
Frontiers in Neuroscience 01 frontiersin.org

Role of Rho-associated kinases 
and their inhibitor fasudil in 
neurodegenerative diseases
Qiuyan Ye 1, Xue Li 1, Wei Gao 1,2, Jiayue Gao 1, Liping Zheng 1, 
Miaomiao Zhang 1, Fengge Yang 1 and Honglin Li 1,3*
1 Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China, 2 Jiangsu College of 
Nursing, Huaian, China, 3 The Second Affiliated Hospital of Heilongjiang University of Chinese 
Medicine, Harbin, China

Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis 
of NDDs is complex, and currently, there is no cure available. With the increase in 
aging population, over 20 million people are affected by common NDDs alone 
(Alzheimer’s disease and Parkinson’s disease). Therefore, NDDs have profound 
negative impacts on patients, their families, and society, making them a major 
global health concern. Rho-associated kinases (ROCKs) belong to the serine/
threonine protein kinases family, which modulate diverse cellular processes (e.g., 
apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington’s 
disease, Parkinson’s disease, and Alzheimer’s disease) by disrupting synaptic plasticity 
and promoting inflammatory responses. Therefore, ROCK inhibitors have been 
regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic 
ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage 
and promotes axonal regeneration. Thus, the current review summarizes the 
relationship between ROCKs and NDDs and the mechanism by which fasudil 
inhibits ROCKs to provide new ideas for the treatment of NDDs.
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1 Search strategy

Several databases including PubMed, Web of Science, and China National Knowledge 
Network (CNKI) were searched on a computer, and the retrieval time was set to be established 
until October 2024. Search terms include, but are not limited to, “Neurodegenerative diseases,” 
“Rho-associated kinase,” and “fasudil,” among others. The inclusion criteria were as follows: 
Studies that explored the relationship between ROCKs and neurodegenerative diseases and 
those that demonstrated that fasudil inhibited ROCKs. The exclusion criteria were as follows: 
Documents that were not relevant to the topic, those were of poor quality, and those that 
lacked full text access. Finally, 178 articles were included.

2 Introduction

Neurodegenerative diseases (NDDs) have become a major public health concern 
worldwide. Alzheimer’s disease (AD) is the most common NDD, affecting approximately 
50  million people, followed by Parkinson’s disease (PD) affecting over 6  million people. 
Although the prevalence of Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), 
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and multiple sclerosis (MS) is relatively low, they still warrant further 
exploration. Currently, the number of patients with AD and PD alone 
has exceeded 20 million worldwide. Age is the most important factor 
in NDDs. The annual prevalence of NDDs is rising steadily with a 
rapidly aging population, seriously affecting people’s daily lives and 
social development (Koch et al., 2018). Consequently, preventing and 
delaying the progression of NDDs is paramount.

Ras homolog guanosine triphosphatases (Rho GTPases), which 
are part of the Ras superfamily, play a crucial role in diverse cellular 
processes such as cell morphology, polarity, adhesion motility, and 
membrane protrusion, acting as a molecular switch by cycling 
between the active state of guanosine triphosphatases (GTP) binding 
and the inactive state of guanosine diphosphate (GDP) binding 
(Beljan et  al., 2020; Reiner and Lundquist, 2018). Activated Rho 
GTPases regulate cellular processes by binding to the downstream 
effector proteins and participating in downstream signaling cascades 
(Vega and Ridley, 2008). Rho-associated kinases (ROCKs) are 
downstream targets of Rho GTPases (Matsui et  al., 1996). The 
combination of Rho GTPases and GTP can activate ROCKs, enabling 
them to play a crucial role in cell proliferation, adhesion, contraction, 
secretion, and apoptosis (Wei et al., 2021). The ROCK signaling is a 
major driver of numerous human diseases and its activation enhances 
the occurrence of NDDs (Henderson et al., 2016; Ohashi et al., 2000; 
Shao et al., 2008a,b). Therefore, inhibition of ROCKs is the current 
research hotspot. Fasudil is an inhibitor of ROCKs with high safety 
and it was first approved in Japan for the treatment of vasospasm after 
subarachnoid hemorrhage (Roskoski Jr, 2023). In recent years, 
numerous studies have demonstrated that fasudil has a protective 
effect against multiple NDDs and is considered a potential drug for 
treating NDDs. Hence, the present review explores the relationship 
between ROCKs and NDDs and the mechanism through which 
fasudil inhibits ROCKs to improve neurodegeneration.

3 Structure and overview of ROCKs

Rho GTPases, which are part of the Ras superfamily, including 
RhoA, RhoB, and RhoC isoforms, are essential in the structural 
domains of mammals and eukaryotes and participate in regulating 
actin cytoskeletal remodeling such as cell morphology, polarity, 
adhesion motility, and membrane protrusion (Beljan et al., 2020; Fort 
and Blangy, 2017). Most Rho GTPases are regulated by guanine 
nucleotide dissociation inhibitors (GNDIs), Rho GTPase-activating 
proteins (GAPs), and guanine nucleotide exchange factors (GEFs). 
These proteins control the switching of GDP-bound inactive and 
GTP-bound active states, functioning as molecular switches (Cord, 
2021; Roskoski Jr, 2023; Reiner and Lundquist, 2018). Activated Rho 
GTPases regulate cellular processes by binding to and regulating 
downstream effector proteins such as ROCKs (Vega and Ridley, 2008).

ROCKs, which are members of the cAMP-dependent protein 
kinase A, cGMP-dependent protein kinase G, and phospholipid-
dependent protein kinase C (AGC) protein kinase family, are serine/
threonine protein kinases with a molecular weight of ~160 kDa. They 
are composed of an N-terminal kinase domain, a Rho-binding domain 
(RBD), a central coiled-coil domain, a Pleckstrin-homology domain 
(PH), and a cysteine-rich domain (CRD; Amano et al., 2010). There are 
two subtypes of ROCKs: ROCK1 and ROCK2 (Shahbazi et al., 2020). 
Although both ROCK1 and ROCK2 are universally expressed, ROCK1 

is mainly expressed in non-neuronal tissues such as the liver, lung, and 
blood, whereas ROCK2 is mainly expressed in the brain, heart, and 
muscle (Julian and Olson, 2014; Mani et al., 2022; Figure 1). The kinase 
domain homology of these two subtypes is 92%, the coiled-coil domain 
homology is 55%, and the entire amino acid sequence similarity is 65% 
(Nakagawa et al., 1996). These properties suggest that their functions 
are highly similar. The serine/threonine LIM domain kinase (LIMK), 
myosin light chain phosphatase (MLCP), myosin phosphatase-
targeting subunit 1 (MYPT1), and other downstream targets regulate 
cellular processes such as actin cytoskeleton, stress fibers, and cell 
contraction. However, ROCK1 and ROCK2 features are non-redundant 
and unique. In cellular processes, ROCK1 is essential for the formation 
of stress fibers and adhesion plaques, whereas ROCK2 is essential for 
phagocytosis and cell contraction (Wang et al., 2009; Yoneda et al., 
2005). ROCK1 knockdown reduces cell migration and proliferation 
and reshapes cell morphology. However, ROCK2 knockdown changes 
the cell migration ability (Mertsch and Thanos, 2014). In subcellular 
localization, ROCK1 is mainly localized to actin filaments, whereas 
ROCK2 is localized to membrane processes. Both kinases differentially 
regulate dendritic spine morphology by regulating different pathways 
in cell polarity (Newell-Litwa et al., 2015; Yan et al., 2019). In addition, 
ROCKs possess a self-inhibiting zone in most cases, allowing ROCKs 
to exist in the cytoplasm in an inactive form in a self-inhibiting state. 
When Rho binds to RBD or C-terminal cleavage (caspase 3 cleavage 
activates ROCK1, whereas granzyme B cleavage activates ROCK2), it 
induces the activation of ROCKs, which leads to various diseases (Cai 
et  al., 2021; Craft Jr et  al., 2013; Hahmann and Schroeter, 2010; 
Figure 2).

4 Role of ROCKs in NDDs

4.1 Alzheimer’s disease

AD, an age-related progressive NDD, is the most prevalent form 
of dementia, accounting for approximately 70% of all dementia cases 
(Mani et  al., 2022). According to recent statistics, approximately 
50 million people are affected by AD globally, which may increase to 
131 million by 2050 (Whitaker et al., 2014). The initial symptom of 

FIGURE 1

Expression of ROCKs and the relationship between ROCKs and 
neurodegenerative diseases.
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AD is typically a decline in recent memory function, accompanied by 
clinical manifestations such as attention deficits, spatial disorders, and 
behavioral impairments (Cai et al., 2021). The pathogenesis of AD 
remains unclear, and the mainstream hypotheses include amyloid-β 
(Aβ), tau pathology, and synaptic dysfunction. AD is often manifested 
by the formation of extracellular senile plaques caused by Aβ 
deposition, intracellular neuronal fibrillary tangles (NFTs) caused by 
over-phosphorylation of tau protein (p-tau), and neuronal loss (Jack 
et al., 2018; Zhang et al., 2023).

Amyloid plaque deposition is the most significant pathological 
feature of AD (Lim et al., 2012). Studies have shown that Aβ promotes 
ROCK1 activity in neurons; abnormal activation of ROCKs has also 
been observed in the brains of AD patients and AD mice (Gao et al., 
2019; Henderson et al., 2016; Hu et al., 2019). This may be caused by 
the interaction between Aβ, RhoA, and N-methyl-D-aspartic acid 
receptors to activate ROCKs (Lacor et al., 2007; Petratos et al., 2008; 
Pozueta et al., 2013). Aβ activates the RhoA/ROCK pathway in AD 
brains, significantly elevating ROCK1, which in turn promotes the 
rate of phosphorylation of the amyloid precursor protein (APP) 
phosphorylation by beta-site amyloid precursor protein cleaving 
enzyme 1 (BACE1), accelerating Aβ production (Henderson et al., 
2016; Hu et  al., 2019). ROCK1 knockdown reduces Aβ levels in 
neurons (Henderson et al., 2016). Previous studies have found that 
ROCK2 inhibition decreased BACE1 activity and suppressed Aβ40 
production in the 5 × FAD mouse model (Herskowitz et al., 2013). In 
addition, Nogo-A is a myelin-associated protein that can inhibit axon 
regeneration and neurite growth (Chen et  al., 2000; Pernet and 
Schwab, 2012; Sekine et al., 2020). Activation or overexpression of 
Nogo-A and its receptor NgR can activate ROCKs to inhibit neurite 
growth and promote Aβ production (Xiao et al., 2012). Inhibiting 
ROCKs and blocking their associated pathways reduces Aβ deposition 
and is beneficial to nerve and myelin regeneration (Guo et al., 2020a; 
Li et al., 2017). Collectively, these pieces of evidence suggest that Aβ 
and ROCK interaction can lead to a vicious cycle, exacerbating nerve 
injury. The inhibition of ROCKs may be an effective way to reduce Aβ 
deposition and neurotoxicity.

The C-terminal of tau can inhibit tau aggregation in vitro. The 
cysteine aspartate protease caspase can cleave the C-terminal of tau, 
increasing tau aggregation and cytotoxicity (Berry et  al., 2003; 
Gamblin et al., 2003). It has also been previously reported that tau is 
phosphorylated by ROCKs at Thr245, Thr377, and Ser409 (Amano 

et al., 2003). The inhibition of ROCKs was found to promote caspase-3 
inactivation while activating tau autophagy and degradation, reducing 
tau aggregation, p-tau, and NFTs, and improving learning and spatial 
memory (Castro-Alvarez et al., 2011; Gentry et al., 2016; Hamano 
et  al., 2020). Protein kinase B (AKT) phosphorylates glycogen 
synthesis kinase 3β (GSK-3β) to inactivate it and play a role in 
protecting neurons (Chu et al., 2017; Wu et al., 2012). The inhibition 
of ROCKs indirectly activates AKT by down-regulating tau kinases 
GSK3β and cyclin-dependent kinase 5 (Cdk5), thereby reducing p-tau 
protein levels (Hamano et al., 2020). ROCK1 or ROCK2 knockdown 
in cells also significantly reduces tau protein and messenger RNA 
expression levels (Gentry et al., 2016). Therefore, ROCKs are involved 
in tau pathological changes and inhibition of ROCKs can improve tau 
protein disease.

Synaptic function is closely related to memory ability and its 
dysfunction is an important cause of cognitive decline in AD. Actin 
and dendritic spines are tightly linked to cytoskeletal remodeling and 
normal synaptic function. It is well-established that Aβ activates 
ROCKs. After activation, ROCK1 negatively regulates dendritic spine 
length through the myosin-actin pathway. ROCK2 inhibits dendritic 
spine density through the serine/threonine LIM domain kinase 
isoform 1 (LIMK1)-phosphorylated cofilin1 (p-cofilin) signaling 
pathway (Martín-Cámara et al., 2021; Yan et al., 2019). Meanwhile, 
abnormal expression of cofilin1 also leads to the formation of a 
cofilin-actin rod, which is conducive to the formation of NFTs by tau 
protein and further aggravates neuronal apoptosis (Bamburg et al., 
2010; Cichon et al., 2012). Tau is one of the factors that cause synaptic 
dysfunction (Lasagna-Reeves et al., 2011; Meraz-Ríos et al., 2010). 
The inhibition of ROCKs can effectively reduce p-tau and oligomeric 
tau (Hamano et  al., 2020). The classical Wnt signaling pathway 
(Wnt-β/catenin) facilitates synaptic formation and stabilization, 
whereas the non-classical Wnt signaling pathway (Wnt-PCP) 
promotes synaptic depolymerization (Nagaoka et  al., 2014; 
Stamatakou and Salinas, 2014). Aβ can activate the Wnt-PCP/RhoA/
ROCK pathway by the upregulating the Dickkopf-1 expression, 
leading to retraction of the dendritic spine and disruption of synaptic 
homeostasis (Sellers et al., 2018). Additionally, ROCKs can activate 
myosin-II by phosphorylating the MLCP and MYPT1 formation of 
actin arcs to inhibit microtubule protrusion in growth cones (Dupraz 
et al., 2019). Meanwhile, ROCK2 can collapse the growth cone by 
phosphorylating collapsin response mediator protein 2 (CRMP2). It 

FIGURE 2

Structure of ROCKs.
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can also induce growth cone collapse by phosphorylating CRMP2, 
which explains the causative mechanisms of ROCKs on other NDDs 
(Salminen et al., 2008). Studies have shown that ROCKs can regulate 
neuronal polarization and axon growth through the cytoskeleton, 
leading to neurodegeneration (Henderson et  al., 2019; Martín-
Cámara et al., 2021; Zhang H. et al., 2021).

Neuroinflammation plays an important role in 
neurodegeneration and cognitive dysfunction. ROCKs are potential 
targets for treating neuroinflammation and play a role in regulating 
neuroinflammation (Shinozaki et  al., 2019). Microglia play an 
important role in the stability of the central nervous system. There 
are two types of microglia; M1, which expresses oxidative stress and 
inflammatory factors, and M2, which contains anti-inflammatory 
and tissue repair factors (Zhang et  al., 2013). Physiologically, 
microglia can phagocytose Aβ (Wang et al., 2021). Activation of the 
RhoA/ROCK pathway inhibits microglia from the phagocytosis of 
Aβ and leads to microglia dysfunction, triggering an inflammatory 
response, leading to a vicious cycle of neuroinflammation and 
neurotoxicity (Wang et al., 2021; Zhang et al., 2019). Nuclear factor 
kappa B (NF-κB) is a crucial transcription factor that modulates 
inflammatory response, and GSK3β forms a bridge between Aβ and 
tau (Hooper et al., 2008; Tornatore et al., 2012). Besides targeting 
microglia, Aβ activates the RhoA/ROCK pathway to promote 
inflammation, Aβ production, and tau phosphorylation (Ewers et al., 
2019; Jiang et al., 2015; Morenas-Rodríguez et al., 2022; Xie et al., 
2015; Zhang et  al., 2023). Therefore, inhibition of ROCKs can 
alleviate neuroinflammation and nerve damage (Tseng et al., 2019; 
Zhu et al., 2020).

In summary, these findings collectively suggest that ROCKs play 
a multifaceted role in the progression of AD, mediating the disease 
through various pathways and interacting pathological markers to 
exacerbate AD injury. Targeting ROCKs may represent an effective 
strategy to delay AD progression and alleviate its symptoms.

4.2 Parkinson’s disease

PD, the second most common NDD after AD, is a degenerative 
movement disorder caused by progressive degeneration of 
dopamineric (DA) neurons in the dense bodies of the substantia nigra 
(SN) of the midbrain (Ye et al., 2023). Bradykinesia, resting tremor, 
and muscle rigidity are the main motor features of PD (Schmidt et al., 
2022). Currently, there are over 6 million cases of PD worldwide and 
the pandemic is growing exponentially (Dorsey et al., 2018; Morens 
et al., 2009). The prevalence of PD is increasing with an increase in the 
global aging population, with a projected increase to over 12 million 
by 2040 (Dorsey and Bloem, 2018).

Axonal degeneration is one of the earliest features of PD, 
appearing in the early stages of PD (Iyer et al., 2021). The RhoA/
ROCK signal transduction can stimulate LIMK1, inactivate cofilin, 
lead to actin waves, axon elongation, and growth cone disorders, and 
mediate the axonal degeneration of PD and DA loss (Ohashi et al., 
2000; Tilve et al., 2015; Takemura et al., 2009; Wang and Townes-
Anderson, 2016). The toxic damage of neurons caused by α-synuclein 
(α-Syn) accumulation is one of the main causes of PD. A previous 
study reported ROCK2 activation and neurite reduction in A53T 
α-Syn-induced neurite growth injury, which was alleviated by the 
inhibition of ROCKs (Liu et al., 2016). This indicates an interaction 

between ROCKs and α-Syn, which can damage neurites and accelerate 
the PD process.

The degeneration of DA neurons in the nigrostriatal pathway is 
characteristic of PD and can lead to movement disorders typical of PD 
(Moore et al., 2005). Clinical studies have shown that about 60% of 
nigrostriatal dense neurons are lost and about 80% of DA endings are 
dysfunctional in PD patients (Bernheimer et al., 1973). 1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) can reduce the expression 
of dopamine transporter and induce the degeneration of DA neurons 
(Muroyama et al., 2011). Previous studies found that the activity of 
ROCKs increased and DA was lost after MPTP injection. Moreover, 
the knockdown or inhibition of ROCKs effectively alleviated MPTP-
induced neuronal degeneration and protected DA neurons (Barcia 
et al., 2012; Qi et al., 2016). This indicates that ROCKs induce DA 
neuronal degeneration (Zhao et al., 2015). In addition, MPTP-induced 
neuronal mitochondrial autophagy in PD mice was insufficient and 
the damaged mitochondria accumulated excessively in the substantia 
nigra and striatum (Zhang L. et al., 2021). Parkin (an E3 ubiquitin 
ligase) is a key factor regulating mitochondrial autophagy, and ROCKs 
are negative regulators of Parkin-dependent mitochondrial autophagy 
(Mani et al., 2022). Deletion of Parkin can lead to further aggregation 
of α-Syn, damage mitochondrial function, and exacerbate synaptic 
dysfunction and neuronal damage (Chen L. et al., 2015; Volpicelli-
Daley, 2019; Xu et al., 2020). The inhibition of ROCKs increases the 
activity of hexokinase 2 (HK2), a positive regulator of Parkin, 
relocating it to the mitochondria, thereby promoting mitochondrial 
autophagy (Moskal et al., 2020; Quadir et al., 2021). This suggests that 
mitochondrial autophagy can eliminate defective mitochondria, and 
the accumulation of damaged mitochondria may aggravate the death 
of DA neurons. In conclusion, ROCKs may aggravate DA loss by 
accelerating neuronal degeneration and mitochondria autophagy. 
Therefore, targeted inhibition of ROCKs may be one of the potential 
strategies to reduce PD damage.

ROCK activity is associated with neuroinflammation. Previous 
studies observed activated microglia and reactive astrocytes in the 
brains of PD patients, and the expression of ROCK2 in these cells was 
increased (Kam et al., 2020; Zaman et al., 2021). ROCKs are important 
for α-Syn clearance and metabolism, and treatment with ROCK 
inhibitors reduces the accumulation of α-Syn (Liu et al., 2016; Martín-
Cámara et al., 2021). These results suggest that α-Syn accumulation is 
positively correlated with enhanced ROCK activity. In addition, α-Syn 
can bind to the integrin cluster of differentiation molecule 11b 
(CD11b) to activate the downstream Rho/ROCK signaling pathway, 
which induces nicotinamide adenine dinucleotide phosphate oxidase 
2 (NOX2) activation and leads to reactive oxygen species production 
(Cap et al., 2020; Vermot et al., 2021). Excessive production of reactive 
oxygen species can lead to neuronal damage and oxidative stress in 
PD patients (Chang and Chen, 2020; Xiao et al., 2022). Furthermore, 
oxidative stress can induce the release of proinflammatory factors, 
thus exacerbating neuronal damage and apoptosis (Gathings et al., 
2024). The specific toxicity of DA neuronal damage subsequently 
induces microglia polarization, resulting in the phagocytosis of DA 
cell bodies. The inhibition of ROCKs can prevent microglia 
polarization, reduce the release of inflammatory factors, and suppress 
the loss of DA neurons (Barcia et al., 2012; Quadir et al., 2021).

Therefore, ROCKs may be both a pathologic product of PD and a 
promoter of PD progression. Early intervention of the expression of 
ROCKs may be a feasible approach to prevent and treat PD.
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4.3 Huntington’s disease

HD is a dominant NDD with the main clinical manifestations 
including dance-like movement, mental decline, and mental behavior 
abnormalities (McColgan and Tabrizi, 2018). HD is caused by 
amplified CGA codon repeats of elongated polyglutamine (polyQ) in 
the huntingtin protein (Htt). An amplified polyQ is toxic, and there is 
currently no effective treatment for it (Shao et al., 2008a). Patients 
cannot take care of themselves after HD onset, imposing a substantial 
burden on the family and society.

The actin-binding protein profilin is an Htt-interacting protein 
that inhibits Htt aggregation in mutants. The Rho/ROCK signaling 
phosphorylates ROCKs in nerve and non-nerve cells at Ser137, 
thereby blocking profilin phosphorylation and reducing Htt-mediated 
toxicity (Li et al., 2013; Shao et al., 2008a). It has also been shown in 
HD cells and drosophila models that elevated ROCK expression 
enhances polyQ aggregation, whereas ROCKs inhibition reduces 
polyQ aggregation and its toxicity (Bauer et al., 2009; Pollitt et al., 
2003; Shao et  al., 2008b). Compared with the control group, HD 
patients exhibited increased ROCK1 expression levels in the frontal 
cerebral cortex and blood. The level of ROCK1 protein was also 
significantly increased in R6/2 HD model mice (Narayanan et al., 
2016). This suggests that ROCK1 plays a crucial role in HD lesions. In 
addition, the striatum is the primary site of HD degeneration. D2 
receptor stimulation and formation of aggregation can indirectly 
activate the RhoA/ROCK pathway and disrupt neurite and growth 
cone formation, thereby exacerbating striatal damage (Deyts et al., 
2009). Antagonistic D2 can inhibit the striatal protection function of 
RhoA/ROCK (Charvin et  al., 2005). Therefore, ROCKs are an 
important factor that promote the progression of HD, and its 
inhibiting may delay the progression of HD. However, reports on the 
relationship between ROCKs and HD are limited, with available 
studies mainly focusing on ROCK1, and the specific mechanism 
remains elusive.

4.4 Amyotrophic lateral sclerosis

ALS is a rare NDD that affects middle-aged and older adults, with 
a global age-standardized incidence of approximately 1.68 per 100,000 
people per year (Marin et  al., 2018). ALS is characterized by 
degeneration of upper and lower motor neurons at the spinal cord or 
medulla oblongata level, resulting in muscle weakness and atrophy, 
dysarthria, dysphagia, and death from respiratory failure (Hardiman 
et al., 2017).

Mutations in superoxide dismutase 1 (SOD1) have been associated 
with ALS. Previous studies found that the protein levels of ROCK2 
and its downstream targets LIMK1 and cofilin2 were significantly 
increased in the skeletal muscle of ALS patients compared with the 
control group of the same age (Conti et al., 2014). Similarly, RhoA and 
ROCK2 were abnormally expressed in SOD1 mutant mice (Liang 
et  al., 2020). These results suggest that the Rho/ROCK signaling 
pathway may be involved in ALS and motor neuron degeneration. In 
addition, phosphorylated AKT levels were reduced in motor neuron 
cells of ALS patients and SOD1 mutant mice in the early stages of the 
disease (Dewil et  al., 2007). The mechanism may be  that ROCKs 
inhibit AKT phosphorylation by phosphorylating phosphatase and 
tensin homolog (PTEN), which is involved in SOD1-induced motor 

neuron cell death. However, ROCK inhibitor treatment reduces 
neuronal death and alleviates ALS axon regeneration and motor 
injury, which delays the disease process (Günther et al., 2017; Joshi 
et al., 2019; Takata et al., 2013; Tönges et al., 2014). Thus, ROCKs 
induce motor neuron cell death in ALS (Stankiewicz et al., 2020).

ROCKs are an important factor in ALS, which may mediate the 
degeneration of motor neurons through the PTEN/AKT pathway or 
actin. The inhibition of ROCKs may reduce motor neuron injury and 
delay the process of ALS.

4.5 Multiple sclerosis

MS is a chronic autoimmune inflammatory disease of the central 
nervous system, characterized by demyelination, axon damage, and 
neurodegeneration (Garg and Smith, 2015). Currently, about 
2.8  million people worldwide live with MS. MS etiology remains 
unknown and there is currently no cure for this disease (The Lancet 
Neurology, 2021). Axon damage is the main cause of irreversible 
neurological disability in MS. A previous study found that ROCK 
activity increased in the serum of MS patients and mice compared 
with the control group. Moreover, serum co-cultures revealed a 
shortening of neurites and decreased cell activity. However, treatment 
with ROCK inhibitors promoted neuron growth and synaptic 
formation (Chen C. et al., 2015). This suggests that MS axon loss is 
associated with increased ROCK activity, and inhibition of ROCKs is 
an effective strategy to prevent synaptic damage and promote nerve 
recovery. In addition, myelin degradation can lead to loss of axon 
function and eventually translate to axonal degeneration. 
Differentiation of resident oligodendrocyte precursor cells (OPCs) can 
regenerate the exfoliated axonal myelin sheath in early stages of 
MS. Therefore, enhancing endogenous OPC maturation and myelin 
regeneration is an effective therapeutic strategy for MS. Intriguingly, 
the Rho/ROCK signaling pathway can directly or indirectly participate 
in oligodendrocyte maturation and myelination, and the inhibition of 
ROCKs can promote the differentiation and myelination of OPCs 
(Paintlia et al., 2008; Pedraza et al., 2014). Therefore, the inhibition of 
ROCKs may improve MS damage by repairing synapses and 
promoting myelin regeneration.

Overall, ROCKs are shared signaling kinases in multiple NDDs, 
and elevated ROCK activity may be a potential biomarker for NDDs. 
Inhibition of ROCKs promotes nerve regeneration and can improve 
NDDs symptoms regarding nerve damage and synapses (Figure 3).

5 Application of ROCKs inhibitor 
fasudil in NDDs

ROCKs are potential targets for treating NDDs, and ROCK 
inhibitors have neuroprotective effects. In recent years, over 200 
ROCK inhibitors have been identified in the clinical trial stage, of 
which 75 have been approved by the US Food and Drug 
Administration (FDA) and 21 have been approved in China, Japan, 
and South Korea. Among them, fasudil acts by competing for 
adenosine triphosphate (ATP)-binding sites in the ROCKs catalytic 
domain, and is the first approved ROCKs protein kinase inhibitor, 
officially approved in Japan in 1995 for the treatment of vasospasm 
after subarachnoid hemorrhage (Roskoski Jr, 2023). Clinical trials 
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have shown that fasudil is well tolerated, with few side effects and no 
major safety concerns (Vicari et al., 2005). However, fasudil has a short 
time window and cannot be taken for a long time. Therefore, efforts 
have been made to identify new ROCK inhibitors, including 
derivatives of fasudil. For instance, hydroxyfasudil and dimethylfasudil 
can protect nerves and promote nerve regeneration and functional 
recovery (Lingor et al., 2007; Rikitake et al., 2005; Sezen et al., 2014). 
Y-27632 is also a typical ROCK inhibitor that is often used in cell and 
animal model studies (Kuroda et al., 2015; Miyagi et al., 2019; Pinca 
et al., 2017; Rodríguez-Trillo et al., 2022; Wang et al., 2017). Lingor 
et al. (2007) compared the effectiveness of fasudil, dimethylfasudil, 
and Y-27632 in inhibiting ROCK-promoted neuronal growth. The 
study found that all three inhibitors promoted neuron growth; 
however, the effects of fasudil and Y-27632 increased in a 
concentration-dependent manner. Overall, dimethylfasudil has the 
smallest concentration range, the best inhibition effect, and the 
highest level of safety. However, the treatment window of 
dimethylfasudil is narrow and the curative effect is limited owing to 
the permeability, chemical stability, and biodegradation of the 
membrane. The most common ROCKs inhibitors at present are 
summarized in Table  1. Ki results show that fasudil has a strong 
inhibitory effect. Therefore, fasudil remains one of the most 
competitive ROCK inhibitors currently approved.

It has been demonstrated that ROCKs contribute to synaptic 
function and inflammatory response (Lee et al., 2022; Shapiro et al., 
2019). In addition, the factors that drive the development of NDDs are 
also implicated in synaptic loss and neuroinflammation (Guzman-
Martinez et al., 2019). Animal models have demonstrated that fasudil 
has beneficial effects on various NDDs. Moreover, a positive 
correlation was reported between axon injury and inflammatory 
microglia/macrophage activation (Herz et al., 2010; Lou et al., 2018). 

Several studies have reported that fasudil suppresses the secretion of 
proinflammatory factors by converting microglia/macrophages from 
M1 to M2, which inhibits inflammatory signaling cascades (Barcia 
et al., 2012; Liu et al., 2024; Zhao et al., 2015). Synaptic plasticity forms 
the regulation of learning and memory. Fasudil was reported to 
promote axon and myelin regeneration by regulating actin 
cytoskeleton and other factors that cause axon disarrangement and 
synaptic destruction (Jing et  al., 2024; Zhu et  al., 2022). The 
effectiveness of fasudil in the treatment of various NDDs is 
summarized in Table 2.

5.1 Alzheimer’s disease

The results of the Morris water maze test indicated that the 
platform latency and residence time of the target region of APP/PS1 
mice increased following fasudil treatment, implying that fasudil 
alleviated the learning and memory disorders in AD mice (Yan et al., 
2021). Other scholars have indicated that fasudil can suppress 
endogenous Aβ production and decrease the levels of soluble Aβ and 
age-plaque deposits in the brains of AD mice, thereby improving 
Aβ-induced spatial learning and memory impairment (Killick et al., 
2023; Song et al., 2013; Yan et al., 2021). The administration of fasudil 
significantly reduced the Aβ load and tau phosphorylation in primary 
AD neurons, accompanied by increased expression of anti-apoptotic 
factor Bcl-2, thereby protecting neuronal processes (Gao et al., 2019). 
This implies that fasudil inhibits dendritic spines and synaptic 
barriers and promotes the formation of dendritic branches of neurons 
(Elliott et al., 2018; Guo et al., 2020b; Hooper et al., 2008). Endothelial 
cells have been shown to maintain the integrity of the blood–brain 
barrier (BBB). Oligo-Aβ and oligo-tau can disrupt the integrity of the 

FIGURE 3

Pathways associated with neurodegenerative diseases caused by ROCKs.
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BBB by activating the RhoA/ROCK signaling pathway via its effects 
on brain endothelial cells, causing neuroinflammation and 
degenerative changes (Hossen et al., 2024a). Fasudil treatment was 
observed to enhance the integrity and permeability of the BBB in AD 
by inhibiting this signaling pathway. It also decreases oxidative stress, 
proteasome activity, and mitochondrial dysfunction (Collu et al., 
2024; Hossen et  al., 2024b). In addition, transcriptomic analysis 
showed that fasudil suppressed tau phosphorylation by regulating the 
expression level of cluster proteins and upregulating the expression 
of AKT serine/threonine protein kinase 1 (Giunti et  al., 2023). 
Neuroinflammation has been found to be strongly associated with 
AD development. Fasudil prevents the production of IL-1β and 
TNF-α and the activation of NF-κB in AD, which alleviates brain 

inflammatory damage (Song et al., 2013). Therefore, inhibition of 
ROCKs by fasudil appears to be an effective strategy for blocking the 
progression of AD.

5.2 Parkinson’s disease

α-Syn is an important pathological marker of PD. Fasudil treatment 
inhibited α-Syn aggregation by directly binding to the C-terminal of 
α-Syn, and long-term fasudil-dependent treatment significantly 
improved the motor and cognitive impairment of α-SynA53T mice 
(Tatenhorst et al., 2016). It also activated macrophage autophagy via the 
JNK1/Bcl2/beclin1 pathway, downregulated the expression of α-Syn 

TABLE 1 Common ROCKs inhibitors.

Inhibitor Target Indication Ki(μM) References

Fasudil ROCKs

PKA

PKC

PKG

MLCK

 • Vasospasm after 

subarachnoid hemorrhage

 • Huntington’s disease

 • Bladder cancer

 • Epilepsy

 • X-linked intellectual disability

 • Cognitive impairment

 • Amyotrophic Lateral Sclerosis

 • Cardiovascular disease

 • Hepatic fibrosis

ROCK1-0.33

ROCK2-0.158

PKA-4.58

PKC-12.30

PKG-1.650

MLCK-36

Abe et al. (2014); Busti et al. (2020); Deng 

et al. (2016); He et al. (2017); Koch et al. 

(2020); Li et al. (2013); Ming et al. (2010); 

Zhao et al. (2006); Takata et al. (2013); Xi 

and Xu (2021)

Hydroxylfasudil ROCKs  • Diabetic erectile dysfunction

 • Ischemic stroke

 • Hypertension

 • Vasospasm after 

subarachnoid hemorrhage

 • Allergic asthma

ROCK1-0.73

ROCK2-0.72

Inoue et al. (2012); Sezen et al. (2014); 

Rikitake et al. (2005); Wang and Jiang 

(2020); Satoh et al. (2012); Franova et al. 

(2023)

Dimethylfasudil ROCKs  • Promote neurite growth ROCK1-0.0413

ROCK2-0.008

Lingor et al. (2007); Lie et al. (2010)

Netarsudil ROCKs  • Glaucoma ROCK1-0.0037

ROCK2-0.0023

Ha et al. (2022)

Ripasudil ROCKs  • Glaucoma

 • Ocular hypertension

ROCK1-0.051 ROCK2-

0.019

Kaneko et al. (2016); Araie et al. (2023)

Sovesudil ROCKs  • Glaucoma ROCK1-0.0037

ROCK2-0.0023

Ha et al. (2022)

Y-27632 ROCKsPKN

PKCα

PKA

 • Rheumatoid arthritis

 • Fatty liver ischemia/

reperfusion injury

 • Corneal endothelial injury

 • Juve sarcoma

 • Systemic lupus erythematosus

ROCK1-0.22

ROCK2-0.3

PKN-3.1

PKCα-73

PKA-25

Rodríguez-Trillo et al. (2022); Kuroda 

et al. (2015); Miyagi et al. (2019); Pinca 

et al. (2017); Wang et al. (2017)

Belumosudil ROCK2  • chronic graft-versus-host disease

 • systemic sclerosis

ROCK1-24

ROCK2-0.105

Blair (2021)

GSK429286 A ROCK1  • Allergic asthma

 • Promote angiogenesis

 • Restore limb ischemic blood flow

0.01414 Gondáš et al. (2024); Fayed et al. (2023)

RKI-1447 ROCKs  • Breast cancer

 • Rectal cancer

 • Nonalcoholic fatty liver disease

ROCK1-0.0145

ROCK2-0.0062

Patel et al. (2012); Li et al. (2020) Wang 

and Jiang (2020)

Ki indicates the potency of the inhibitor, which a lower Ki, indicating a stronger inhibitory effect.
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levels, and alleviated neuronal growth induced by α-Syn overexpression 
in A53T (Liu et  al., 2016). Thus, fasudil can inhibit α-Syn through 
various mechanisms and improve PD symptoms. In MPP and MPTP-
induced PD models, fasudil improved the motor function of MPTP mice 
by increasing the survival rate of DA cells and preserving DA termini, 
which conferred protection on DA neurons (Tönges et  al., 2012). 
6-OHDA (dopaminergic denervation) mice models often manifest with 
involuntary motor disorders owing to the increased expression of RhoA/
ROCK mRNA in the substantia nigra and striatum, and treatment with 
high concentrations of fasudil was found to elevate the level of DOPAC 
(mainly from newly synthesized DA; Tatenhorst et  al., 2014). This 
indicates that high concentrations of fasudil could potentially enhance 
the regeneration of DA neurons. While L-DOPA, a precursor used in 
dopamine replacement therapy, remains the main treatment for PD, it 
can cause movement disorders. In L-DOPA-induced PD rat models, 
fasudil treatment alleviated this movement disorder by inhibiting the 
RhoA/ROCK pathway and increasing the production of 
proinflammatory factors (Lopez-Lopez et al., 2020). This effect could 
result from microglia polarizing toward MPP-damaged dopaminergic 
neurons. However, timely administration of fasudil can inhibit its 
polarization, shifting proinflammatory M1 microglia to an anti-
inflammatory M2 phenotype, thereby safeguarding neurons from 

phagocytosis damage (Barcia et  al., 2012; Zhao et  al., 2015). In 
conclusion, fasudil can inhibit α-Syn via multiple mechanisms and 
targets and improves neurite growth and DA neurons to prevent 
inflammation in PD.

5.3 Huntington’s disease

The R6/2 mice model is a commonly used HD model that 
exhibits symptoms of progressive retinopathy. Vitreous injection 
of fasudil directly targeted retinal neurons to inhibit the Htt 
binding to ROCKs, which in turn prevented the phosphorylation 
of Profilin and attenuated protein aggregation and neurotoxicity 
(Charvin et  al., 2005). Rats with 3-nitropropionic acid 
(3-NP)-induced HD exhibit severe mitochondrial dysfunction 
and striatal degeneration. Fasudil treatment mitigated the 
pathological effects of 3-NP, reducing mitochondrial dysfunction 
and neuroinflammation, and the expression of oxidative stress and 
inflammation, ultimately improving HD symptoms (Ahmed et al., 
2016). Although the available evidence suggests that fasudil may 
be an effective treatment for HD, its application in HD has not 
been sufficiently clarified, necessitating further investigations.

TABLE 2 Mechanisms of fasudil in the treatment of neurodegenerative diseases.

Disease Mechanism References

AD Fasudil reduces apoptosis and synaptic loss through ASK/JNK, Dkk1/Wnt and other 

signaling pathways, reduces Aβ load, p-tau and NFTs levels.

Gao et al. (2019); Sellers et al. (2018); Elliott et al. 

(2018)

Fasudil inhibited the RhoA/ROCK pathway by regulating Nogo-A/NgR complex and clu 

protein, reduced the level of Aβ plaques and tau protein, maintained synaptic function 

and inhibited neuronal apoptosis.

Guo et al. (2020a); Hamano et al. (2020); Giunti et al. 

(2023)

Fasudil treats AD by reshaping gut microbial metabolism Yan et al. (2021)

Fasudil reduces hippocampal neuronal degeneration and improves learning and 

memory deficits by inhibiting inflammatory responses.

Song et al. (2013); Guo et al. (2020b)

PD Fasudil activates macroautophagy through JNK1/Bcl2/beclin1 pathway, reduces α-Syn 

content and attenuates neurite growth injury caused by A53T α-Syn overexpression.

Tatenhorst et al. (2016); Liu et al. (2016)

Fasudil protects dopaminergic neurons and promotes their regeneration by inhibiting 

ROCK/GSK-3β activity, improving PD motor function, and inhibiting inflammatory 

response and oxidative stress.

Barcia et al. (2012); Zhao et al. (2015); Tönges et al. 

(2012); Tatenhorst et al. (2014)

Fasudil alleviates PD injury by inhibiting levodopa-induced dyskinesia. Lopez-Lopez et al. (2020)

HD Fasudil alleviates profilin phosphorylation by blocking Htt binding to ROCKs and 

improves retinal function in HD mice.

Shao et al. (2008a)

Fasudil inhibits SOD1G93A induced motor neuron cell death by inhibiting ROCKs 

regulated PTEN/AKT signaling pathway.

Takata et al. (2013)

Fasudil mitigated mitochondrial dysfunction and neurotoxicity and inhibited 

degeneration in 3-NP HD rats.

Ahmed et al. (2016)

ALS Oral administration of fasudil improved motor behavior in male PD mice. Günther et al. (2017)

Fasudil inhibits the release of proinflammatory cytokines and chemokines by regulating 

the activation of RhoA/ROCK and microglia cells, prolongs the survival cycle of ALS 

and improves motor function.

Tönges et al. (2014)

MS Fasudil inhibits inflammatory cell infiltration and improves demyelination. Liu et al. (2024)

Fasudil promotes microglia to clear pathological myelin debris by up-regulating 

microglia TREM2/DAP12 pathway, induces neurotrophic factor expression, and 

promotes myelin regeneration.

Ding et al. (2021)

AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, Amyotrophic Lateral Sclerosis; MS, Multiple sclerosis; Aβ, beta-amyloid; P-tau, Phosphorylated tau.
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5.4 Amyotrophic lateral sclerosis

ROCKs have been implicated in neuronal death in vivo and in 
vitro settings. Fasudil treatment regulated the PTEN/AKT pathway via 
blocking the activity of ROCKs, thereby decreasing SOD1G93A-induced 
motor neuron cell death and delaying disease progression (Takata 
et  al., 2013). In addition, in SOD1G93A mice, it was observed that 
fasudil administration before ALS symptoms improved motor 
function and prolonged life cycle (Tönges et al., 2014). However, in 
symptomatic mice, fasudil only improved motor function in male 
mice (Günther et al., 2017). Therefore, future investigations are needed 
to clarify the associated mechanisms.

5.5 Multiple sclerosis

The commonly used MS models are the experimental 
autoimmune encephalomyelitis (EAE) mice. Pathological changes 
that accompany EAE include inflammatory cell infiltration and 
demyelination. It was reported that fasudil significantly inhibited 
inflammatory response and transformed inflammatory factors such 
as IL-17 into anti-inflammatory factors such as IL-10, thereby 
reducing inflammation (Liu et al., 2024). Myelin destruction leads 
to the enrichment of microglia and phagocytosis of myelin 
fragments. Fasudil enhances the TREM2/DAP12 pathway, 
activating microglia to clear myelin debris and stimulating the 
production of neurotrophic factors, which in turn supports the 
formation and maturation of OPCs in demyelinated mice (Ding 
et  al., 2021). These data suggest that fasudil may become an 
alternative treatment for MS, but more evidence is needed before it 
can be applied in clinical practice.

6 Conclusion

The pathogenesis of NDDs remains a challenging and intricate 
issue in the medical field. Emerging evidence suggests that 
dysregulated ROCK activity may contribute to the degeneration 
of the nervous system. However, considering the high similarity 
of amino acid sequences between ROCK1 and ROCK2, the 
various inhibitors of ROCKs developed in many studies may have 
some limitations. In addition, other studies have demonstrated 
that fasudil confers neuroprotection and repair and can effectively 
reduce neuronal damage. However, research from recent studies 
has shown that the inhibition of ROCKs by fasudil is mainly tested 
in AD and PD. Therefore, future studies should investigate the 
effects of the inhibition of ROCKs by fasudil on other NDDs. In 
addition, several mechanisms and pathways contribute to the 
occurrence of NDDs, in which ROCKs may play a role. Therefore, 
the inhibition of ROCKs by fasudil can accurately target the 
treatment of neurodegenerative diseases with few side effects, 
which remain to be  further studied. In addition, all existing 
ROCK inhibitors have a common problem with low target 
specificity. For example, fasudil inhibits other kinases such as 
PKA, PKG, PKC, and MLCK, in addition to ROCKs (Koch et al., 
2018). Thus, it is imperative to a gain deeper understanding of 
ROCK’s specific role in NDDs and developing safer, more targeted 
ROCK inhibitors in future studies.

ROCK1 is mainly expressed in liver, lung, and blood, while 
ROCK2 is predominantly expressed in the brain, heart, and muscle. 
Aberrant ROCK expression has been linked to the development of 
neurodegenerative diseases such as AD, PD, HD, ALS, and MS.

ROCK1 and ROCK contain a kinase domain, central coiled-coil 
domain containing RBD domain, PH domain, and CRD domain. The 
binding of Rho to RBD or cleavage of the C-terminal induces self-
inhibition of ROCKs, causing the activation of ROCKs. RBD: 
Rho-Binding domain; CRD: cysteine-rich domain; PH: Pleckstrin-
homology domain.

The stimulation of Rho activates ROCKs, which in turn causes 
protrusion and axon damage through the phosphorylation of LIMK, 
CRMP2, PTEN, MLCP, and MYPT1, which increases the risk of 
neurodegenerative diseases. Fasudil can inhibit the activation 
of ROCKs.
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