.

In our study, we employed the traditional convolutional

network ResNet as the backbone for feature extraction from

the two modalities, sMRI and MEG. This selection enables

us to leverage ResNet’s established efficacy in capturing spatial

hierarchies and intricate patterns within imaging data. To optimize

the information fusion process, we integrated the Spatial-Channel

Cross-Attention Fusion Module, which adeptly amalgamates the

complementary features from both modalities, yielding improved

classification performance. While our current model exhibits

promising results, there remains potential for further refinement.

Future investigations could explore the integration of advanced

transformer variants, such as convolutional adaptations of the

vision transformer, which may confer advantages in multi-head

learning and token-wise projections. This could facilitate more

nuanced feature extraction and bolster model performance in

differentiating among various stages of Alzheimer’s disease.

Despite our notable accomplishments, we acknowledge certain

limitations. Firstly, our current methodology does not account

for information interaction during the feature extraction phase

prior to fusion. Future research will investigate the incorporation

of neighborhood and similarity information from the raw high-

dimensional data across different imaging modalities. Secondly,

we employed only one type of brain structural information; other

imaging techniques, such as PET and fMRI, may yield superior

results by directly measuring neurotransmitter levels or molecular

pathology associated with attention deficit disorder, thereby further

validating the significance of complementary information in multi-

modal fusion. Future inquiries should also integrate non-imaging

data to achieve a more comprehensive multi-modal approach. Qiu

et al. (2022) utilized deep learning frameworks to process multi-

modal data and execute multiple diagnostic steps, demonstrating

diagnostic accuracy comparable to practicing neurologists and

neuroradiologists. Recently, several classification frameworks have

emerged that combine EEG and MRI fusion (Ferri et al., 2021;

Colloby et al., 2016), with the future challenge lying in the

integration of clinical insights with deep learning to elucidate

changes in brain regions and establish a universal multi-modal

classification model for disease diagnosis.

5 Conclusion

In this study, we propose a multimodal diagnostic network

that utilizes sMRI and rsMEG modalities for the enhanced

early diagnosis and prediction of AD and MCI. We introduce

an innovative CNN-transformer framework that combines cross

attention mechanisms for feature fusion, aiming to improve

the accuracy of diagnosis and prediction through multimodal

data. Our method uniquely employs sMRI and rsMEG as

multimodal images and incorporates the SCCAF module, enabling

effective fusion of complementary features and modeling of global

feature correlations among multimodal data. Through extensive

comparisons with single-modal methods, decision fusion methods,

and different frequency band features of rsMEG in fusion,

our results demonstrate the effectiveness of multimodal fusion

in enhancing diagnostic accuracy and clinical decision-making,

underscoring the potential of deep learning in multimodal medical

imaging. Future research will focus on incorporating additional

imaging modalities and non-imaging data to further enhance the

diagnostic capabilities of our model and explore the potential of a

unified multimodal model in clinical practice.
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