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Welfare in commercial livestock farming is becoming increasingly important 
in current agriculture research. Unfortunately, there is a lack of understanding 
about the neuronal mechanisms that underlie well-being on an individual level. 
Neuroplasticity in the hippocampus, the subventricular zone (SVZ), the olfactory 
bulb (OB) and the hypothalamus may be essential regulatory components in the 
context of farm animal behaviour and welfare that may be altered by providing 
environmental enrichment (EE). The importance of pre-and probiotics as a form 
of EE and the microbiota-gut-brain axis (MGBA) has come under the spotlight in 
the last 20  years, particularly in the contexts of research into stress and of stress 
resilience. However, it could also be an important regulatory system for animal 
welfare in livestock farming. This review aims to present a brief overview of the 
effects of EE on physiology and behaviour in farm animals and briefly discusses 
literature on behavioural flexibility, as well as inter-individual stress-coping styles 
and their relationship to animal welfare. Most importantly, we will summarise 
the literature on different forms of neural plasticity in farm animals, focusing on 
neurogenesis in various relevant brain regions. Furthermore, we will provide a 
brief outlook connecting these forms of neuroplasticity, stress, EE, the MGBA and 
welfare measures in modern livestock farming, concentrating on pigs.
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1 Introduction

Commercial livestock farming typically raises animals in more controlled, relatively barren 
environments than their wild counterparts. Indeed, livestock animals show cognitive bias, self-
control, and self-awareness, develop complex social relationships and are capable of learning (for 
review, see Doyle, 2017; Marino, 2017; Marino and Colvi, 2015; Nawroth et al., 2019). However, 
less complex housing conditions may limit their cognitive and emotional capacity due to 
compromised neurobiological development. Moreover, barren environments in livestock farming 
may contribute to such negative emotions and affective states as fear, anxiety and depression, as 
well as abnormal, undesirable behavioural patterns like stereotypies and injurious inter-individual 
interactions, which actually lead to reduced positive welfare states (Campbell and Lee, 2021; 
Crump et al., 2018; Lecorps et al., 2021; Mellor, 2015 for review). Improving animal housing 
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conditions by increasing environmental and social complexity, also 
called environmental enrichment (EE), is a fundamental strategy to 
ensure that the animals are best adapted throughout their productive 
lives. Although research clearly shows a positive impact of EE across 
livestock species on such indirect measures as cognitive processing, 
affective states, emotions, judgement biases and stress response (Bolhuis 
et al., 2013; Grimberg-Henrici et al., 2016; Oesterwind et al., 2016 and 
see Okon-Singer et al., 2015 for review), which are not only intricately 
linked, but which have also been associated with measures of 
neuroplasticity. What underpins them neurobiologically remains largely 
understudied in farm animals. This is at least partly due to difficulties in 
analysing brain function in larger livestock species compared to rodents, 
as well as comparative novelty of applying neurobiological techniques in 
animal welfare research (Campbell and Lee, 2021 for review). 
Nevertheless, increasing our knowledge about the influence of housing 
conditions and EE on neuronal measures like neuroplasticity would 
be an essential step towards a better understanding of how to improve 
the welfare of individual livestock animals.

2 The importance of environmental 
enrichment for farm animal welfare

2.1 Environmental enrichment and its 
relation to stress-coping and behavioural 
flexibility

Animal welfare is an increasingly important issue in current 
agricultural research, due to the growing consumer demand and 
intensification of livestock production, which simultaneously 
contributes to concerns about the health and well-being of animals bred 
for their products (Mellor, 2015; Nawroth et  al., 2019, for review). 
Animal welfare is characterised as the result of physical and 
psychological well-being (for review, see Coria-Avila et  al., 2022; 
Duncan, 1987) and is expected to occur when animals are free from 
hunger, thirst, malnutrition, discomfort, stress, fear, and pain or if 
animals express their natural behavioural repertoire (Coria-Avila et al., 
2022, for review). The concept of animal welfare is based on research 
findings that animals have subjective emotions and can feel pleasure 
and suffering (Nawroth et al., 2019, for review). Importantly, welfare is 
not a constant state but rather the result of specific brain dynamics that 
render motivated behaviours. Impaired welfare can be expected when 
the allostatic load from repeated, chronic, unpredictable and/or 
uncontrollable conditions compromises the physiological and 
psychological basis for health due to an impaired allostatic adjustment 
(for a review, see Korte et al., 2007; Mcewen, 1998; McEwen and Stellar, 
1993). Many physiological and behavioural adjustments labelled as 
stress responses may rather be seen as adaptive changes, through which 
the animal responds to predictable/unpredictable events (Koolhaas 
et al., 2011; Romero et al., 2009, for review), and these adjustments are 
also dependent on individual coping styles (de Boer et al., 2017, for 
review). Individual stress-coping abilities and variations in stress 
responsiveness are common phenomena, seen not only in laboratory 
animals (Bosch et al., 2006; Castanheira et al., 2017; Neumann et al., 
2005; Silva et al., 2010 and see Koolhaas et al., 1999; Veenema and 
Neumann, 2007, for review), but also in livestock. More specifically, 
different stress-coping styles in pigs, which can be defined as sets of 
behavioural and physiological responses to stress, have been 

characterised as reactive vs. proactive. Reactive pigs show a high post-
stress HPA-axis activation and a robust increase in cortisol (CORT) 
levels, low sympathetic adrenal-medullary system activity, low levels of 
aggression, low risk-taking, and high behavioural flexibility as measured 
by the Open-Field/Novel-Object test. In contrast, proactive pigs are 
characterised by low CORT responses, high sympathetic activity, 
aggressive-, as well as rigid and high-risk behaviour (Kanitz et al., 2019). 
Inter-individual variations in responsiveness can be  of particular 
importance in animal welfare since certain personality traits may 
enhance or inhibit stress-coping abilities (Griffin et  al., 2015, for 
review). Thus, a changing or challenging environment may not affect 
some animals while negatively impacting others. It has generally been 
accepted that one of the main characteristics of contrasting coping 
styles is behavioural flexibility (Coppens et al., 2010, for review), which 
may be measured by tests of cognitive functions and influenced by 
chronic stress. Indeed, cognition is inextricably linked with stress 
coping, emotions and thus mental health, as seen in human studies 
(Barnett et al., 2012; Karestan et al., 2009 and see Burger, 2010 and 
Martin et al., 2007 for review). Evidence from human literature to farm 
animals shows that individuals lacking environmental complexity or 
enrichment may be more likely to show (1) negative affective states such 
as aggression, (2) increased susceptibility to negative emotions, (3) 
reduced ability to experience positive states, (4) lower emotional 
intelligence, (5) reduced stress-coping abilities and (6) reduced 
behavioural flexibility (Campbell and Lee, 2021, for review). Despite the 
knowledge of these consequences, commercial indoor animal 
husbandry systems often offer minimal environmental stimulation and 
a lack of opportunity for farm animals to express their inherent 
behaviours. Barren slatted concrete floors with no rooting material 
preclude the expression of natural behaviours like those exhibited under 
normal environmental conditions (Van de Weerd and Day, 2009), such 
as rooting, wallowing and exploring, particularly in pigs (Studnitz and 
Pederson, 2007), thus leading to harmful social and aggressive 
behaviour towards conspecifics (Fraser et al., 1991). Indeed, there is 
growing interest in implementing EE for farm animals in intensive 
production systems to improve animal welfare while maintaining high 
productivity (Beattie et al., 1996; Fraser et al., 1991; Jansen et al., 2009; 
Zebunke et al., 2013). Although there is no standardised form of EE, it 
usually comprises a physical, sensory, social, cognitive or nutritional 
component (see Figure 1) (Newberry and Wood-Gush, 1988; Van de 
Weerd et  al., 2003) to increase the number and range of normal 
behaviours and the ability to deal with behavioural and/or physiological 
challenges, while preventing abnormal behaviours. In choosing the 
right form of EE, it must be borne in mind that EE preferences are not 
only species-specific, but also sex-specific (Van de Weerd et al., 2003; 
Wurbel, 2007). Unfortunately, there is a lack of studies evaluating the 
effect on each sex (Simpson and Kelly, 2011, for review).

There seems to be a notable time-dependent factor, with EE being 
particularly effective during sensitive developmental windows of brain 
development, i.e., during the early prenatal and postnatal period as seen 
in rodents (Brummelte et  al., 2007; Cymerblit-Sabba et  al., 2013; 
MacRae et al., 2015). Consequently, EE has been shown to buffer the 
adverse effects of parental neglect and early-life stress at the time of 
weaning, whereas no effect was observed when EE was applied in later 
life (Bredy et  al., 2003). Specifically, EE offspring showed better 
behavioural adaptability in response to novel contexts and elevated 
levels of GLUR1 and GABA in the PFC, indicative of a better stress 
regulatory system (Connors et al., 2015). Interestingly, the benefits of EE 
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seem to be mediated by changes in maternal care (Connors et al., 2015), 
which is known to affect not only the physiology but also behaviour of 
the offspring (Francis et al., 1999a,b; Francis and Meaney, 1999).

The results from rodent studies could be particularly interesting 
in modern animal husbandry, where early weaning represents a 
stressor for the offspring. Putting the results from rodent studies in the 
context of livestock farming suggests that applying EE is particularly 
important during the prenatal phase to minimise potential behavioural 
disturbances in the offspring during their animal husbandry lives.

2.2 Behavioural and hormonal measures to 
assess the effect of environmental 
enrichment

Although studies do reveal EE’s beneficial effects on outcome such 
as behaviour, stress response, performance and productivity 
(Mkwanazi et al., 2019, for review), the measurement of welfare and 
stress resilience in livestock animals is challenging. There are only a few 
valid scientific measures for reliably assessing their effects (Rault et al., 
2018). Nevertheless, the positive effects of EE have been shown on 
physiological parameters like CORT levels through the minimisation 
of stress levels and promotion of inherent pig behaviour in intensive 
production systems. As a result, pigs reared in barren environments 
without any substrates show higher CORT concentrations than pigs in 
an enriched environment (de Jong et al., 2000; Pearce and Paterson, 
1993; Peeters et al., 2006; Van de Weerd and Day, 2009; Yonezawa et al., 
2012). One important factor to consider when assessing CORT levels 
in the context of stress is its diurnal regulation. Consequently, assessing 
the effect of EE on the circadian rhythm of CORT plasma levels may 
be  a more reliable measure of outcomes than single CORT 
measurements (Geverink et al., 2002; Ruis et al., 1997). Bypassing this 
problem, measuring hair CORT may be a reasonable alternative, for 

one thing it is non-invasive and, for another, rather independent of the 
fluctuations seen in plasma levels (see Heimbürge et  al., 2019, for 
review). Aside from changes in CORT levels, the body temperature, 
growth performance and meat quality have been demonstrably altered 
in pigs without EE (Mkwanazi et al., 2019, for review).

EE's positive effects on pig behaviour are well studied and 
numerous (Mkwanazi et al., 2019, for review). Aggression among pigs 
is a common and normal behaviour primarily driven by forming a 
social/dominance hierarchy (Turner and Tilbrook, 2006, for review). 
However, the high levels of aggression often seen in uncomfortable 
environments in barren housing systems can further exacerbate 
existing high levels of aggression, constituting a challenge to welfare 
in pig livestock farming (Bolhuis et al., 2005; Turner and Tilbrook, 
2006). Another sign that the environment of intense farming fails to 
meet pigs’ behavioural needs is the occurrence of harmful social 
behaviour (e.g., tail-biting) (Beattie et al., 2000; van de Weerd et al., 
2005). Importantly, EE has been shown to successfully reduce both the 
level of aggressive interaction among pigs and harmful social 
behaviours by increasing the time spent on the substrates provided 
(Beattie et al., 2000). Although play behaviour is not typical in adult 
pigs, research suggests that pigs in EE exhibit more play behaviour, 
which may increase behavioural flexibility and, thus, welfare in the 
long term (Bolhuis et al., 2005; Kelly et al., 2000; Newberry and Wood-
Gush, 1988; Spinka et al., 2001).

2.3 Neurobiological mechanisms 
underlying the effects of environmental 
enrichment

Although revealing ultimate and proximate mechanisms behind 
these analogous behaviours and investigating causes and consequences 
of personality-cognitive covariation is a growing field of research in 

FIGURE 1

Graphical summary of EE types in farm animals; EE may be provided by the implementation of (1) Sensory tools (for example straw bedding, plastic 
balls, deformable and digestible material in various shapes), (2) Nutritional tools (e.g., by using pre/probiotics or specifically enriched chow), (3) Social 
tools (such as keeping animals in stable social groups), (4) Physical tools (for instance, the opportunity for access to outside with sufficient space to 
move freely and the opportunity to run about) and (5) Cognitive tools (for example daily music exposure, cognitive challenges in the form of 
discrimination/operant/puzzle box tasks).
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domesticated animals (Goursot et al., 2019; Kanitz et al., 2019 and see 
Finkemeier et al., 2018; Griffin et al., 2015; Sih, 2012, for review), the 
underlying neuronal mechanisms that drive these variations are 
largely unknown and underestimated. Neural plasticity is one 
parameter that could be a particularly interesting biomarker in the 
context of stress coping styles, behavioural flexibility, emotional 
intelligence and thus individual welfare, given the fact that there seems 
to be a correlation between measures of neural plasticity, in other 
words, adult neurogenesis, EE/complexity, cognition, stress and vice 
versa (Overli and Sorensen, 2016, for review). Therefore, examining 
adult neurogenesis in different relevant brain regions, such as the 
subgranular zone (SGZ) of the hippocampus, the subventricular zone 
(SVZ), the olfactory bulb (OB) and the hypothalamus may be  a 
promising avenue for understanding differences in individual stress 
coping and how EE may lead to improved livestock welfare at an 
individual level.

The following sections summarise the literature available on 
neuroplasticity in specific brain regions (i.e., SGZ, SVZ, OB and 
hypothalamus) of farm animals (i.e., pigs, cattle, goats and sheep) and 
aim to draw correlations with behavioural measures like cognition and 
how these measures may be linked to welfare in animal husbandry.

3 Neuroplasticity in farm animals: 
state of the art and comparison with 
other mammals

3.1 Neurogenic zones and specific markers 
for neurogenesis in farm animals

Whereas there are significant anatomical differences between 
rodent and human brains, the brains of farm animals such as pigs, 
cattle, goats and sheep share some critical structural and functional 
characteristics (Abbott, 2014). Specifically, they have a similar pattern 
of brain development with rapid growth during the perinatal period, 
a highly evolved gyrencephalic neocortex, a comparable cortical 
organisation and anatomical structure, as well as a similar grey/white 
matter ratio and regional distribution of neurotransmitter systems 
(Conrad et al., 2012; Henry et al., 1996; Ishibashi et al., 2012; Pond 
et al., 2000; Quinones-Hinojosa et al., 2006; Rakic, 2009; Ryan et al., 
2018; Zhang and Sejnowski, 2000 and see Dobbing and Sands, 1979; 
Quinones-Hinojosa et al., 2007, for review). Thus, although somewhat 
less documented and understood, it is not surprising that adult 
neurogenesis as seen in tree shrews, marmosets, macaques and 
humans (Cameron et al., 1993b; Eriksson et al., 1998; Gould et al., 
1997; Gould et al., 1999b; Kempermann et al., 1997a), has also been 
observed in farm animals (Brus et al., 2010; Corona et al., 2017; Dhari 
et al., 2021; Guidi et al., 2011; Huguet et al., 2023; Levy et al., 2019; 
Rodriguez-Perez et al., 2003).

In the adult mammalian brain, two neurogenic regions are 
generally accepted: the SVZ of the lateral ventricle and the SGZ of the 
hippocampus (Altman and Das, 1965; Brazel et al., 2003; Palmer et al., 
1995; Reynolds and Weiss, 1992; Sanai et  al., 2004). Multipotent 
neural stem/progenitor cells (NSCs), also known as precursor cells, 
which reside in the anterior portion of the SVZ in the walls of the 
lateral ventricles, migrate along the rostral migratory stream (RMS) 
into the OB, where they differentiate into neurons (Okano, 2002, for 
review). Although reports are conflicting, the production of new 

neurons also seems to occur in the neocortex, the amygdala and the 
hypothalamus (Dayer et al., 2005; Fowler et al., 2002). At least the 
latter seems to play an important functional role in sheep, where it 
regulates seasonal plasticity in the context of reproductive function 
(Batailler et al., 2016; Kokoeva et al., 2005; Xu et al., 2005, for review 
see Lee and Blackshaw, 2012 and Migaud et al., 2010).

Adult hippocampal neurogenesis, which occurs in the neurogenic 
region of the DG, the SGZ, comprises at least four distinct processes: 
cell proliferation, differentiation, migration and cell survival (see also 
Figure 2). The SGZ harbours a resident population of cells believed to 
be multipotent NSCs (Kempermann et al., 2004). NSCs have some 
characteristics of astroglial cells and, as such, express the astrocytic 
marker glial fibrillary acid protein (GFAP)—however, they are not 
themselves glial cells. They are either in a quiescent stage, in which 
they are in G0 of the cell cycle (when they express SOX2, a transcription 
factor essential for the maintaining self-renewal of stem cells), or self-
renewing via mitosis (when they express proliferating cell nuclear 
antigen (PCNA)), or the proliferative marker Ki67. NSCs that are 
actively engaged in cycling, give rise to daughter cells (progenitor 
cells), which act as transiently amplifying cells (Mckay, 1997; Seaberg 
and van der Kooy, 2002) and express the microtubule-associated 
protein doublecortin (DCX), a marker for commitment to a neuronal 
phenotype (Brown et al., 2003; Seri et al., 2004; Seri et al., 2001). These 
progenitor cells re-enter the cell cycle to divide again, producing 
daughter cells that become post-mitotic and differentiate. In rodents, 
the majority of these cells (~70%) (Cameron et al., 1993a) differentiate 
into neurons (Cameron and McKay, 2001), as they express the neural 
nuclei protein NeuN (Kempermann, 2006). In contrast, only a few 
(~10%) (Cameron et al., 1993a) become astroglial cells that express 
GFAP (Kempermann et al., 1997b). After differentiation, cells migrate 
to the granule cell layer (GCL), where, after approximately 7 weeks 
following division, the new cells are functionally indistinguishable 
from older cells (Zhao and Overstreet-Wadiche, 2008) and are electro-
physiologically integrated into the circuitry (Hastings and Gould, 
1999; Stanfield and Trice, 1988; van Praag et  al., 2002). However, 
differences in lifespan and brain expansion accompanied by 
gyrification and topographical complexity lead to dramatic differences 
in the dynamics, cellular composition and morphological organisation 
of adult neurogenesis in livestock animals (Levy et  al., 2017, for 
review). Thus, generation, migration and differentiation are much 
longer in primates and farm animals than in rodents (for more details, 
see Section 3.2). SVZ-derived neural stem and progenitor cells 
proliferate as multipotent neurospheres, expressing the neural 
progenitor and neurodevelopmental markers SOX2, GFAP, DCX and 
Ki67 (Ara and De Montpellier, 2013). Indeed, NSCs from the SVZ 
have been shown to produce neurons and glia in vivo and in vitro 
(Guidi et al., 2011; Liard et al., 2009; Yin et al., 2011) and to migrate 
to the hippocampus, where they become incorporated in the 
hippocampal circuitry (Nakatomi et al., 2002). The fact that DCX+ 
cells with morphologies of migrating neuroblasts are additionally 
found in the striatum, the prefrontal cortex and the anterior cingulate 
cortex (Aoyagi et al., 2018; Lois et al., 1996; Morton et al., 2017; Sanai 
et al., 2011 and see Lazarini and Lledo, 2011, for review) suggests that 
SVZ NSCs are the main source of new neurons in the neocortex, 
contributing to adult gyrencephalic growth by grey matter maturation, 
at least in humans and pigs (Ara and De Montpellier, 2013; Morton 
et al., 2017; Paredes et al., 2016; Sanai et al., 2005). In species with 
strong olfaction, such as rodents, sheep and pigs, NSCs located on the 
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wall of the lateral ventricles function as primary precursors in the SVZ 
to continuously generate large numbers of interneurons, which 
radially migrate through the RMS to the OB, where they mature and 
mostly replenish granular GABAergic interneurons throughout life 
(Costine et al., 2015 and Gage and Temple, 2013; Ming and Song, 
2011, for review).

As mentioned above, there is also evidence for a neurogenic niche 
in the hypothalamus. There, resident stem cells with the capacity to 
self-renew have been observed across numerous mammalian species, 
including mice (Kokoeva et al., 2007), rats (Pencea et al., 2001a; Xu 
et al., 2005), voles (Fowler et al., 2005), hamsters (Huang et al., 1998; 
Mohr and Sisk, 2013) and sheep (Batailler et al., 2014; Migaud et al., 
2011; Migaud et  al., 2010). However, the level of constitutive 
neurogenesis is lower than those seen in the SGZ and SVZ (Lee and 
Blackshaw, 2012, for review). Although the identity and location of 
hypothalamic NSCs are still unclear or at least debatable, as there has 
been no proper characterisation to date, specialised hypothalamic glial 
cells-tanycytes-may be the key cell type in this context (Haan et al., 
2013; Robins et al., 2013). Indeed, they show characteristics of neural 
stem/progenitor cells by expressing the specific markers nestin, 
vimentin and SOX2 in all mammalian species studies conducted so 
far (Baroncini et al., 2007; Batailler et al., 2014; Bennett et al., 2009; 
Bolborea and Dale, 2013; Li et al., 2012; Rodriguez et al., 2005; Wei 

et al., 2002). Located along the border of the third ventricle, their 
morphology is similar to radial glia, and they exhibit long processes 
that project to the hypothalamic parenchyma to reach the fenestrated 
capillary network. As such, they are at the focus of central physiological 
regulation and may be particularly important in seasonal species, 
where the hypothalamus plays a critical role in the availability of 
thyroid hormones, which are mandatory for an appropriate seasonal 
alteration between breeding and non-breeding seasons (Nicholls 
et al., 1988).

3.2 Hippocampal neurogenesis in farm 
animals

To date, adult hippocampal neurogenesis has been shown in the 
neonatal, new-born and developing piglet brain, in prepubertal and 
adult pigs, as well as in various breeds of lambs and adult sheep and 
in different physiological, pathophysiological and behavioural contexts 
(Brus et al., 2010; Brus et al., 2013; Brus et al., 2014; Conrad et al., 
2015; Hawken et al., 2009; Huguet et al., 2023; Swanson et al., 2017; 
Val-Laillet et al., 2017; Val-Laillet et al., 2018; Val-Laillet et al., 2020) 
(see also Table 1), whereas there are no reports about neural plasticity 
in the bovine or caprine hippocampus. So far, research in pigs has 

FIGURE 2

Graphical summary showing (a) the farm animals discussed in this review, (b) the brain regions known for their neurogenic potential and so far studied 
in these farm animals (sagittal section of the pig brain adapted from (Felix et al., 1999), (c) magnification of the mammalian hippocampus including the 
DG and CA (cornu ammonis) region, which has been investigated in sheep and pigs, but not yet in cattle and goats, (d) the dynamics of adult 
hippocampal neurogenesis, including specific cell types, stages of hippocampal neurogenesis, markers used to investigate hippocampal neurogenesis 
in farm animals and approximate times for the different stages in rodents, sheep and pig (where known). CA, Cornu Ammonis; d, Days; DG, Dentate 
Gyrus; GCL, Granule cell layer; m, Month; NSC, Nuclear Stem Cell; SGZ, Subgranular zone; w, Weeks.
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TABLE 1 The studies on adult neurogenesis in farm animals in the different neurogenic regions, i.e., the hippocampus, SVZ, OB and hypothalamus.

Brain region Species (breed) Sex Age Parameters (outcome) Marker Context/condition Ref

HIPP Pig (Göttingen minipig) F/M Juvenile (6–7 weeks) Adult Proliferation BrdU Descriptive Guidi et al. (2011)

Pig (Landrace) F Prepubertal (19 weeks) Immature neurons (↑ with supplementation) DCX Diet (probiotics, omega-3-

fatty acid)

Huguet et al. (2023)

Pig (Yucatan minipigs) F/M Juvenile (3 months) Proliferation (↑ with supplementation)

Immature neurons (↓ with supplementation)

Ki67, DCX Diet (western diet during 

pregnancy)

Val-Laillet et al. (2017)

Pig (Landrace) F Juvenile (3.5 m) Hippocampal GCL volume (↑)

Proliferation (↑ with supplementation)

Immature neurons (↑ with supplementation)

Ki67, DCX Diet (sodium butyrate) Val-Laillet et al. (2018)

Pig (Crossbred) F/M Neonatal (28 days) Survival (↓ in M; ↔ in F after infection) BrdU Infection (respiratory viral 

infection)

Conrad et al. (2015)

Pig (Landrace) M Juvenile (6 weeks) NeuN cell numbers (↓ after TBI) NeuN TBI Kinder et al. (2019)

Sheep (Romney/

Suffolk)

F Adult young (3 years) Short/Long-term survival (↔) BrdU, PCNA Descriptive Low et al. (2013)

Adult old (5–6 years) Proliferation (↔)

Sheep (Île-de-France) F Adult (1–2 years) Evidence for different cell types in DG Proliferation (↓) BrdU, Ki67, DCX, GFAP Descriptive/Parturition/

Lactation

Brus et al. (2010)

Sheep (Île-de-France) F Adult (2–3 years) Stem progenitor (↔)

Neuroblasts (↔)

Neuronal differentiation (↑ with time since BrdU)

Glial cells (↔)

BrdU, DCX, NeuN, SOX2, 

S100ß

Parturition (1, 2, 3, 4, and 

8 m post BrdU)

Brus et al. (2013)

Sheep (Île-de-France) F Adult (1.5-2y) Proliferation (↓ with parturition)

Neuroblasts (↔)

Neuronal differentiation (↓with parturition)

Survival (↔)

BrdU, Ki67, DCX, NeuN Lactation/Interaction with 

young

Brus et al. (2014)

Sheep (Île-de-France) F Adult (4–5 years) Proliferation (↔)

Neuroblasts (↔)

Ki67, DCX Effect of OXT Levy et al. (2019)

Sheep (Romney) M Juvenile (6 weeks) Proliferation, Differentiation (↔) BrdU, PCNA, GFAP, NeuN Exercise (Running) Swanson et al. (2017)

(Continued)
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Brain region Species (breed) Sex Age Parameters (outcome) Marker Context/condition Ref

SVZ Pig (Yorkshire/

Landrace)

F/M Neonatal (0 day, 16 days, 

42 days)

No. of DCX Clusters (↑ with age)

Proliferation (Ki67 ↓ with BrdU post-inj. time)

BrdU, Ki67, DCX Descriptive Porter et al. (2022)

Pig (n.a.) F Cell culture (1 day old 

brains)

Characterisation of NSCs DCX, Ki67,GFAP, NeuN, 

TuJ1/ßIII-tubulin, SOX2

Descriptive Ara et al. (2010)

Pig (Yorkshire) F/M Neonatal/Juvenile (7 days, 

1 month, 4 months)

Immature neurons (↑ with lesion) DCX TBI Costine et al. (2015)

Pig (Landrace) M Juvenile (6 weeks) Immature neurons (↑ with lesion) DCX TBI Kinder et al. (2019)

Pig (n.a.) F Cell culture (2 days, 4 days, 

8 days old brains)

Proliferation (↑ with Hypoxic Preconditioning) BrdU Hypoxic preconditioning Ara and De Montpellier 

(2013)

Pig (Yorkshire) F Neonatal/Juvenile (7 days, 

7 weeks, 15 weeks)

Stem progenitor cell No. and proliferation (↓ with hypoxic 

treatment)

Ki67, SOX2 Congenital heart disease/

Hypoxia

Morton et al. (2017)

Pig (Yorkshire) n.a. Proliferation (↑ with CPB) Neuroblasts (↔) Ki67, DCX, GFAP CPB Maeda et al. (2020)

Pig (Yorkshire) F Neonatal/Juvenile 

(3–4 weeks)

Stem progenitor cells, neuroblasts, Proliferation, 

Astrocytes, Neurons (↓after CPB)

Ki67, DCX, GFAP. NeuN, 

SOX2

CPB Dhari et al. (2021)

Sheep (Romney) M Juvenile (6 weeks) Proliferation, Differentiation (↔) BrdU, PCNA, GFAP, NeuN Exercise (Running) Swanson et al. (2017)

Sheep (Romney/

Suffolk)

F Adult young (3 years) Short/Long-term survival (↔) BrdU, PCNA Descriptive Low et al. (2013)

Adult old (5–6 years) Proliferation (↔)

Sheep (Île-de-France) F Adult (1–2 years) Evidence for different cell types in SVZ

Proliferation (↓)

BrdU, Ki67, DCX, GFAP Descriptive/Parturition/

Lactation

Brus et al. (2010)

Cattle (n.a.) F Adult (1–3 years) Distribution of ependymal, subependymal cells, 

astrocytes and proliferating cells

GFAP, PCNA, S100ß, TuJ1/

ßIII-tubulin

Descriptive Rodriguez-Perez et al. 

(2003)

Cattle (n.a.) n.a. Cell culture (2 years old 

brains)

Distribution of ependymal, subependymal cells, 

astrocytes and proliferating cells

BrdU, PCNA, S100ß GFAP, 

TuJ1/ßIII-tubulin

Descriptive Perez-Martin et al. (2003)

(Continued)

TABLE 1 (Continued)
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Brain region Species (breed) Sex Age Parameters (outcome) Marker Context/condition Ref

OB Sheep (Île-de-France) F Adult (1–2 years) Evidence for different cell types in OB

Proliferation (↓)

BrdU, Ki67, DCX, GFAP Descriptive/Parturition/

Lactation

Brus et al. (2010)

Sheep (Île-de-France) F Adult (2–3 years) Stem progenitor (↓ with time since BrdU)

Neuroblasts (↑ 2 and 3 m post BrdU)

Neuronal differentiation (↑ with time since BrdU)

Glial cells (↑ 2 and 3 m post BrdU)

BrdU, DCX, NeuN, SOX2, 

S100ß

Parturition (1, 2, 3, 4, and 

8 m post BrdU)

Brus et al. (2013)

Sheep (Île-de-France) F Adult (1.5–2 years) Proliferation (↓ with parturition)

Neuroblasts (↑ without lamb; ↓with lamb)

Neuronal differentiation (↔ with parturition)

Survival (↔)

BrdU, Ki67, DCX, NeuN Lactation/Interaction with 

young

Brus et al. (2014)

Sheep (Île-de-France) F Adult (2–3 years) Neuroblast activation (↑with own lamb exposure)

Neuronal activation (↔)

BrdU, Zif268, DCX, NeuN Lactation/Interaction with 

young (own or alien lamb)

Corona et al. (2017)

Sheep (Île-de-France) F Adult (4–5 years) Neuroblasts (↓ by OXT treatment) DCX Effect of OXT Levy et al. (2019)

HYP Sheep (Île-de-France) F Adult (2 years) Multipotent NSCs in sheep hypothalamus

Proliferation (↑during short photoperiod)

BrdU, Ki67, SOX2, NeuN, 

GFAP, S100ß

Descriptive; Seasonal 

variations (short vs. long 

photoperiod)

Migaud et al. (2011)

Sheep (Île-de-France) F Adult (1.5–2 years) New hypothalamic cells exhibit neuronal and glial 

phenotypes

DCX, PCNA, SOX2, GFAP Descriptive Batailler et al. (2014)

Sheep (Île-de-France) F Adult (1.5–2 years) Neuroblasts (↑during short photoperiod)  

Migratory pathway identified

Migratory neuroblasts (↑ during short photoperiod)

DCX Descriptive; Seasonal 

variations (short vs. long 

photoperiod)

Batailler et al. (2016)

Cdk5

Sheep (Île-de-France) F Adult (4–5 years) Neuroblasts (↑)

Proliferation (↔)

DCX Effect of OXT Levy et al. (2019)

SOX2

CPB, Cardiopulmonary bypass; d, Days; DG, Dentate Gyrus; F, Female; HIPPO, Hippocampus; M, Male; m, Month; n.a., Not available; OXT, Oxytocin; Ref, Reference; TBI, Traumatic brain injury; w, Weeks.

TABLE 1 (Continued)
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mainly investigated the outcome of diet (Huguet et  al., 2023; 
Val-Laillet et  al., 2017; Val-Laillet et  al., 2020) or pathological 
interventions and conditions such as traumatic brain injury (Kinder 
et al., 2019), or infection (Conrad et al., 2015) on the neurogenic niche 
in the hippocampus. In sheep, most studies have focused on the 
interplay between the social-hormonal environment and neurogenesis 
in the DG. Given that stress, EE, cognition and welfare are closely 
linked, it is striking that no studies have addressed this issue up to now.

Although the DG is widely accepted as the neurogenic niche of 
the hippocampus in the majority of mammalian species 
investigated, thus sharing regional similarities across livestock 
animals (Amrein, 2015; Vadodaria and Gage, 2014), there are 
profound inter-species differences in the organisation and 
dynamics of hippocampal neurogenesis, affecting timing of 
generation, migration and differentiation of new neurons. More 
specifically, whereas in rodents, mature neurons in the GCL are 
already seen 7–10 days post BrdU injection, with a peak 2 weeks 
after labelling and a decline 30 days later (Brown et  al., 2003; 
Imayoshi et  al., 2008; Kempermann et  al., 2003; Petreanu and 
Alvarez-Buylla, 2002; Steiner et al., 2004; Suh et al., 2007; Winner 
et al., 2002), hippocampal neurogenesis in sheep is characterised 
by a slower neuronal maturation compared to non-human 
primates. Thus, while few (~13%) granule cells express DCX or 
NeuN 1–3 months following BrdU injection, the proportion of 
mature neurons reaches a peak level of about 37–50% 4 months 
after labelling, with a stable amount of surviving neurons observed 
up to 6–8 months later (Brus et  al., 2013; Kohler et  al., 2011; 
Kornack and Rakic, 2001). The fact that there tends to be  an 
increase in BrdU+ cells 4 months after labelling in the GCL, 
whereas such an increase is seen 8 months post-BrdU in the SGZ, 
might suggest a migration process of cells from the GCL to the 
SGZ over time (Brus et al., 2013). Interestingly, around 69% of 
BrdU+/SOX2+ cells are located in the external layer adjacent to the 
SGZ rather than in the GCL 1 month post BrdU, suggesting that 
the SGZ of the DG mostly harbours progenitor and neural stem 
cells in sheep (Brus et al., 2013).

However, the above results must be interpreted cautiously, given 
that those studies were performed on post-parturient female sheep. 
Thus, hormonal changes and/or fluctuations associated with 
pregnancy/parturition may have modified the observed 
neuronal maturation.

Unfortunately, no data is available so far on the dynamics of 
hippocampal neurogenesis in pigs. Although one study on Göttingen 
minipigs revealed numerous BrdU+ cells along the rostrocaudal and 
dorsoventral extent of the DG with the hilus as the major site of new 
granule neuron production in juvenile (6–7 weeks) and adult 
(32-week-old) pigs (Guidi et  al., 2011), it does not provide any 
information needed to create a picture about dynamics as reported in 
sheep. This is mainly because most studies that have been performed 
on pigs (Huguet et al., 2023; Val-Laillet et al., 2017; Val-Laillet et al., 
2018; Val-Laillet et al., 2020) use Ki67 as a proliferation marker (see 
also Table 1). Although Ki67, PCNA and phosphohistone 3 allow 
conclusions to be drawn about cells that were actively proliferating, 
they neither provide any information on the fate of specific cells nor 
on the rate of survival, which can be  analysed when using BrdU 
injections as a birth-dating method. Comparable studies performed 
on sheep would therefore be desirable to increase our knowledge of 
the dynamics of hippocampal neurogenesis in other farm animal 

species. Despite this absence, a study by Franjic et al. did draw a very 
detailed picture of anatomically defined cell populations in five 
hippocampal-entorhinal subregions of the adult mouse, pig, macaque 
and human brain (Franjic et  al., 2022). Using single-nucleus 
transcriptome profiling via snRNA-sequencing, they not only 
identified highly diverse cell populations with clear regional 
distinctions across the DG and CA1-CA4 regions of the hippocampus; 
they also pointed out fundamental species differences in hippocampal 
DCX expression per cell type and thus delineated the molecular 
diversity of cytoarchitectural transition from the allocortex to the 
neocortex. More specifically, they found differing cell-type proportions 
of DCX+ cells within species, with pigs showing a dominant (55.6%) 
DCX+ signal within the neural intermediate progenitor-cell niche, 
suggesting that this cell population may play a specific role in the pig 
hippocampal system that will need more detailed investigation 
in future.

Up to now, there generally seems to be a focus on using the 
immature DCX neuron marker in pig studies. As a result, and 
because different dietary components and diet enrichments are 
known modulators of neuroplasticity and cognition, DCX 
immunolabelling has been used to assess the effect of a high-fat diet 
+/− omega-3 and Bifidobacterium breve enrichment in prepubertal 
female piglets, revealing an increase in immature neurons after 
10 weeks of probiotics and omega-3 fatty acid supplementation 
(Huguet et  al., 2023). Interestingly, the effect was limited to the 
dorsal hippocampus, which is known for its role in cognition and 
memory, whereas no effect was observed in the ventral hippocampus, 
which is more involved in regulating emotions (Jinno, 2016, for 
review). Similarly, studies by Val-Laillet investigated the effects of 
different dietary compositions and supplements on hippocampal 
granule cell layer size, proliferation (Ki67), immature neurons 
(DCX), working and reference memory in Landrace and Yucatan 
minipigs (Val-Laillet et al., 2017; Val-Laillet et al., 2018). Meanwhile, 
the maternal western diet (WD) during gestation led to a shrinkage 
of the GCL in WD piglets. However, despite an increase in 
proliferation at 3 months of age, DCX+ cells were demonstrably 
diminished. Moreover, in spite of the negative effect of WD on 
immature neuron production, WD piglets performed better on a 
working and reference memory task, which may suggest that 
improvements in cognitive abilities are not necessarily linked to 
alterations in neuroplasticity. It may, instead, reflect a higher 
motivation in WD piglets to be given the food rewards used in the 
respective tests (Val-Laillet et  al., 2017). In contrast, oral 
administration of butyrate, known for its positive effect on memory, 
possibly via upregulation of neurotrophic factors in the context of 
stress-induced anxiety (Moretti et al., 2012; Valvassori et al., 2014), 
led to a larger hippocampal GCL volume, accompanied by increased 
proliferation and DCX+ cell numbers (Val-Laillet et  al., 2018). 
However, these results are hardly comparable because of the 
difference in breeds and assessment time points used in the 
experimental outline.

Despite the analysis of immature neuron production in most 
studies that assess hippocampal neurogenesis in pigs, there has been 
no use of other neurogenesis markers such as PCNA, SOX2, NeuN 
and GFAP. Viewing hippocampal neurogenesis as a complex 
mechanism, where proliferation, differentiation, migration and 
integration are intricately linked and finely balanced processes, 
illustrates the need for further studies that provide images of 
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hippocampal neurogenesis in the pig brain. Furthermore, another 
important factor underestimated in studies assessing hippocampal 
neurogenesis in farm animals is sex. Indeed, sexual dimorphism in 
neuroplasticity is a well-known phenomenon in rodents and other 
mammalian species (Bowers et al., 2010; Hillerer et al., 2013; Zhang 
et al., 2008 and see Hillerer et al., 2019; Yagi and Galea, 2019; Yagi 
et al., 2020, for review). Although a study by Conrad et al. using BrdU 
injections to determine the survival of newly generated cells in the DG 
tends to suggest comparable sex differences in neonatal pigs with 
increased levels of cell survival in males compared to females (Conrad 
et al., 2015), a detailed picture, as in rodents, (Hillerer et al., 2013) is 
largely missing during different pig developmental stages.

Our understanding of hippocampal neurogenesis in pigs is still 
at an early stage due to a lack of studies. However, our knowledge of 
neuroplasticity in the sheep brain, particularly regarding social 
interaction, gestation, parturition and lactation, is relatively broad. 
This is mainly due to the group centred around Levy and Brus, who 
significantly contributed to the research in this field. They revealed a 
clear effect of the peripartum period on hippocampal neuroplasticity 
in Île-de-France sheep, comparable to studies in rats and mice, and 
depicting a distinct clear modulating effect of pregnancy and/or 
lactation on hippocampal cell proliferation, survival and 
differentiation levels (Darnaudery et al., 2007; Furuta and Bridges, 
2005; Hillerer et al., 2014b; Leuner et al., 2007; Shingo et al., 2003). 
Using BrdU as a marker of cell division and specific markers of 
neuroblasts (DCX), primary neuronal progenitors (GFAP) and 
mature neurons (NeuN), they investigated the effect of parturition 
and interaction with the young on hippocampal neurogenesis in four 
experimental groups (Brus et al., 2010; Brus et al., 2014). Moreover, 
as an additional readout parameter for neuroplasticity, they 
conducted a morphological analysis of dendritic length and number 
of nodes of neuroblasts (BrdU+/DCX+) in the DG (Brus et al., 2014), 
as motherhood is seen to be  accompanied by changes in the 
morphology of new neurons in mice (Kopel et al., 2012). As many as 
40–50% of BrdU-labelled cells contained GFAP, suggesting the 
presence of neural stem cells (Brus et al., 2010). As seen earlier in rats, 
cell proliferation 24 h post BrdU injection (Brus et al., 2010), cell 
survival 4 months after BrdU injection, as well as the proportion of 
new neurons (BrdU+/NeuN+) (Brus et al., 2014) was significantly 
lower in both parturient groups compared to virgins (Brus et al., 
2010; Brus et al., 2014) or a group of ewes interacting with either a 
male or another female (Brus et al., 2010). In contrast, separating the 
ewe from the young for 48 h did not affect cell survival or neuronal 
differentiation (Brus et al., 2014), suggesting that the suppression is 
more associated with parturition than dependent on any interaction 
with the young. Given that neither parturition nor separation nor 
their combination affects dendritic plasticity of neuroblasts in the 
DG, suggests that other neurogenic zones, such as the OB (see 
Chapter 3.4), might be  predominantly involved in olfactory 
recognition learning of the lamb.

Exercise is another factor well known for its positive effect on 
hippocampal neurogenesis in rodent studies and it could 
be particularly interesting in the context of EE and, thus, livestock 
welfare. However, only one study so far has addressed the hypothesis 
that an exercise-induced increase in hippocampal neurogenesis also 
occurs in larger mammalian brains like those of farm animals. More 
specifically, Swanson et al. performed a four-week running regimen 
in 6-week-old male Romney sheep injected with BrdU on 5 

successive days, beginning 17 days pre-killing to label proliferating 
cells in the SGZ (Swanson et al., 2017). However, contrary to the 
positive effects of exercise on cell proliferation found in rodents 
(Farmer et al., 2004; Kempermann et al., 1997a; van Praag et al., 
1999a; van Praag et al., 1999b; van Praag et al., 2005), this study 
failed to observe any changes in the number or distribution of 
BrdU+ cells in sheep SGZ. Furthermore, there was no co-labelling 
of BrdU with mature neuronal or glial markers (PCNA, NeuN, 
GFAP) used in this study, suggesting that the neurogenic niche of 
lissencephalic brains may have a greater proliferative potential than 
that of gyrencephalic brains, at least in the context of enrichment via 
exercise. Nevertheless, the positive correlation between the distance 
covered and the level of cell proliferation in the SGZ (van Praag 
et al., 1999a; van Praag et al., 1999b) and the fact that the distance 
covered by sheep in this study was comparably shorter to that in 
rodent studies, may have affected this outcome. Moreover, the results 
suggest that other EEs such as odour or auditory components may 
be  better used to positively affect hippocampal neurogenesis in 
sheep. Indeed, effects on stress response (i.e., reduced CORT levels; 
Li et al., 2020), neuroplasticity, structure and brain neurochemistry, 
along with neurotrophic factors related to neuroplasticity, seem to 
be a common phenomenon of musical interventions in humans, 
pigs, cattle and chickens (Alladi et al., 2002; Cloutier et al., 2020; de 
Jonge et al., 2008; Kim et al., 2013 and see Alworth and Buerkle, 
2013, for review), when carefully selected within a frequency range 
of 4,000–16,000 Hz. In this context, BDNF seems to be an important 
outcome measure, particularly given the fact that increased BDNF 
levels in the dorsal hippocampus are not only indicative of greater 
resilience to stress (Mosaferi et al., 2015), but moreover, given its 
known association with increased levels of neuroplasticity and 
cognitive function (Novkovic et  al., 2015 and see Kraemer and 
Kraemer, 2023; Liu and Nusslock, 2018, for review). Adding 
important knowledge about the potential of EE for promoting 
neuroplasticity in farm animals, a recent study in pigs suggests that 
auditory EE has a positive effect on BDNF serum levels in piglets of 
sows exposed to music therapy during the last trimester and/or 
during lactation (Lippi et al., 2022). In particular, sows have been 
exposed to classical music (a 2 h playlist chosen at random; sound 
intensity of 60–75 dB; three times throughout the day) either (1) 
during the last trimester, but not lactation, (2) through lactation, but 
not pregnancy, (3) through pregnancy and lactation or, (4) not 
exposed to music at all. Although music therapy did not change 
BDNF levels of piglets at birth in any group, exposure to music in 
utero and after birth prevented a decrease in BDNF, as observed in 
the other groups (Lippi et al., 2022). Although BDNF levels did not 
affect behaviours associated with stress resilience (i.e., novel arena 
test, novel-object test, vocalisation, voluntary approach test), it has 
to be  borne in mind that factors like the period of behavioural 
assessment and the behavioural tests used may play important roles. 
Moreover, BDNF levels in serum may not necessarily mirror BDNF 
levels in the hippocampus, which might have affected the 
study’s outcome.

Thus, there is a need for future studies that (1) assess the effect of 
EE on other parameters of neuroplasticity, e.g., adult hippocampal 
neurogenesis, and (2) correlate it with neurotrophin levels (e.g., 
BDNF) in saliva, serum and locally in the brain, and (3) correlate it 
with well-validated behavioural outcome measures of anxiety, 
depression and cognition in pigs.
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3.3 Neurogenesis in farm animals’ SVZ

Aside from the DG of the hippocampus, the SVZ of the lateral 
ventricle is a major site of neuroplasticity throughout mammalian 
species (Altman and Das, 1965; Brazel et al., 2003), including farm 
animals like pigs (Dhari et al., 2021; Guidi et al., 2011; Kinder et al., 
2019; Maeda et al., 2020) sheep (Brus et al., 2010; Low et al., 2013; 
Migaud et al., 2015) and cattle (Perez-Martin et al., 2003; Rodriguez-
Perez et al., 2003). The SVZ is typically divided into four rostrocaudal 
regions, the anterior, central, lateral and dorsolateral regions (Brazel 
et  al., 2003; Quinones-Hinojosa et  al., 2006), with the anterior-
dorsolateral (rostral) part being the most active neurogenic niche, 
displaying a high level of proliferating NSPCs, at least in human and 
porcine SVZ (Morton et al., 2017; Quinones-Hinojosa et al., 2006). 
Using BrdU labelling in female juvenile and adult Göttingen minipigs, 
Guidi et al. revealed numerous BrdU+ cells organised in clusters along 
the lateral wall and roof of the rostral SVZ. In contrast, only a few were 
visible in the caudal region of the SVZ (Guidi et  al., 2011). 
Immunohistochemistry studies in seven-week-old pigs revealed a 
laminar organisation of the anterior-lateral SVZ composed of four 
distinct layers, sharing structural features of the human SVZ, i.e., an 
ependymal layer (I) acting as boundary with the lateral ventricle, a 
layer rich in DCX+ neuroblasts (II), a GFAP+ rich astrocyte ribbon 
(III), the thickness of which may vary, as well as a transitional zone 
(IV), rich in myelinated fibres (Morton et al., 2017). SVZ-derived 
neural stem/progenitor cells proliferate as multipotent neurospheres 
that have been shown to express the SOX2, GFAP, DCX and Ki67 
neural progenitor and neurodevelopmental markers, whereas PCNA 
labelling as observed in humans is hardly visible in sheep and pig SVZ 
(Curtis et al., 2005; Morton et al., 2017). DCX+ neuroblasts increase 
over the neurodevelopmental period in porcine SVZ, with an 
increased number of clusters seen in prenatal day (PD)42 Yorkshire/
Landrace piglets compared to PD16 and PD0 in the anterior end of 
the SVZ, as well as an increase in labelling on PD16 and PD42 in the 
anterior portion of the SVZ (Porter et al., 2022). Interestingly, DCX+ 
neuroblast clusters have been shown to be  co-labelled with 
PSA-NCAM at 2 weeks of age, suggesting a migratory process in the 
piglet brain (Porter et al., 2022). Indeed, DCX+ cells migrate short 
distances to the GCL, incorporate and functionally integrate into the 
hippocampal circuitry (Nakatomi et al., 2002), where they play an 
important role in hippocampal-dependent memory functions, as well 
as in long-term potentiation (LTP) that underlies those memory 
functions (Snyder et al., 2001; Winocur et al., 2006). Besides these 
migratory processes to the GCL, DCX+ cells with morphologies of 
migrating neuroblasts have also been found in the striatum and 
frontal cortices, where they primarily differentiate into calretinin 
(CalR+) interneurons, suggesting that SVZ is the main source of new 
neurons in the neocortex (Brazel et al., 2003; Morton et al., 2017). 
However, cortical development is a dynamic and complex process, and 
very little is known about the contribution of SVZ to cortical growth 
and associated cognitive functions in gyrencephalic species, including 
farm animals (Lewitus et al., 2014; Poluch and Juliano, 2015).

In cattle, neurogenesis in SVZ has been shown and characterised 
in vivo in the bovine lateral ventricle via IHC (Rodriguez-Perez et al., 
2003), as well as in vitro in explants from the walls of the lateral 
ventricle (Perez-Martin et al., 2003). Using specific markers such as 
ßIII-tubulin, S-100ß, vimentin, GFAP and PCNA, Rodriguez-Perez 
et al. revealed a similar laminar organisation of the bovine ventricular 

wall, consisting of specific cell types comparable to those seen in 
pigs. In particular, four main cell types have been identified within 
the bovine lateral ventricle: ependymal cells, subependymal 
neuroblasts, astrocytes and PCNA+ proliferating cells (Rodriguez-
Perez et al., 2003). Although the latter are found throughout the 
lateral ventricle, the rostral horn showed highest densities of PCNA+ 
nuclei within the subependyma that penetrate to the subjacent glial 
network and migrate in a rostro-ventral direction, thus mirroring 
the results in pigs and other mammals. Confirming the results of the 
in vivo study, an in vitro model using ependymal-subependymal 
explants from the lateral ventricles of two-year-old calves found a 
comparable immunoreactivity of GFAP and PCNA in nuclei and 
basal processes of those cells, further supporting the idea that 
subependymal cells are the main source of proliferative activity in 
cattle SVZ (Perez-Martin et al., 2003). Many of the newly generated 
cells developed neurites and expressed the neuronal marker ßIII-
tubulin, which suggests differentiation of cells into neurons (Perez-
Martin et al., 2003).

Summarising the results from ependymal and subependymal cells 
of the SVZ in farm animals, it seems that the organisation of SVZ in 
distinct layers is similar in pigs, cattle and sheep (Low et al., 2013) and 
thus comparable to that seen in humans. However, although there is 
only one study in sheep investigating proliferation dynamics of the 
SVZ, it is postulated that the rate of maturation of new neurons is 
much slower in rodents. Generally, it seems that there is an enormous 
variation in proliferation between species (Curtis et al., 2005; Gould 
et al., 1999a; Lazic et al., 2006 and Kempermann and Gage, 1998, for 
review). Whereas PCNA labelling revealed a rate of about 50 cells per 
mm2 in the human SVZ (Curtis et al., 2005; Low et al., 2011; Lucassen 
et al., 2010, for review), the proliferation rate in mice is around 800 
times higher (Gil et al., 2005). Adding information about neurogenesis 
in the SVZ in rodents and humans, a study in young (3-year-old) and 
old (5–6-year-old) Romney/Suffolk ewes successfully shed light on 
proliferation, short (11 days) and long-term (122 days) survival, as well 
as differentiation at least in one livestock species. Using a combination 
of BrdU (40 mg/kg; injected over 5 days), PCNA as a proliferation 
marker, and NeuN as a marker of neuronal fate, Low et al. revealed 
proliferation counts of approx. 65 BrdU+ cells per mm2, thus 
comparable to proliferation levels in other sheep breeds and 
experimental setups (Brus et al., 2010). PCNA labelling was much less 
than in human studies (Curtis et al., 2005) and independent of age 
(Low et al., 2013). As suggested by previous studies in larger animals, 
stem cell to neuronal maturation time was significantly slower than in 
rodents (Eriksson et  al., 1998; Kohler et  al., 2011; Malberg and 
Duman, 2003), with only 20% of BrdU+ cells showing a neuronal 
phenotype (BrdU+/NeuN+) after a survival time of 4 months (Low 
et al., 2013).

As discussed above for the hippocampus, there is a similar lack of 
research in pigs assessing the effects of acute/chronic stress and/or EE 
on neuroplasticity in the SVZ, but moreover, a general lack of studies 
focussing on porcine SVZ as a neurogenic region in other contexts. 
Due to its structural similarity to the multi-layered human SVZ 
(Morton et al., 2017), most studies so far have used the gyrencephalic 
pig brain (Landrace and Yorkshire pigs) to model the effects of 
pathological insults such as hypoxic ischaemia (Ara et al., 2010), TBI 
(Costine et  al., 2015; Kinder et  al., 2019) or cardiopulmonary 
pathologies/insults (Dhari et al., 2021; Maeda et al., 2020; Morton 
et al., 2017) on neuroplasticity and cortical maturation in humans.
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Although most of the studies on sheep focus on the OB as a 
neurogenic region (see below), a few assess the effects of the hormonal 
environment, for example, seasonal changes and peripartum-
associated changes on the ovine SVZ. Thus, administration of BrdU 
in adult female sheep in July and December, during a long vs. a short 
photoperiod, revealed no change in SVZ proliferation rate (Migaud 
et al., 2011), suggesting that changes might be linked and/or limited 
to structures involved in seasonal neuroendocrine regulation such as 
the hypothalamus (see also Chapter 3.5). Indeed, endocrine (changes 
in oestrogen/progesterone levels) and/or social factors (e.g., 
pregnancy, parturition and interaction with the young) are important 
regulators of the production of new neurons in the SVZ, not only in 
rodents but also in sheep (Levy et al., 2017, for review). Injecting 
20 mg/kg BrdU 24 h before sacrifice to determine cell proliferation in 
the ovine SVZ, Brus et al. found parturition as a down-regulatory 
factor (Brus et al., 2010), as seen in rodents (Darnaudery et al., 2007; 
Hillerer et al., 2014b; Leuner et al., 2007). Using Ki67 and GFAP as 
further markers, they also revealed that 40–50% of the 1-day-old 
BrdU+ cells in the SVZ were GFAP+, suggesting presence of neural 
stem cells (Brus et al., 2010).

For a summary of the results discussed regarding the SVZ, see also 
Table 1.

3.4 Olfactory bulb neurogenesis in farm 
animals

Although the ability of the OB to produce new cells is about 10 
times lower than that of the SGZ and the SVZ (Gritti et al., 2002, for 
review), 1-day-old BrdU+ cells co-labelled with Ki67 and GFAP have 
been observed in the periventricular layer (Chojnacki et al., 2009), 
suggesting a neurogenic niche within the OB (Brus et  al., 2010; 
Doetsch et al., 1999). Thus, even if the OB may not necessarily be seen 
as a neurogenic region on its own, there is no doubt that it plays a vital 
role in neuroplasticity and its associated behaviours. In the olfactory 
system, neural stem cells function as primary neurogenic and 
gliogenic precursors in the SVZ located on the wall of the lateral 
ventricles. They produce transient amplifying cells, which rapidly 
create chains of neuroblasts that migrate along the RMS to the OB 
(Brus et al., 2010; Brus et al., 2013; Doetsch et al., 1999; Sawamoto 
et  al., 2011), where the majority of them mature into granular 
interneurons. Whereas reports about olfactory neuroplasticity are 
fairly limited or even absent in pigs and cattle, detailed knowledge 
exists about the dynamics and maturation of new-born cells in the 
SVZ-OB network in sheep, at least in the context of parturition and 
lactation. Using BrdU (20 mg/kg) as a marker of cell division and a 
combination of neuroplasticity markers (SOX2, DCX, NeuN and 
S100β), Brus et al. have significantly contributed to our understanding 
of the maturation timeframe of new-born cells in post-parturient 
sheep OB (Brus et al., 2013). When analysing different BrdU post-
administration survival times over eight months (1 m, 2 m, 3 m, 4 m 
and 8 m), they found no variation in BrdU intensity, except for a 
decrease at 8 month post-injection, suggesting a slow process of 
apoptosis over this period. However, the survival time in sheep seems 
to be much longer than in rodents, where half of the neurons die 
within the first month after birth (Lemasson et al., 2005). Similarly, 
while very few neuroblasts (BrdU+/DCX+) were found 1 month after 
BrdU injection in the granule layer of the OB, a gradual increase was 

observed in the periventricular layer 1–3 months later, subsequently 
reaching a plateau and suggesting a far longer maturation time in 
sheep than in mice, where interneurons become morphologically 
mature within 4 weeks of birth (Petreanu and Alvarez-Buylla, 2002). 
Thus, although there is a lack of knowledge about proliferation and/
or survival dynamics in pigs, the results in macaques, which reveal a 
neuronal maturation time of 97 days (Kohler et al., 2011), suggest a 
comparable neuronal maturation time across gyrencephalic species. 
Analysis of the other markers used revealed a variation in specific 
labelling across survival times, with BrdU+/SOX2+ cells (quiescent 
cells that may start proliferating, depending on physiological changes) 
decreasing within 1–4 months and a BrdU+/NeuN+ labelling 
remaining low 1–2 months after BrdU injection and significantly 
increasing thereafter up to 8 months. Analysis of the glial marker S100 
confirmed a significant increase of double-labelled BrdU+/S100+ cells 
2–3 months post-injection, with a decline 4–8 months later (Brus 
et al., 2013).

Aside from providing insights into dynamical neuroplasticity 
processes within the SVZ-OB network, the group around Brus also 
elegantly provided evidence for an intricate migratory pathway along 
the ventricle from the SVZ to the OB (Brus et al., 2013). By using 
injections of an adeno-associated virus coupled with an enhanced 
green fluorescent protein (AAV5-eGFP) that infects neural cells in the 
SVZ, they revealed fusiform cells with and without processes 
[neuroblasts (20%) and progenitor cells (30%)] in the periventricular 
and granular layer of the OB one-month post-injection of the virus. 
Interestingly, eGFP+ cells were only found in the OB when the 
injection site was located above the SVZ. In contrast, no labelling was 
present when located too posteriorly on the level of the corpus 
callosum, further supporting the idea of a neural stem cell lineage 
within the SVZ.

Despite the knowledge of the mechanisms of neuroplasticity 
within the SVZ-OB network, the nature and specific contribution of 
adult-generated neurons to olfactory behaviour is still being debated 
(Holmes, 2016; Lazarini and Lledo, 2011, for review). However, given 
that adult-born neurons have unique properties of synaptic plasticity 
compared to early-born neurons (Nissant et al., 2009), they could 
indeed provide an important substrate in olfactory learning, which 
will be discussed in the following section.

It is now well accepted that the peripartum period and the 
physiological/hormonal changes associated with pregnancy, 
parturition and lactation modulate neuroplasticity in all the 
neurogenic sites and species investigated so far (Galea et al., 2014 and 
Hillerer et al., 2014a, for review). In sheep, where social behaviours, 
including maternal behaviour, largely rely on an appropriate sense of 
smell (Corona et al., 2017; Corona et al., 2018; Gelez and Fabre-Nys, 
2006; Keller and Levy, 2012), neuroplasticity may provide an 
additional mechanism that enhances olfactory learning, as well as the 
establishment of maternal behaviour and a selective bond with the 
young following parturition (Poindron et  al., 2007, for review). 
Indeed, a single BrdU treatment (20 mg/kg) 24 h before sacrifice and 
additional Ki67 labelling revealed a parturition-dependent down-
regulation of cell proliferation in the SGZ, SVZ and OB in ewes (Brus 
et al., 2010), which may be a mandatory mechanism for facilitating the 
olfactory perceptual memory demands associated with maternal 
behaviour by favouring the survival and integration of neurons born 
earlier. Furthermore, co-labelling of the one-day-old BrdU+ cells with 
GFAP showed that 40–50% of those cells were positive for the 
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respective marker, suggesting the presence of neural stem cells in the 
SVZ and OB of the ewes (Brus et  al., 2010). The density of these 
BrdU+/GFAP+ cells was around three times higher around the 
ventricle than the granular and periglomerular cell layer, which 
further supports the hypothesis of a neurogenic zone in the ventricular 
margin of the OB.

Interestingly, as previously observed in rodents (Leuner et al., 
2007), one major important regulator of peripartum-associated 
changes in neuroplasticity in sheep seems to be the presence of and 
particularly interaction with the young. More specifically, Brus et al. 
used three different groups of sheep in their experimental outline. A 
virgin control group, a group of ewes allowed to interact with their 
young 2 days after parturition and a group of ewes that had their lambs 
removed 2 days before sacrifice (Brus et  al., 2014). 
Immunohistochemical analysis uncovered a suppression of cell 
proliferation and survival in the OB, which was dependent on lamb 
presence. Interestingly and contrastingly, in the SGZ, suppression was 
more likely to be associated with parturition. It is hypothesised that 
fewer neurons reduce cell competition in the OB, thus enhancing the 
maturation of new neurons selected to participate in odour learning 
by young animals. However, olfactory learning seems to involve other 
mechanisms of neuroplasticity apart from changes in cell proliferation 
and survival. Thus, neurochemical and electrophysiological changes 
in mitral cells of the OB supporting the coding of the lamb were 
shown more than 30 years ago (Kendrick et al., 1992; Keverne et al., 
1993; Levy et al., 1993; Levy et al., 1995a). Furthermore, morphological 
changes at the neuroblast level (DCX+) (for example, dendritic length 
and number of nodes) are known to be  involved in enhancing 
olfactory neuroblast maturation by lamb interaction (Brus et  al., 
2014). Indeed, learning has been associated with an accelerated 
maturation of dendritic trees of new-born neurons in other contexts 
than lactation (Lemaire et  al., 2012; Tronel et  al., 2010) and 
motherhood is a prominent modulator of new-born neuron 
morphology in rodents (Kopel et al., 2012). Hence, it appears that the 
ability to process sensory information depends on the functional 
architecture, synaptic connectivity and electrophysiological changes 
within the OB. However, adult neurogenesis may be an important 
regulator in fine-tuning these processes.

Performing two other studies involving Île-de-France ewes, 
Corona et al. (2017) added further information on the importance 
of neuroplasticity in the SVZ-OB network in the context of 
motherhood, olfactory processing, odour learning and maternal 
selectivity in sheep. Their main questions were: (1) Do adult-
generated neurons in the OB contribute to the processing of odours 
involved in attracting lambs and memorising their individual 
olfactory signatures? (2) Do olfactory stimuli coming from the 
neonates specifically activate new interneurons in the OB (Corona 
et  al., 2017)? (3) Does the chemical disruption of olfactory 
neurogenesis impair the establishment of maternal behaviour in 
sheep and alter their ability to learn their own lambs’ olfactory 
signature (Corona et al., 2018) ?. In an attempt to answer the first set 
of questions, sheep were given four BrdU injections (20 mg/kg) 
3 months before parturition. After birth, ewes from Group 1 spent 
2 days with their lambs, were then separated for 3 h and re-exposed 
to either their own, to an unfamiliar lamb or an adult conspecific. In 
contrast, ewes from Group 2 were not exposed to any lamb for 5 h 
(control group). Using a combination of BrdU, DCX, NeuN 
(neuroplasticity markers), as well as c-Fos and Zif268 (neuronal 

activation markers), they showed preferential activation of three-
month old OB neuroblasts (BrdU+/DCX+/Zif268+), but not mature 
neurons (BrdU+/NeuN+/Zif268+), mirroring the results in rodents 
where immature olfactory neurons are very susceptible to sensory 
experience compared to mature neurons (Belnoue et  al., 2011; 
Mouret et al., 2008; Yamaguchi and Mori, 2005). Furthermore, this 
activation was specific to the OB, as no activation was observed in 
the SGZ (Corona et al., 2017). Interestingly, neither neuroblasts nor 
mature neurons of the OB differentiate between exposure to familiar 
or unfamiliar lambs, suggesting either that older neurons 
(>3 months) may be involved in recognising their own lambs or that 
adult olfactory neurogenesis is rather important for the long-term 
olfactory memory as seen in father mice who exhibited preferential 
activation of olfactory adult-born neurons when exposed to the 
odour of 6-week-old offspring (Mak and Weiss, 2010). Nevertheless, 
the responsiveness of adult-born neurons is lamb-odour specific and 
not an activation by odours per se, as no activation was observed 
when exposed to an unfamiliar ewe (Corona et al., 2017). To further 
prove that olfactory neurogenesis is indeed involved in the 
establishment of maternal behaviour and olfactory signature 
learning, they administered the mitotic blocker cytosine arabinoside 
(Ara-C) into the SVZ. Then they assessed maternal bleats and 
olfactory neurogenesis in the context of lamb discrimination 
behaviour (Corona et al., 2018). Adding information from previous 
studies, where they showed a reduction in maternal behaviour 
rendering ewes anosmic after a zinc sulphate infusion (Levy et al., 
1995b), or removing the amniotic fluid from neonates (Levy and 
Poindro, 1987), Ara-C treatment led to (1) a 70% reduction in 
olfactory neurogenesis (DCX+ cells) and (2) fewer maternal bleats 
indicative of maternal responsiveness (Dwyer et al., 1998) during the 
first hours after parturition and (3) a lack of familiar/unfamiliar 
lamb discrimination (Corona et al., 2018).

Given the known interplay between the OXT system and the 
sensory system (Grinevich and Stoop, 2018, for review), the fact that 
OXT plays an important role in the orchestration of socio-emotional 
behaviours and the physiological and neuronal maternal adaptations 
during the peripartum period, another study in non-pregnant sheep 
investigated the potential involvement of central OXT in regulating 
adult neurogenesis in the OB (Levy et al., 2019). Ewes received steroid 
treatment followed by intracerebroventricular infusions of OXT to 
mimic endocrine events during parturition. OXT significantly 
decreased the density of the neuroblasts (DCX+) in the OB. In 
contrast, there was no effect in any other neurogenic niche, such as the 
SGZ or ventromedial nucleus of the hypothalamus (Levy et al., 2019), 
although the latter might be due to a lack of OXT-R usually expressed 
in neuroblasts or more mature neurons, as seen before in rodents and 
sheep (Broad et al., 1999; Lin et al., 2017). Aside from the region-
specific effect of OXT, the effect was also cell-type specific, as the 
density of progenitor cells was not influenced by OXT treatment (Levy 
et al., 2019). Consequently, other neuro-modulatory factors such as 
glucocorticoids could be involved (Sandi, 1998, for review); it seems 
that OXT participates in the formation of olfactory memory in sheep 
after parturition by decreasing the density of adult-generated 
neuroblasts in the SVZ-OB network.

In summary, neural plasticity within the SVZ-OB network during 
the peripartum period appears to be an adaptive response to the high 
olfactory perceptual demand at that point, with adult-born neurons 
helping to process infantile odours.

https://doi.org/10.3389/fnins.2024.1493605
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hillerer and Gimsa 10.3389/fnins.2024.1493605

Frontiers in Neuroscience 14 frontiersin.org

For a summary of the results discussed regarding the OB, see also 
Table 1.

3.5 Neurogenesis in the hypothalamus of 
farm animals

The hypothalamus, known as a key regulator of homeostatic 
activity and numerous physiological functions such as reproduction, 
food intake and energy balance ((Schneeberger et  al., 2014) for 
review), has not classically been considered a neurogenic niche. 
However, more than 20 years ago, proliferative activity (BrdU 
labelling) within the hypothalamus was reported in rats (Pencea et al., 
2001b). To date, constitutive hypothalamic neurogenesis has been 
proven to occur in many species of mammals including mice 
(Kokoeva et al., 2007; Lee and Blackshaw, 2012; Li et al., 2012; Werner 
et al., 2012), rats (Pencea et al., 2001b; Perez-Martin et al., 2010; Xu 
et al., 2005), voles (Fowler et al., 2005), hamsters (Huang et al., 1998) 
and sheep (Batailler et al., 2016; Batailler et al., 2014; Migaud et al., 
2011; Migaud et al., 2010) (for review see Lee and Blackshaw, 2012 and 
Migaud et al., 2010). Several reports indicate that hypothalamic stem 
cells are located in the hypothalamic parenchyma (Li et al., 2012; 
McNay et al., 2012). However, lineage-tracing studies revealed that a 
subpopulation of tanycytes lining the ependymal layer of the third 
ventricle (Xu et al., 2005) and expressing the NSC markers SOX2, 
GFAP, vimentin and nestin (Batailler et al., 2014; Lee and Blackshaw, 
2012; Li et al., 2012) are instead neural stem cells with a proliferative 
capacity within the hypothalamus. From the subependymal niche, 
they spread towards the neighbouring nuclei [i.e., arcuate (Arc) and 
ventromedial nucleus (VMH), median eminence], forming a 
migratory path of progenitors. Those cells, expressing DCX, show a 
round morphology close to the third ventricle, whereas they are rather 
fusiform and bipolar deeper in the parenchyma, further suggesting 
maturation in, or migration through the parenchyma (Batailler et al., 
2014; Lee and Blackshaw, 2012). Most of these DCX+ cells will adopt 
a neuronal phenotype (BrdU+ NeuN+) 1 month after labelling 
(Batailler et al., 2014; Haan et al., 2013; Migaud et al., 2015). However, 
the hypothalamus also shows gliogenic and microglial-like properties, 
at least in sheep, where approx. 70% of new cells differentiate into 
S100ß and GFAP+ astrocytes (Steiner et al., 2004) and 10% CD45+ 
cells, respectively, (Hazlerigg et  al., 2013), with no evidence for 
oligodendrocytic labelling (Steiner et al., 2004).

Naturally enough, the obvious proliferative capacity of the 
hypothalamus discussed above raises the question of its functional 
relevance. The discovery that endogenous and exogenous factors, 
including the photoperiod and season, may modulate hypothalamic 
cell proliferation and neuron production (Migaud et al., 2011; Migaud 
et al., 2010; Migaud et al., 2015) soon suggested the involvement of 
hypothalamic neuroplastic changes in seasonal cycles of physiology 
and behaviour, which are essential adaptations to cope with 
environmental variations and to fine-tune the timing of reproductive/
metabolic functions. Indeed, photoperiod effects on proliferative 
capacity and marked structural changes within the hypothalamus have 
first been observed in songbirds (Alvarez-Buylla et al., 1990; Goldman 
and Nottebohm, 1983). Using 3H-thymidine to identify dividing cells 
revealed that new neurons are generated and integrated into functional 
avian song circuits in a photoperiodic manner (Paton and Nottebohm, 
1984). To date, photoperiod-dependent changes in hypothalamic 

neuroplasticity have also been extensively studied in sheep, a species 
where sexual activity/inactivity largely relies on photoperiodic length. 
More specifically, measuring the expression of DCX+ cells at various 
times of the year, Batailler et al. showed that the density of these cells 
varied across the photoperiod, with higher counts during the short 
photoperiod in the Arc and higher counts during the long photoperiod 
in the VMH (Batailler et al., 2016). Thus, it appears that higher cell 
proliferation levels are associated with a short stimulatory photoperiod 
(sexual activity, for example). In contrast, lower proliferation is more 
likely to be observed during phases of sexual inactivity (i.e., inhibitory 
long photoperiods). Although peripheral oestradiol levels have been 
shown to be independent of seasonal changes in cell proliferation in 
sheep (Migaud et  al., 2011), the fact that hypothalamic neurons 
express ERα (Batailler et al., 2014) and the well-known potential of 
oestrogens to regulate neuroplastic changes in rats (Cameron and 
Gould, 1994; Ormerod and Galea, 2001; Tanapat et al., 1999), further 
suggest an involvement of hypothalamic neuroplasticity in 
reproductive behaviour and seasonal variation in neuroendocrine 
secretion. Furthermore, other hormones could be  involved in the 
regulation of hypothalamic neuroplasticity. A study by Levy et al. 
revealed that intracerebroventricular injections of OXT in 
non-pregnant female sheep significantly increased the density of 
neuroblasts in the VMH, with no change in any other neurogenic 
niche being investigated (i.e., OB and SGZ) (Levy et al., 2019).

In summary, there is some initial evidence for hypothalamic 
neuroplasticity’s involvement in regulating seasonal changes in 
neuroendocrine function. Nevertheless, more studies are needed to 
investigate whether these alterations are also sensitive to EE and how 
this may relate to animal welfare in livestock farming.

For a summary of the results discussed regarding the 
hypothalamus, see also Table 1.

4 The microbiota-gut-brain-axis and 
adult neurogenesis in farm animals: 
associations and future directions to 
improve behaviour and welfare in 
livestock farming

As discussed in Chapter 2, one possibility for providing EE is to 
implement nutritional enrichment via diet composition, including 
pre-or probiotics (for features of pre vs. probiotics, see also Figure 3). 
Various studies in pigs have shown multiple beneficial effects of 
probiotic-enriched sow diet on the overall performance (e.g., 
increased piglet weight, quantity and quality of colostrum and feed 
consumption during lactation), particularly during sensitive periods 
such as pregnancy, lactation and early development (Innamma et al., 
2023; Kritas et  al., 2015; Pereira et  al., 2024). Furthermore, the 
modulation of intestinal microbiota via probiotic treatment is known 
to have wide-ranging effects on different aspects of farm animal 
behaviour (Budino et al., 2014; Sapkota et al., 2016) and might thus 
offer a potentially promising strategy for mitigating aversive effects on 
animal welfare caused by intensive farming practises.

Unfortunately, knowledge about the targeted use of pre/probiotics 
in the context of stress, stress resilience and welfare in farm animals is 
insufficient (Kraimi et al., 2019, for review), but importantly, there is 
considerable lack of knowledge about its effects on neuronal 
parameters, particularly neuroplasticity, as well as its association with 
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anxiety or depression-like behaviour and welfare of domestic animals. 
This is surprising in more than one way: (1) given the literature in 
rodents, which shows that detrimental effects of stress can 
be significantly reduced with EE (Bondolfi et al., 2004; Kempermann 
et al., 1997a; Lazic et al., 2006; Rao et al., 2006); (2) considering the 
rising amount of studies clearly revealing an association between 
microbiota supplementation, stress, neuronal parameters and 
behaviour (Cryan et al., 2019; Guzzetta et al., 2022; Kraimi et al., 2019; 
Ratsika et al., 2021; Sharvin et al., 2023, for review).

To date, most of our knowledge about the association between EE, 
stress, microbiota, the gut-brain axis (GBA), and neuroplasticity 
derives from rodent studies.

The following chapter will first give a brief and general overview 
of the concept of microbiota and the MGBA, summarise available 
literature about microbiota manipulation in farm animals, and finally 
try to draw an outlook about a potential use of pre/probiotics to 
positively influence neuroplasticity and thus welfare and stress 
resilience in farm animals.

While it has been known since the 1800s that the gut and the brain 
communicate with each other to maintain homeostasis, it has become 
more and more obvious during the last few years that the 
gastrointestinal tract harbours up to 104 saprophytic microorganisms, 

including bacteria, viruses, fungi, yeast, protozoans and archaea 
(Montanari et al., 2023; Rooks and Garrett, 2016, for review) that 
encompass the gut microbiota. This myriad of symbiotic microbes 
functions as a ‘second brain’ (Carabotti et al., 2015, for review), which 
is in bidirectional communication with the brain itself (Luqman et al., 
2024, for review). Through the GBA, it has an enormous impact on 
brain processes (Arzani et al., 2020, for review), exploiting several 
anatomic structures, systems and metabolic routes such as the HPA 
axis, the neuroimmune-and the autonomous nervous system, for 
example (Rao et al., 2006). Thus, the microbiota’s ability to affect the 
CNS bidirectionally through the parasympathetic nervous system is 
mainly mediated by neurological autonomous, hormonal (HPA) and 
immunological (cytokine and chemokine) processes, which are all 
interrelated (Carabotti et al., 2015; Kennedy et al., 2014, for review). 
It is now obvious that the microbiota composition has a major 
influence on neurodevelopment, several aspects of brain function, 
stress response and, moreover, stress sensitivity (Beurel and Nemeroff, 
2024; Borre et al., 2014; Foster et al., 2017; Morys et al., 2024, for 
review). Knowledge mainly arises from studies in rodents 
manipulating gut microbiota via antibiotic treatment, application of 
probiotics, microbiota transfer, or germ-free animals. The latter has 
been shown to exhibit an exaggerated HPA-axis response to acute 

FIGURE 3

Opposing listing about the features of Pre-vs. Probiotics. References Prebiotics: see (Davani-Davari et al., 2019) for review; References Probiotics: 
(Isolauri et al., 2002; Laiho et al., 2002) for review. FOS, Fructo-Oligosaccharide; GOS, Glyco-Oligosaccharide.
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stress, which could be  reversed by specific Bifidobacteria species. 
Moreover, intestinal microbes are required for normal brain 
development (Diaz Heijtz et al., 2011) and brain function in adulthood 
(Stilling et al., 2015). Although studies of the gut microbiome and the 
MGBA in farm animals are limited for methodological reasons (e.g., 
housing germ-free animals would require space-consuming isolators), 
interventions with probiotics reinforce the theory of microbiota’s 
influence on behavioural and cognitive abilities with an impact on 
well-being (for review, see Kraimi et  al., 2019). More specifically, 
modification of microbiota activity by maternal diet leads to an 
increased working memory in piglets (Val-Laillet et al., 2017). Indeed, 
a recent study in pigs supports the idea that manipulation of the gut 
microbiota may be transgenerational and that an application during 
pregnancy may prevent adverse behavioural outcomes in the offspring. 
Consequently, piglets of sows fed with a multi-strain probiotic during 
pregnancy until weaning had lower plasma CORT, higher 5-HT levels 
and lower scores indicative of social fear and aggressive behaviour 
towards humans (Pereira et al., 2024). Although it is well known that 
changes in anxiety, social fear and cognition are associated with such 
key neuronal processes as neurogenesis (Ogbonnaya et al., 2015), 
myelination (Hoban et al., 2016), BBB integrity (Braniste et al., 2014) 

and microglial activation (Thion et al., 2018), there is a lack of studies, 
particularly in farm animals, investigating the influence of gut 
microbiota or MGBA on neuronal parameters, behaviour, well-being 
and vice versa.

However, there is a growing body of evidence from rodent studies 
that microbiota composition is essential in the context of stress 
regulation and stress resilience, particularly during vulnerable 
developmental periods. Furthermore, it might be a key regulatory 
component of imbalances in neural stem cell proliferative and 
differentiation activities in brain neurogenic niches, including adult 
neurogenesis, which have been associated with brain disturbances 
such as depression, neurodevelopmental and cognitive disorders (for 
review see Cussotto et al., 2018, Foster et al., 2017, Guzzetta et al., 
2022, and Kentner et al., 2019). Therefore, microbiota composition 
may not only represent a causative determinant but moreover a 
therapeutic target in the context of behavioural disorders and diseases 
where adult neurogenesis plays a role (Ribeiro et al., 2020 and see 
Cerdo et al., 2020 for review). Microbiota modulators involved in the 
microbiota-GBA-neurogenesis circuit may be intrinsic, e.g., ageing, 
oxidative stress and inflammation, or extrinsic, such as antioxidants 
and anti-inflammatory components, polysaturated fatty acids, as well 

FIGURE 4

Hypothesised action and association between microbial EE via probiotics, microbiota, adult neurogenesis and welfare in farm animals ① Oral 
application of probiotics will lead to a colonisation of beneficial microbiota in the gastrointestinal tracts of farm animals; ② metabolites of those 
microorganisms (SCFAs, PSA, indole derivates and TRP, for example); ③ can diffuse into the blood circulation, crossing the BBB via enterocytes ④; 
reaching brain regions like the hippocampus, known for their involvement in mood regulation ⑤. Here, they enhance the BDNF and synaptophysin 
levels, promoting increased hippocampal neurogenesis ⑥. Augmented hippocampal neurogenesis rates are associated with stress resilience ⑦, which 
will promote a reduction in depressive and anxiety-like behaviours, as well as abnormal social behaviours ⑧ and thus an improvement in the welfare of 
livestock animals ⑨. BBB, Blood brain barrier; BDNF, Brain-derived neurotrophic factor; GCL, Granular cell layer; PSA, Polysaccharide A; SCFAs, Short 
chain fatty acids; SGZ, Subgranular zone; TRP, Tryptophan.
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as pre/probiotics (for more information about pre/probiotics see 
Figure 3). The latter may be of particular interest, as there is growing 
evidence that targeted manipulations of microbiota by adding pre/
probiotics might confer protection to the brain to ameliorate the 
negative effects of stress due to HPA-axis activation, particularly 
during vulnerable developmental periods (Sarkar et  al., 2016, for 
review). Although there are no clear connections between pre/
probiotics, microbiota and adult neurogenesis, or specific molecular 
mechanisms underlying the influence of gut microbiota on adult 
neurogenesis or these connections are not fully understood, the 
evidence does point to a pivotal role of pre/probiotics, intestinal 
microbiota and bacteria-derived metabolites in the GBA 
communication and, in particular, in modulating adult neurogenesis. 
This is not surprising, given that metabolites released by intestinal 
microbes may enter the bloodstream, cross the BBB and reach the 
brain, where they can affect outcome variables (BDNF and 
synaptophysin, for example) linked with alterations in adult 
neurogenesis (see also Figure 4). In more detail, the application of 
Lactobacillus rhamnosus in male rats was able to reverse the effects of 
early-life stress on anxiety in an open field test and on learning in the 
Morris water maze (McVey Neufeld et  al., 2019). Similarly, 
Bifidobacterium longum R0175 treatment prevented stress-reactivity 
and stress-induced changes in neurogenesis in female rats 
(Ait-Belgnaoui et  al., 2012). Furthermore, microbiota-induced 
reductions in anxiety and improvements in cognition have been 
shown in germ-free mice, rats and humans treated with Lactobacillus 
helveticus or Bifidobacterium longum R00052 (Liu et  al., 2016; 
Messaoudi et al., 2011). Pointing out the importance of microbiota 
during sensitive windows of brain development, a double-blinded 
placebo-controlled study in humans applying Lactobacillus rhamnosus 
during pregnancy and lactation significantly reduced postpartum 
anxiety and depression (Slykerman et  al., 2017). Although the 
mechanisms behind these changes are not fully understood, it is 
suspected that the above-mentioned behavioural changes associated 
with adult neurogenesis are regulated by an increase in BDNF and 
synaptophysin mRNA expression in the hippocampus (Corpuz et al., 
2018; Distrutti et al., 2014) (see also Figure 4 for graphical presentation).

5 Discussion

Exploring the foundations of the neurobiology of farm animal 
behaviour is essential to better understand how well-being occurs in 
the brain and why each individual expresses positive or negative 
emotions. Since all behaviours result from fine-tuned activities in the 
brain, a better understanding of those processes is the basis for a 
neurobiological approach that might offer new opportunities to 
increase welfare in livestock farming.

Although there has been an effort to explore neuroplasticity in 
farm animals, we  are still far behind the basic research on other 
species. This is mainly due to the comparative infancy of the 

application of neurobiological techniques within the field of animal 
welfare research and the difficulty in analysing brain function in 
livestock species larger than rodents. As environmental effects may 
differentially shape farm animal behaviour and changing or 
challenging environments may involve resetting the neuronal, 
endocrine and immune mechanisms, there is a vital need for future 
studies not only to assess the fundamental dynamics of neuroplasticity 
but also to analyse the potential correlations between EE and 
neuroplasticity in farm animals to improve welfare in livestock 
farming individually.

The literature suggests that applying pre/probiotics, particularly 
during sensitive developmental windows, might be an effective EE 
strategy in animal husbandry systems with the potential to reduce the 
stress effects of modern animal housing and thus improve farm animal 
welfare. However, before microbial enrichment can be used to change 
nutrition and management processes to increase welfare in livestock 
farming, there is a crucial need for studies assessing the possible 
effects and relationships of probiotics and the MGBA on neurogenesis 
in farm animals and how these changes might be associated with 
behavioural welfare outcome variables like anxiety-, depression-like 
and social behaviour.
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