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Background: Extracellular vesicles are easily accessible in various biofluids 
and allow the assessment of disease-related changes in the proteome. This 
has made them a promising target for biomarker studies, especially in the field 
of neurodegeneration where access to diseased tissue is very limited. Genetic 
variants in the LRRK2 gene have been linked to both familial and sporadic forms 
of Parkinson’s disease. With LRRK2 inhibitors entering clinical trials, there is an 
unmet need for biomarkers that reflect LRRK2-specific pathology and target 
engagement.

Methods: In this study, we used induced pluripotent stem cells derived from a 
patient with Parkinson’s disease carrying the LRRK2 G2019S mutation and an 
isogenic gene-corrected control to generate human dopaminergic neurons. 
We  isolated extracellular vesicles and neuronal cell lysates and characterized 
their proteomic signature using data-independent acquisition proteomics. Then, 
we performed differential expression analysis to identify dysregulated proteins 
in the mutated line. We used Metascape and gene ontology enrichment analysis 
on the dysregulated proteomes to identify changes in associated functional 
networks.

Results: We identified 595 significantly differentially regulated proteins in 
extracellular vesicles and 3,205 in cell lysates. We visualized functionally relevant 
protein–protein interaction networks and identified key regulators within the 
dysregulated proteomes. Using gene ontology, we  found a close association 
with biological processes relevant to neurodegeneration and Parkinson’s disease. 
Finally, we focused on proteins that were dysregulated in both the extracellular 
and cellular proteomes. We provide a list of ten biomarker candidates that are 
functionally relevant to neurodegeneration and linked to LRRK2-associated 
pathology, for example, the sonic hedgehog signaling molecule, a protein that 
has tightly been linked to LRRK2-related disruption of cilia function.

Conclusion: In conclusion, we  characterized the cellular and extracellular 
proteome of dopaminergic neurons carrying the LRRK2 G2019S mutation and 
proposed an experimentally based list of biomarker candidates for future studies.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder affecting 
millions of patients worldwide and causing both significant morbidity 
and impaired quality of life (Ou et al., 2021). A combination of genetic 
and environmental factors has been implicated in triggering PD 
pathogenesis (Cannon and Greenamyre, 2013). Among the genetic 
factors associated with PD, variants in the leucine-rich repeat kinase 
2 (LRRK2) gene have garnered significant attention. The LRRK2 
G2019S mutation represents the most common genetic cause of 
familial PD (fPD) and can also be found in sporadic PD (sPD) patients 
(~2%) due to reduced penetrance of the mutation (Nichols et al., 2005; 
Zimprich et  al., 2004; Schiesling et  al., 2008). Genome-wide 
association studies (GWAS) have further revealed that frequent 
polymorphisms in the vicinity of LRRK2 are linked to an increased 
risk of developing sPD (Simón-Sánchez et al., 2009). Various potential 
roles for LRRK2 on the cellular level of PD pathogenesis have been 
reported, and they are often associated with the increased kinase 
activity known to be  caused by several of the described LRRK2 
mutations (Jaleel et al., 2007).

Although PD is currently diagnosed clinically, the importance of 
protein-based biomarkers is increasing (Tolosa et al., 2021). Analyses 
of protein markers such as neurofilament light chain protein or 
α-synuclein in the cerebrospinal fluid (CSF) or blood of patients are 
becoming more relevant, and recent breakthroughs around 
α-synuclein seeding assays have the potential to reshape the clinical 
routine within the next years (Lotankar et al., 2017; Siderowf et al., 
2023). However, none of the biomarker assays approaching the 
clinical routine can pin down the intra-individual PD pathogenesis. 
With multiple potential LRRK2 inhibitors being developed and 
entering clinical trials, a biomarker that reflects LRRK2-specific 
molecular pathology, target engagement, and cellular response is of 
great interest to the scientific community (Azeggagh and Berwick, 
2022). With LRRK2 likely playing a role in some but not all sPD 
patients, identification of patient subgroups benefitting from 
inhibitor treatment would further represent an important starting 
point for the design of future clinical trials. Since its identification as 
a LRRK2 substrate, Rab proteins have been discussed and their 
phosphorylation has been utilized as proxies for LRRK2 kinase 
activity, but it can be assumed that mutated LRRK2 leads to more 
than just increased phosphorylation of direct target molecules 
(Azeggagh and Berwick, 2022; Steger et  al., 2016). It is therefore 
important to broaden the portfolio of protein markers indicating 
LRRK2-related pathophysiology.

In the present study, we aimed to provide an experimentally based 
list of LRRK2-related protein biomarker candidates. Such candidates 
should ideally be: (1) functionally relevant in the context of 
neurodegeneration, (2) functionally linked to LRRK2, (3) reflecting 
cellular pathogenesis, while also being (4) easily accessible. For this 
purpose, we used data-independent acquisition mass spectrometry 
(DIA-MS) to characterize the proteome of extracellular vesicles (EVs) 
isolated from induced pluripotent stem cells (iPSCs) derived human 
dopaminergic neurons (hDaNs) and direct cell extracts. This line had 

previously been generated from an iPSC line derived from a PD patient 
carrying the LRRK2 G2019S mutation together with an isogenic gene 
corrected control (Reinhardt et al., 2013a; Reinhardt et al., 2013b).

EVs are membranous vesicles secreted by a variety of cell types 
into the extracellular space and next to nucleic acids contain 
intracellular proteins (Colombo et al., 2014). They have proven to 
be  easily accessible from biofluids such as plasma or CSF and 
throughout the last decade have been intensively studied as sources 
for biomarkers (Théry et al., 2006; Ciferri et al., 2021). We compared 
the EV proteome to the cellular proteome of the hDaNs to identify 
proteins that are dysregulated on both cellular and extracellular levels 
and to increase the robustness of the findings. Finally, we performed 
gene ontology analyses and identified LRRK2 interactors among the 
dysregulated proteins to pin down functionally relevant candidates.

2 Materials and methods

2.1 Cultivation of human dopaminergic 
neurons

We previously described the generation of patient-derived iPSCs 
and neuronal progenitor cells (NPCs) from two PD patients carrying 
the LRRK2 G2019S mutation (Reinhardt et al., 2013a; Reinhardt et al., 
2013b). Due to unstable LRRK2 expression of the second line, for the 
present study only the first line, derived from a female with an age of 
onset of 40, was used together with the respective gene-corrected 
control line and will be referred to as L1 GC (gene corrected) and L1 
G2019S, formerly referred to as L1. The induction of dopaminergic 
differentiation of NPCs together with the thorough characterization of 
the resulting human dopaminergic neurons (hDaNs) has recently been 
published (Cavarischia-Rega et al., 2024). Briefly, for each genotype, 
one cryotube of NPCs was thawed and cells were split into three 
six-well plates. The three six-well plates were expanded independently 
and functioned as technical replicates for the isolation of EVs and cell 
lysates. NPCs were cultured and expanded in NPC media 
(Supplementary Table S1) until they reached 80% confluency, after 
which differentiation was induced using a media referred to as D7 
media (Supplementary Table S1). After 7 days, D7 media were 
exchanged for maturation media (Supplementary Table S1). On day 14 
of the differentiation, 2 mL of maturation media was added to each well 
of an entire six-well plate. Conditioned cell culture media (CCM) was 
collected and pooled from one six-well plate after 3 days, resulting in a 
total of 12 mL of CCM per technical replicate. This was repeated every 
3 days until day 23 of the differentiation. CCM from each collection 
time point was pooled, resulting in a total of 36 mL per technical 
replicate and was processed further for isolation of EVs (Figure 1).

2.2 Isolation of extracellular vesicles

To eliminate cellular debris, CCM collected on days 14 to 23 was 
centrifuged at 300 g for 10 min after which it was filtered through a 
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0.22-μm Steriflip filter (Merck, #SCGP00525). To concentrate the 
CCM to 1 mL, we  used the Amicon® Ultracel Centrifugal filters 
(Merck, #UFC901024), which were centrifuged at 2000 g at 4°C for 
30 min. After 1 mL of concentrated CCM was recovered, 
we transferred it to a 1.5-ml tube and added 500 μL of Total Exosome 
Isolation Reagent (Thermo Fisher Scientific, #4478359). After 
overnight incubation at 4° C, samples were centrifuged at 10000 g for 
1 h. The supernatant was carefully removed before the tubes were 
centrifuged for 5 min at 10,000 g. Finally, pellets were washed three 
times with 1 mL PBS to remove residual traces of the isolation reagent 
before they were resuspended in 200ul of PBS containing cOmplete 
protease inhibitor (Sigma-Aldrich, #11873580001) and phosphatase 
inhibitor (Sigma-Aldrich, #4906837001) (Figure 1).

2.3 Characterization of extracellular 
vesicles

We characterized the extracellular vesicles following the minimal 
information for studies of extracellular vesicles guidelines (Théry 
et al., 2018): (1) particle size and concentration were analyzed using 
nanoparticle tracking analysis (NTA); (2) morphology of vesicles was 
assessed via cryo-transmission electron microscopy (cryo-TEM); (3) 
presence of EV protein markers within the proteome of all EV samples 
was confirmed; and (4) gene ontology (GO) enrichment analysis for 
the cellular component was performed for proteins detected in all 
EV samples.

2.3.1 Particle size concentration
Measurements were conducted using the NanoSight NS300 

instrument, and NanoSight NTA 3.00068 software was provided by 
Malvern Panalytical in Kassel, Germany. To optimize the accuracy of 
the analysis, the samples were diluted in phosphate-buffered saline 
(PBS) at ratios ranging from 1:100 to 1:500 prior to measurement. Per 
measurement, five videos with a length of 60 s were recorded.

2.3.2 Cryo-TEM
Cryo-transmission electron microscopy was performed at the 

Nanoscale and Microscale Research Centre (nmRC) located at the 
University of Nottingham, UK. The nmRC has previously published a 
protocol for preparing EV samples for cryo-TEM, which was adapted 
for this study (Nizamudeen et al., 2021; Nizamudeen et al., 2018); 5 μL 
of EV sample was added onto each holey carbon TEM grid for 2 min 
(EM resolutions, Sheffield, UK, #HC300Cu). After the removal of 
excess solution using filters, EV samples were blotted for a second and 
then frozen in liquid ethane using a Gatan CP3 plunge freezing unit 
(Ametek, Leicester, UK). Samples were loaded to an FEI Tecnai G2 12 
Bio-twin TEM. Images were obtained using an inbuilt Gatan SIS 
Megaview-IV digital camera at an accelerating voltage of 100 kV.

2.3.3 Confirmation of the presence of EV marker 
proteins

We compared the relative abundancy of the EV marker proteins 
TSG101, CD81, and flotillin-1 and the negative marker calnexin in 
the proteome of all EV samples to their abundance in hDaNs cell 

FIGURE 1

Visual representation of study design and the EV isolation protocol. Neural progenitor cells were generated previously using iPSCs derived from a 
female PD patient carrying the LRRK2 G2019S mutation. After induction of differentiation over a period of 14 days, cell culture supernatant was 
collected every 3 days from human dopaminergic neurons, resulting in a total of 36 mL of supernatant. The supernatant was thoroughly processed, 
and resulting EV samples were characterized using NTA and Cryo-TEM. Finally, proteomes of EV samples and cell lysates of hDaNs were analyzed. 
Figure generated with biorender.com.
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lysates. Relative abundance was calculated by normalizing the 
protein intensity of a given marker protein to the sum of all protein 
intensities within the given sample. A two-way ANOVA was 
conducted to examine the effect of protein of interest and cellular 
compartment (cellular vs. extracellular) on the relative expression. 
The same test was used to compare abundancy of marker proteins in 
EVs derived from either the gene corrected or the LRRK2 G2019 
cell line.

In addition, we  performed GO enrichment analysis of the 
most abundant proteins found in the EV samples. We therefore 
selected the top 100 most abundant unique protein identities in 
each genotype, identified the overlap between these two, and 
analyzed the cellular components these proteomes were annotated 
to. GO enrichment analysis was performed using the enrichGO 
function from the ClusterProfiler package in R and is described in 
further detail in the statistics section (Yu et  al., 2012; R Core 
Team, 2022).

2.4 DIA-based proteomic analysis

2.4.1 Protein extraction
EV proteomes were quantitatively assessed by DIA-based mass 

spectrometry. For this purpose, the EV fractions were concentrated by 
lyophilization and re-dissolved in 1x Laemmli buffer. Cell lysates were 
collected on day 23 by adding 150 μL of a simple lysing buffer (PBS 
containing 1% of Triton 100x, cOmplete protease, and phosphatase 
inhibitor) to each well of a six-well plate per replicate and were 
further processed.

2.4.2 SDS-PAGE and in-gel digestion
Fifty micrograms of total protein was subjected to SDS-PAGE 

(NuPAGE 10% Bis-Tris gels). The electrophoresis was topped after the 
sample front reached 1 cm. For visualization of the protein, gels were 
stained by Coomassie. The lanes were excised, distained, and subjected 
to in-gel proteolysis by a Trypsin/LysC mix (Promega) following 
standard protocols (Gloeckner et al., 2009). Extracted and vacuum-
dried peptides were subjected to an additional C18-StageTip (Thermo 
Fisher) pre-cleaning step (Rappsilber et al., 2007). Finally, vacuum-
dried samples were dissolved in 0.5% TFA and mixed with 2 μL iRT 
standard peptide mix (Biognosis).

2.4.3 LC–MS/MS analysis
Mass spectrometry analysis was performed on an Ultimate3000 

RSLC system coupled to an Orbitrap Tribrid Fusion mass spectrometer 
(Thermo Fisher Scientific). Tryptic peptides were loaded onto a 
μPACTM Trapping Column (#COL-TRPNANO16G1B2, Fisher 
Scientific) at a flow rate of 10 μL per min in 0.1% tri-fluoroacetic acid 
in HPLC-grade water. Peptides were eluted and separated on a 50-cm 
μPACTM C18 nano-LC column (#COL-NANO050G1B, Fisher 
Scientific) by a linear gradient from 2 to 30% of buffer B (80% 
acetonitrile and 0.08% formic acid in HPLC-grade water) in buffer A 
(2% acetonitrile and 0.1% formic acid in HPLC-grade water) at a flow 
rate of 300 nL per min. The remaining peptides were eluted by a short 
gradient from 30 to 95% buffer B; the total gradient run was 120 min. 
Spectra were acquired in DIA (data-independent acquisition) mode 
using 50 variable-width windows over the mass range 350–1,500 m/z, 
MS2 scan range was set from 200 to 2000 m/z.

2.4.4 Primary data analysis
Data analysis was performed using DIA-NN (ver. 1.8.1) activating 

the following options: Trypsin/P as an enzyme, “FASTA digest for 
liberty-free search/ library generation” (database: a human subset of 
SwissProt 2021_04, 20,375 entries), and “Deep learning-based spectra, 
RTs an IMs predication.” (Demichev et al., 2020) In addition, the 
match between runs (MBR) option was activated. 
Carbamidomethylation was set as a fixed modification, and 
N-terminal methionine excision was allowed. Cross-run 
normalization was done RT-dependent, and smart profiling was used 
for library generation. In addition, a heuristic model for protein 
inference was used. Mass accuracies and window widths were 
determined/detected by the algorithm. In addition, isotopologues 
were considered and no shared spectra were allowed. A high-precision 
robust LC separation was assumed for quantification. The precursor 
FDR was set to 1%.

2.5 Experimental design and statistical 
rationale

From each genotype, we isolated 36 mL of CCM per differentiation 
(3x LRRK2 G2019S, 3x LRRK2 Gene Corrected). Each of the 36 mL 
of CCM resulted from an individual six-well plate of iPSC-derived 
human dopaminergic neurons that had been cultured as described 
above. All resulting EV samples were analyzed via NTA and 
DIA. Cryo-TEM images were made using 100 μL of one LRRK2 
G2019S and one LRRK2 GC EV sample derived from an additional 
differentiation that was not further included in the study.

Downstream analysis on maxLFQ values (DIA-NN unique 
genes matrix) was performed with Perseus (ver. 1.6.7.0) (Tyanova 
et  al., 2016). Data were log2 transformed to facilitate the 
identification of proportional changes in protein abundance 
between different groups. This transformation helps normalize the 
data and stabilize the variance, making it more suitable for 
subsequent statistical analysis. After categorical annotation, only 
IDs with three valid values in at least one biological group were 
accepted. Missing data were imputed separately for each biological 
group using the normal distribution; the width and downshift were 
set to 0.8 and 1.3, respectively. Significant changes were detected by 
a two-sided Student’s t-test using a permutation-based FDR (S0 = 1, 
FDR = 0.05 with 250 randomizations).

Statistical analysis of the NTA data, namely unpaired t-test on 
differences of particle yields and sizes between the genotypes, was 
performed using GraphPad Prism software, version 9.3.0. (La Jolla, 
CA, United States). QQ plots were used to assess the normality of the 
data. The mean relative abundance of marker proteins TSG101, 
flotillin-1, CD81, and calnexin in hDaNs cell lysates was calculated 
using protein intensities within the proteomics dataset. Then, for each 
EV sample a log2 fold change (log2 fc) value of that mean abundance 
was calculated.

2.5.1 Data visualization
For further data analysis and visualization, various functions from 

R-Studio, version 4.3.0 were used (R Core Team, 2022); principal 
component analysis (PCA) of the six EV samples and six cell lysates 
was performed using the built-in prcomp function and using the data 
of proteins identified in all 12 samples. For the generation of heatmaps, 
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proteins that were not present in all samples were excluded. The 
built-in scale function was used to normalize the data. When plotting 
data from hDaNs and EVs in one heatmap, intensities were normalized 
separately for each sample type; for downstream analysis, a fold-
change cutoff of > ± 1.5 was applied. Proteins that did not cross this 
threshold were not further considered, even if they passed statistical 
testing of differential expression.

2.5.2 Functional enrichment and interaction 
networks

The Metascape platform was used for an initial scan of 
dysregulated proteomes (Zhou et  al., 2019). Briefly, Metascape 
integrates multiple enrichment and functional analysis approaches 
such as the string database, KEGG pathways and GO processes. It 
identifies all statistically enriched terms from either of the included 
enrichment analyses. Then, significant terms are clustered based on 
similarity. For each cluster, the term with the best p-value is selected 
as its representative label. A subset of 20 clusters is automatically 
selected and converted into a network layout where terms are 
represented by a node and edges connect terms passing a similarity 
threshold. Finally, Metascape uses the Molecular Complex Detection 
(MCODE) algorithm to identify densely connected clusters within the 
dysregulated protein networks of either the EV or the cellular 
proteome (Hogue and Groll, 2001). Briefly, MCODE detects highly 
interconnected regions within protein–protein interaction networks, 
which may correlate to functional modules. For the sake of clarity, 
we filtered out networks with less than four nodes. For the visualization 
of protein–protein interaction networks, we  used the string_db 
function from the string_db package (Szklarczyk et al., 2023).

2.5.3 Targeted GO enrichment analyses
GO enrichment analysis was performed using the enrichGO 

function from the ClusterProfiler package (Yu et al., 2012); if not stated 
otherwise, proteins that were either up- or downregulated were 
analyzed separately. The p-value cutoff was set to 0.05, FDR correction 
was performed using the Benjamini–Hochberg procedure to correct 
for multiple testing and adjusted p-values will be reported (Benjamini, 
1995). To filter out GO terms relevant to the research question, 
we filtered for CNS-related GO terms using the grep function in R and 
a customized list of terms (Supplementary Table S2). If applicable, the 
top 15 GO terms sorted by p-value were visualized using a semantic 
scatter plot with a maximum similarity matrix being calculated to 
indicate the semantic proximity of identified GO terms. If applicable, 
we further visualized the top three GO terms and their annotated 
proteins in a network plot.

The analytical platform Omics Playground1 was used for 
proteomics data exploration and integration. We  used the find 
biomarkers feature to identify the most important proteins that could 
be used as predictors for biological group GC or G2019S. The analysis 
is based on calculating importance scores using multiple machine 
learning algorithms such as random forest, XGboost, sPLS, and 
correlation analysis.

Finally, we used Cytoscape software, version 3.8.2, and String 
database to identify the LRRK2 interactome. The physical subnetwork 

1 https://github.com/bigomics/omicsplayground

was plotted, and a confidence score cutoff was set at the default of 0.4 
(Shannon et al., 1971; Szklarczyk et al., 2015).

2.6 Semi-automated literature review

To identify promising biomarker candidates, we  performed 
semi-automated literature research on the final set of proteins 
identified to be dysregulated in both EVs and cells. The search was 
conducted via the entrez_search function from the rentrez package in 
R and applied to the PubMed database to retrieve PubMed IDs 
associated with the identified proteins and the research question. 
This function returned PubMed IDs based on the defined protein list 
and term queries. We selected the terms “Parkinson’s disease” and 
“LRRK2.”

3 Results

3.1 Characterization of hDaNs derived 
extracellular vesicles

NTA confirmed the presence of particles with a size of 30 to 
220 nm, with peaks approximately 80–90 nm (Figure 2A). The mean 
particle size was 98.5 nm (SD: ±1.1) in EVs from L1 GC and 103.2 nm 
(SD: ±8.2) in EVs from L1 G2019S. The unpaired t-test showed no 
statistically significant differences between the two lines (difference 
between means: 4.7, t = 0.99, df = 4, p = 0.376). The mean particle 
yield per line and batch of CCM were 3.4×1011 EVs (SD: 4.8×1010) in 
L1 GC and 3.6×1011 EVs (SD: 1.5×1011) in L1 G2019S. Again, the 
unpaired t-test did not show any significant difference between lines 
(difference between means: 2.1×1011, t = 0.23, df = 4, p = 0.184) 
(Figure 2B).

We validated the isolation protocol by comparing the relative 
abundance of EV marker proteins, CD81, flotillin-1, and TSG101 and 
the relative scarcity of calnexin, in the proteome of EVs and cell lysates 
(Figure 2C). The relative abundance of CD81 (mean log2 fc compared 
to cells: 2.1, SD: 1.1, n = 6) and flotillin-1 (mean log2 fc: 1.1, SD: 0.2, 
n = 6) was higher in EVs than in hDaNs. The abundance of 
TSG101was slightly higher in EVs (log2 fc: 0.5, SD: 0.2, n = 6) than 
hDaNs, while levels of calnexin (log2 fc: −5.8, SD: 0.5, n = 6) were 
clearly higher in hDaNs than EVs.

We additionally compared the relative abundance of marker 
proteins in EVs and cell lysates and found a statistically significant 
interaction between protein and cellular compartment on the relative 
expression [F(3, 49) = 162.6, p < 0.0001]. After correction for multiple 
comparisons using the Šidák test, we found significant differences in 
the abundance of CD81 in EVs compared to cells (t = 7.7, df = 40, 
p < 0.0001) (Supplementary Figure S1A). In contrast, the abundance 
of calnexin was significantly increased in cells (t = 20.5, df = 40, 
p < 0.0001). There was no significant difference in the abundance of 
flotillin 1 or TSG101 when comparing EVs and cell lysates.

Both genotype and protein of interest did have an effect on the 
relative expression [F(3, 16) = 33.3, p < 0.0001]. After correction for 
multiple comparisons using Šidák test, we found that EVs derived 
from L1 G2019S seemed to express CD81 more than EVs derived 
from L1 GC (t = 11.4, df = 16, p < 0.0001), whereas all other EV 
markers were not significantly different (Supplementary Figure S1B).
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To further assess the proteome of the EV samples and confirm 
their vesicular nature, we performed GO enrichment analysis with the 
most abundant proteins. Of the 100 proteins selected per genotype, 77 
proteins were among the most abundant in EVs from both L1 GC and 
L1 G2019S. Out of the 51 significantly associated GO terms 
(Supplementary Table S3), many were associated with either vesicles 
or the endosomal–lysosomal pathway. Among the top ten terms were 
“cell membrane microparticle” (associated proteins: 17/77, p < 0.0001), 
“cytoplasmic vesicle lumen” (16/77, p < 0.0001), and “vacuolar lumen” 
(9/77, p < 0.0001) (Figure 2D).

In Cryo-TEM, particles appeared as solitary, spherical, and 
membrane-encapsulated structures, in line with previous reports of 
EVs (Raposo and Stoorvogel, 2013). We  did not find any 
morphological differences between the two genotypes 
(Supplementary Figure S2).

3.2 Proteomic analysis

3.2.1 Quantitative analysis of proteomes
Quantitative proteomics was performed using the data-

independent analysis (DIA) approach. Three technical replicates were 
analyzed for EV as well as for the corresponding cell lysates of the 
same differentiations. Using DIA-NN, libraries were created by the 
extraction of pseudo-MSMS spectra directly from the DIA runs 
(Demichev et al., 2020). By this approach, a total of 2,634 unique 

proteins were consistently detectable in all six EV samples. The 
resulting heatmap separated genotypes by protein abundance 
(Figure 3A). In total, 595 proteins were significantly dysregulated 
(nupregulated = 318; ndownregulated = 277) in L1 G2019S compared to L1 GC 
(Figures  3B,C). Of those, 484 passed the fold-change threshold 
(nupregulated = 275; ndownregulated = 209). In the cell lysates of hDaNs, a total 
of 5,833 unique proteins were consistently detectable in all six samples 
(Figure 3D). In total, 3,205 proteins were significantly dysregulated 
(nupregulated = 1,190; ndownregulated = 2015) in L1 G2019S compared to L1 
GC (Figures 3E,F). Of those, 1833 passed the fold-change threshold 
(nupregulated = 907; ndownregulated = 926).

3.2.2 Identification of protein–protein interaction 
networks and functional enrichments

Using the string database, we visualized the top 25 proteins that 
had the most interaction partners within either the dysregulated EV 
or cellular proteome, respectively (Figures 4A,C). Out of these 25, a 
total of six proteins were identified in both proteomes: ACTB, 
HSP90AA1, ITGB1, PAK1, RHOA, and SNRPB. Then, using 
Metascape, we  visualized and identified multiple networks of 
functionally enriched terms (Figures 4B,D). Within the dysregulated 
EV proteome, we  found, among others, the terms “response to 
wounding,” “axon guidance,” and “vesicle-mediated transport.” In the 
dysregulated cellular proteome, we  identified terms such as 
“membrane trafficking,” “intracellular protein transport,” and 
“pathways of neurodegeneration.” Then, we visualized how proteins 

FIGURE 2

Basic characterization of EVs isolated from hDaNs derived cell culture supernatant. NTA was performed on 3 EV samples per genotype. The size of EVs 
ranged from 30 to 220 nm with a peak approximately 80 to 90 nm (A). No significant difference in particle yield between genotypes was detected 
using an unpaired t-test. Error bars indicate standard deviation (B). Relative abundance of EV marker proteins was calculated using protein intensities 
within the different proteomics datasets. EV markers CD81, flotillin-1 (FLOT1), and TSG101 were more abundant in EVs, while negative marker calnexin 
was clearly more abundant in cells (C). GO enrichment analysis was performed for cellular components on the most abundant proteins detectable in 
all six EV samples. Depicted terms were among the top ten significantly associated cellular components. The color of the circles indicates to which 
term the given proteins were annotated to. If a protein was annotated to two terms, the depicted color is a mix of both. Orange proteins were 
annotated to all three terms (D).
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from either datasets were overlapping (Figure 4E). First, we identified 
those proteins that were present in both datasets. Second, we visualized 
those proteins that were functionally connected to each other. As 
shown in Figure 4E, although only a fraction of dysregulated proteins 
is shared between both datasets, the cellular and extracellular 
proteomes appear to be  functionally closely related. Finally, using 
MCODE on the shared dysregulated proteome, we  visualized 
functional clusters and the corresponding protein–protein interaction 
networks (Figure  4F). Here, we  identified two networks with the 
corresponding labels “mRNA processing” and “semaphorin  
interactions.”

3.2.3 Functional enrichment analyses using gene 
ontology

Functional enrichment analyses of the dysregulated proteomes 
were performed separately for up- and downregulated proteins. For 
the sake of stringency, we  focused on the biological processes 
significantly associated with the dysregulated proteomes. Among the 
significantly associated GO terms for the proteins upregulated in L1 
G2019S EVs were synapse organization, synapse assembly, and neuron 
projection regeneration (Figures 5A,B; Supplementary Table S4). A 
total of two CNS-related GO terms were associated with the 
downregulated EV proteome, namely regulation of postsynaptic 
neurotransmitter receptor activity and synapse organization 
(Figures 5C,D; Supplementary Table S5).

As for the cellular proteome, among others, upregulated proteins 
were significantly associated with vesicle-mediated transport in 
synapse, regulation of neurotransmitter levels, and neurotransmitter 

transport (Figure  6A; Supplementary Table S6). In contrast, the 
downregulated proteins were not significantly associated with any 
CNS-related GO terms. We therefore did not apply the filtering step 
and plotted the top 15 terms resulting from the total GO enrichment 
analysis (Figure 6B; Supplementary Table S7), among those were RNA 
processing, RNA splicing, and cellular nitrogen compound 
catabolic process.

3.2.4 Analysis of commonly dysregulated proteins
As a final step, we analyzed the proteins that were dysregulated 

in both the proteome of EVs and hDaNs cell lysates to increase the 
robustness of the findings. First, we performed PCA using data from 
all proteins identified in both EVs and cell lysates (Figure 7A). PC1 
explained 53.1% of the variability and separated EVs from cell lysates, 
whereas PC2 explained 13.5% of the variability and separated 
genotypes. In particular, data from the two cellular proteomes, that 
is, L1 GC and L1 G2019S, clustered closer together compared to the 
EV proteomes. Then, we  looked at the overlap of dysregulated 
proteins (Figure 7B). Of the 484 dysregulated proteins in EVs and 
1833 dysregulated proteins in hDaNs, a total of 123 proteins were 
found to be  dysregulated in both; 34 proteins were found to 
be  upregulated, whereas 28 were downregulated in both sample 
types. The remaining 61 proteins were dysregulated in opposite 
directions, for example, upregulated in cells but downregulated in 
EVs and vice versa (Figures 7B,C). Using Cytoscape and the String 
database, we identified and visualized those proteins among the 123 
that were described to be within the LRRK2 interactome (Figure 7D). 
Finally, we performed GO enrichment analysis using all 123 proteins 

FIGURE 3

Proteomic signature of EVs and cell lysates derived from hDaNs carrying the LRRK2 G2019S mutation. In EVs isolated on days 14 to 23 of the 
differentiation, a total of 2,634 proteins could be identified in all six samples. When normalizing protein counts, separation along genotype becomes 
apparent (A). Volcano plot visualizes log2 fold change levels of proteins found in L1 G2019S compared to L1 GC. The dotted horizontal line visualizes 
the p-value cut-off at 0.05, whereas vertical lines indicate the > ± 1.5 fold-change threshold. Of the 595 significantly dysregulated proteins, 484 passed 
this cutoff (B). Heatmap of differentially expressed proteins in EV samples (C). In cell lysates of hDaNs isolated on day 23 of the differentiation, 5,833 
proteins were found (D). A total of 3,205 proteins were significantly dysregulated, whereas 1833 passed the fold-change threshold (E). Heatmap of 
differentially expressed proteins in cell lysates (F).
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as input and identified, among others, the GO terms synapse 
organization, cell migration in hindbrain, and regulation of synapse 
organization to be  significantly annotated (Figures  7E,F; 
Supplementary Table S8).

3.2.5 Semi-automated literature review
Out of the 123 proteins, for 76 proteins we found at least one 

PubMed ID when using the protein name in combination with “AND 
Parkinson’s disease,” totaling up to 608 publications. For the 

FIGURE 4

Visualization of dysregulated protein networks and pathways in the EV and cellular proteomes. Protein–protein interaction network within the 
dysregulated EV proteome displaying the top 25 proteins based on a number of interactions. Nodes represent proteins, with their color corresponding 
to the number of interactions, and edges representing protein–protein interactions. The size of the nodes also indicates the number of interactions 
with larger nodes indicating more interactions. Protein names in red highlight shared interactors in the EV and cellular proteome. As multiple proteins 
are tied at position 25, the actual number of nodes depicted is 27 (A). Network of enriched terms within the EV proteome using the Metascape analysis 
pipeline. Here, a subset of the enriched terms is depicted with each node representing one term. Similar terms are clustered together and have the 
same color. The name of each cluster is based on the term with the smallest p-value within its respective cluster. For clarity, only networks with at least 
two edges were selected (B). Protein–protein interaction network within the dysregulated cellular proteome. Again, multiple proteins are tied at 
position 25 and the actual number of nodes depicted is 27. Proteins written in red represent interactors found in both the EV and cellular proteome to 
be among the top 25 (C). Network of enriched terms within the cellular proteome (D). The chord diagram displays the overlaps between the EV and 
the cellular proteomes. Edges in dark blue depict overlaps on the protein level, while edges in dark teal indicate proteins annotated to the same 
enriched ontology term (E). MCODE-based protein–protein interaction network visualizing networks identified within the shared dysregulated 
proteome. For each cluster, the term with the best p-value is selected as its representative label. For the sake of clarity, only networks with more than 
three nodes were depicted (F).
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combination of a protein and the term “AND LRRK2,” we found 57 
publications for 22 proteins, all of which were also identified using the 
“AND Parkinson’s disease” term (Supplementary Figure  3). 
Supplementary Table S9 shows all 123 proteins and their respective 
count of publication. Out of these 22 proteins, we  identified 10 
interesting candidates based on the available literature (Table 1).

4 Discussion

In the present study, we aimed to identify protein-based biomarker 
candidates that are functionally relevant in the context of PD and are 
linked to LRRK2. This goal represents an important step toward 
developing targeted therapies, especially with LRRK2 inhibitors 
rapidly approaching clinical trials (Azeggagh and Berwick, 2022). 

We isolated EVs from hDaNs carrying the LRRK2 G2019S mutation 
and an isogenic, gene-corrected control and used DIA-proteomics to 
analyze the genotype-specific cellular and extracellular proteomic 
signatures. Finally, we performed gene ontology analysis for both the 
cellular and extracellular proteomes and thoroughly reviewed the 
literature to identify promising candidates for future pre-clinical or 
clinical biomarker studies.

As a result of the GO enrichment analysis on dysregulated 
proteins found both in EVs and cell lysates, we identified two major 
biological processes to be dysregulated in the LRRK2 G2019S cell 
model, one of which was the structural and functional integrity of 
synapses. Synapses have extensively been described to potentially play 
a critical role in the development of neurodegenerative diseases, 
including LRRK2-linked PD. For example, one study showed LRRK2-
dependent regulation of the pre- and postsynaptic morphology via the 

FIGURE 5

CNS-related gene ontology enrichment analysis of the L1 G2019S EV proteome. A semantic scatter plot visualizes the identified GO terms in a two-
dimensional semantic space. Terms that are semantically related are depicted more closely to each other. The size of the dots represents a number of 
annotated proteins, while the color depicts the log10 p-value. A total of nine CNS-related GO terms were significantly associated with the proteins 
upregulated in L1 G2019S EVs (A). Of those, the top three were visualized together with their annotated proteins. The color of the dots indicates the 
respective GO term. Proteins that were annotated to more than one term are colored in a mix of the respective colors (B). GO enrichment analysis was 
repeated for the proteome downregulated in L1 G2019S EVs (C). Here, only two CNS-related GO terms were identified and plotted in (D), a network 
plot.
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interaction with microtubule-associated-protein-like targets (Lee 
et al., 2010). LRRK2 was also shown to interfere with endocytosis of 
synaptic vesicles, thus affecting neurotransmission, and increased 
LRRK2 kinase activity was shown to affect striatal dopamine release 
and uptake in an LRRK2 G2019S mouse model (Arranz et al., 2015; 
Li et al., 2010). Along these lines of evidence is the identification of 
dysregulated levels of synaptojanin 1 (SYNJ1), tubulin beta class 
I  (TUBB), cytoskeletal protein actin ß (ACTB), and Ras homolog 
family member A (RHOA) in the cell model.

SYNJ1, which is involved in synaptic transmission and membrane 
trafficking, interacts with several proteins playing a key role in 
synaptic vesicle recycling processes (Bae and Kim, 2017). It was 
described to be directly phosphorylated by LRRK2, suggesting a close 
interplay of these two proteins in deregulating the trafficking of 
synaptic vesicles (Pan et al., 2017). TUBB, which forms a structural 
component of microtubules, was also shown to interact with LRRK2, 
resulting in affection of microtubule stability (Law et al., 2014). As 
neuronal cells are highly dependent on an effective intracellular 
transport provided by microtubules, their disruption is likely an early 
event in many neurodegenerative disorders (De Vos et  al., 2008). 
RHOA, on the other hand, likely controls the actin cytoskeleton’s 
rearrangement and is crucial for coordinating the formation and 
remodeling of synapses (Stelzer et al., 2016; Safran et al., 2021; Tolias 
et al., 2011). This protein appeared to be part of a larger protein–
protein interaction network within the two dysregulated proteomes in 
the dataset. More importantly, multiple studies have drawn a 

connection between increased RHOA activity and PD-linked 
phenomena, such as damage of dopaminergic neurons or upregulation 
of alpha-synuclein (Schmidt S. I. et  al., 2022). In addition, an 
interaction with LRRK2 was discussed, although the results remained 
inconclusive (Chan et  al., 2011). Finally, ACTB represents a 
ubiquitously expressed protein and it is a crucial component of the 
cytoskeleton (Stelzer et al., 2016; Safran et al., 2021). As such, it is 
typically enriched in synapses, where it influences synaptic shape, size, 
and neurotransmitter release (Gentile et al., 2022). In the cell model, 
it also appeared among the top 25 interactors within the dysregulated 
proteome of both EVs and cell lysates and was also part of the 
MCODE-based functional network. Interestingly, in a G2019S 
drosophila model and using RNA sequencing, ACTB was identified 
among the most significant dysregulated gene nodes, suggesting a 
critical role of LRRK2  in actin cytoskeleton reorganization (Toh 
et al., 2021).

The other biological process we  identified through both GO 
enrichment analysis and MCODE-based analysis of the shared 
dysregulated proteome of EVs and cell lysates was RNA processing. 
The disturbance of RNA processing is being discussed as both a 
potential cause of neurodegenerative diseases and a target for 
therapeutic interventions (Nussbacher et  al., 2019). RNA-binding 
proteins were shown to interfere with several steps of RNA 
metabolism, including splicing, mRNA transport, translation, and 
degradation. Changes such as dysregulated expression, cellular 
mislocalization, and aggregation of RNA binding proteins were 

FIGURE 6

Gene ontology enrichment analysis of the L1 G2019S cellular proteome. Semantic scatter plot of CNS-related GO terms found to be significantly 
associated with the upregulated proteins in L1 G2019S hDaNs (A). In contrast to the upregulated proteins, no CNS-related GO term was significantly 
annotated to the downregulated proteome (B). Instead, the unfiltered GO terms are plotted, most of which seem to indicate changes in RNA-related 
processes.
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FIGURE 7

Analysis of commonly dysregulated proteins. PCA was performed on all proteins identified in both EVs and cell lysates. EVs are clearly separated from 
cell lysates along PC1, while PC2 separates along genotype. In particular, differences between proteomes seem to be larger in EVs than cells (A). A total 
of 123 proteins were dysregulated on both EVs and cells as indicated by the overlap colored in gray. The direction of dysregulation was the same in EVs 
and cells for 34 and 28 proteins, respectively (B). The heatmap visualizes the normalized protein intensities in each technical replicate and in EVs and 
cell lysates. Normalization was performed for each compartment (EVs vs. cell lysates) separated. Interestingly, a considerable fraction of proteins was 
not dysregulated in the same direction when comparing the cellular and extracellular proteome of the same genotype (C). Using Cytoscape and the 
String database, out of the 123 proteins dysregulated in both the EV and cellular proteome, a total of 11 proteins appear to be within the LRRK2 
interactome. Colors are based on the fold-change expression in G2019S EVs (D). GO analysis was performed on all 123 proteins dysregulated in both 
EVs and hDaNs (E). The top three hits are visualized together with their annotated proteins. Again, the color of the circles indicates toward which of the 
GO terms a given protein was annotated. Proteins annotated to two terms are colored in a mixture of the color of the term, while orange indicates 
annotation toward all three terms (F).
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suggested to result in impaired RNA metabolism in neurodegenerative 
diseases, although the precise mechanisms of how this leads to 
neurodegeneration are not fully understood (Nussbacher et al., 2019). 
Furthermore, we  recently showed that LRRK2 mutation carriers 
display distinct miRNA patterns, connecting LRRK2-driven PD to a 

disturbed RNA metabolism (Braunger et al., 2024). In this context, the 
downregulation of AGO1 and its presence among the functional 
network identified by MOCDE becomes of particular interest. AGO1, 
which, together with other proteins, forms the RNA-induced silencing 
complex, binds to microRNAs, and then regulates the translation of 

TABLE 1 Overview of functionally relevant biomarker candidates.

Protein name Gene 
name

Log2 fc 
EVs

Log2 fc 
hDaNs

String LRRK2 
Interactome

Function 
(Stelzer et al., 
2016; Safran 
et al., 2021)

Context

Actin Beta ACTB −2.3 6.6 Yes

Crucial and 

ubiquitously 

expressed protein of 

the cytoskeleton

Enriched in synapses, role 

of LRRK2 in cytoskeleton 

reorganization (Toh et al., 

2021)

Argonaute RISC 

Component 1
AGO1 −3.6 −1.6 Yes

RNA interference, 

e.g., repression of 

mRNA translation, 

binding to miRNAs

Dysregulated RNA 

processing in PD, LRRK2 

driven miRNA signatures 

(Braunger et al., 2024; 

Gehrke et al., 2010)

Annexin A1 ANXA1 2.4 2.1 No
Inhibition of 

phospholipase A2

Role in neuroinflammation 

(Darvish et al., 2021)

CD44 CD44 3.8 3.2 No

Cell-surface protein, 

role in cell–cell 

interaction and 

migration

Role in 

neuroinflammation, 

upregulated in CSF of 

LRRK2 PD (Pasterkamp 

and Giger, 2009; Karayel 

et al., 2022)

Galactosylceramidase GALC −3.9 −1.0 No

lysosomal protein 

involved in 

sphingolipid 

metabolism

Related to GBA, influence 

on lysosomal membranes 

(Senkevich et al., 2023)

Peroxiredoxin 2 PRDX2 0.9 −1.0 No antioxidant enzyme

Phosphorylated by LRRK2, 

leading to loss of 

dopaminergic neurons 

(Chua et al., 2020)

Ras Homolog Family 

Member A
RHOA 1.0 1.0 Yes

small GTPases, 

promotes 

cytoskeleton 

reorganization

Remodeling of synaptic 

cytoskeleton, linked to 

damage of dopaminergic 

neurons (Tolias et al., 2011; 

Schmidt S. I. et al., 2022)

Sonic Hedgehog Signaling 

Molecule
SHH 1.0 2.9 No

Key signaling 

molecule

Disruption of SHH 

signaling in LRRK2 as a 

mechanism of neuronal 

vulnerability (Schmidt S. 

et al., 2022; Khan et al., 

2021)

Synaptojanin 1 SYNJ1 −2.3 1.3 Yes

Synaptic transmission 

and membrane 

trafficking

Phosphorylated by LRRK2, 

deregulating synaptic 

vesicle trafficking (Pan 

et al., 2017)

Tubulin Beta Class I TUBB −0.9 0.4 Yes
Structural component 

of microtubules

LRRK2 leading to 

microtubule instability 

(Law et al., 2014)

Based on their functional roles in PD and their association to LRRK2, we selected 10 potential biomarker candidates.
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mRNAs, thereby playing a crucial role in transcriptional silencing 
(Stelzer et al., 2016; Safran et al., 2021). In a drosophila model, it was 
shown that LRRK2 not only associates with AGO1 but also that 
LRRK2 G2019S negatively regulates AGO1 expression levels (Gehrke 
et  al., 2010). In the cell model, this downregulation seems to 
be measurable not only in hDaNs but also in EVs, therefore confirming 
previous study on RNA processing and LRRK2.

Using MCODE, we  identified a functional protein–protein 
interaction network labeled “Semaphorin interactions” to be part of 
the dysregulated proteome. Semaphorins play a role in axonal 
guidance and neural development but are increasingly linked to 
neurodegenerative processes (Alto and Terman, 2017; Quintremil 
et al., 2018). They might be relevant in maintaining the structural and 
functional integrity of neural circuits, which may be disrupted in 
neurodegenerative diseases such as PD (Pasterkamp and Giger, 
2009). Moreover, specific semaphorins have been implicated in 
processes such as inflammation and oxidative stress, both of which 
are critical contributors to the pathology of neurodegenerative 
diseases (Quintremil et al., 2018; Good et al., 2004). Two proteins 
within the network were likely the driver for its association with 
semaphorins. For one, RHOA, which we already discussed above, is 
likely connected to semaphorin-mediated axonal guidance (Liu and 
Strittmatter, 2001). Additionally, p21-activated kinase-1 (PAK1) was 
shown to be suppressed by semaphorin 3A resulting in modulation 
of inflammation (Huang et al., 2022).

In addition to the above-mentioned proteins SYNJ1, TUBB, 
RHOA, ACTB, and AGO1, we identified another five proteins from 
the dataset that were dysregulated both in the cellular and 
extracellular proteome and appeared as promising biomarker 
candidates based on probable functional relevance and previous 
appearances in publications related to PD or LRRK2. Particularly 
interesting to us was the identification of upregulated levels of sonic 
hedgehog signaling molecule (SHH) in both EVs and hDaNs. SHH 
was first described to play an important role in sustaining the 
chemical and cellular integrity of nigrostriatal circuits over 10 years 
ago (Gonzalez-Reyes et al., 2012). Since then, using cellular models 
of both sporadic and familial PD, including LRRK2, we have learned 
that there is a close interplay of increased SHH activity and ciliary 
dysfunction (Schmidt S. et al., 2022). Ciliary defects were also shown 
in LRRK2 mutant mice, including the G2019S variant. Disruption of 
the SHH signaling pathway, which requires intact cilia, might be a 
mechanism of neuronal vulnerability in PD patients with LRRK2 
mutations, and monitoring extracellular levels of SHH via 
quantification from EVs might be  a promising approach to, for 
example, monitor treatment efficacies (Khan et al., 2021).

Annexin A1 (ANXA1) is a membrane-bound protein and has 
anti-inflammatory properties, likely via the inhibition of 
phospholipase A2 (Stelzer et al., 2016; Safran et al., 2021). Missense 
variants of ANXA1 were discussed to cause genetic PD, and it was 
hypothesized that ANXA plays a role in impaired clearance of 
accumulated alpha-synuclein via microglial defects and 
neuroinflammation (Darvish et  al., 2021). Interestingly, growing 
evidence suggests a link between LRRK2 and inflammation, in both 
the periphery and the central nervous system. LRRK2 variants were 
shown to modulate the risk for Crohn’s disease, a chronic 
inflammatory bowel disease, and LRRK2 kinase activity was shown 
to influence microglial activation and pro-inflammatory cytokine 
production (Hui et al., 2018; Moehle et al., 2012). In the same context, 

the upregulation of CD44 seems intriguing as this protein is heavily 
involved in cell–cell interactions, especially in the context of 
inflammation (Stelzer et al., 2016; Safran et al., 2021). Downregulation 
of CD44 was shown to decrease microglia-driven neuroinflammation 
and reduce the loss of dopaminergic neurons in CD44-knockout 
mice (Wang et al., 2022). A large proteomics study on CSF from both 
sPD and fPD patients carrying an LRRK2 mutation already revealed 
upregulated levels of CD44 expression compared to those in healthy 
controls, therefore being in line with the findings (Karayel 
et al., 2022).

Galactosylceramidase (GALC) was another intriguing candidate 
we identified within the dataset. This lysosomal protein represents an 
important component in glycosphingolipid metabolism and is 
therefore biochemically closely related to glucocerebrosidase (GBA) 
(Stelzer et al., 2016; Safran et al., 2021; Senkevich et al., 2023). GBA, 
in turn, is particularly known for its significance in the context of PD 
as a multitude of genetic variants modulate the risk of developing the 
disease (Sidransky et al., 2009). A recent study proposed GALC to 
also affect the risk of PD and suggested that its dysregulated activity 
might alter the composition of lysosomal membranes, which due to 
its involvement in the endolysosomal system links GALC directly to 
LRRK2 (Senkevich et al., 2023; Erb and Moore, 2020). Additionally, 
in a small case report, patients with dual mutations in both GBA and 
LRRK2 displayed increased GALC activity (Usenko et  al., 2024). 
Based on the data, we propose that total protein levels of GALC could 
also be  altered in patient-derived materials, including brain-
derived EVs.

Finally, we found dysregulated levels of peroxiredoxin 2 (PRDX2), 
which is an antioxidant enzyme that contributes to cellular protection 
against damage from free radical oxygen species (ROS) (Stelzer et al., 
2016; Safran et al., 2021). It is well established that regulation of ROS, 
which physiologically occurs during the mitochondrial electron 
transfer chain, is essential to cellular homeostasis. Furthermore, 
several PD-related genes encode proteins tightly involved in the 
regulation of mitochondrial integrity and oxidative stress, including 
LRRK2 (Puspita et al., 2017). In this context, PRDX2 overexpression 
was shown to be protective in a cell model of PD (Liu et al., 2023). 
Interestingly, it was also shown to be  phosphorylated by LRRK2, 
leading to the loss of dopaminergic neurons (Chua et al., 2020).

4.1 Limitations

There are several weaknesses in the study we  would like to 
address. First and foremost, we did not apply biochemical validation 
experiments to further substantiate the list of biomarker candidates. 
However, we did find some proteins that had previously been reported 
to be dysregulated in EVs isolated from larger clinical studies using 
proteomics and phosphor-proteomics on EVs derived from either 
CSF or urine and from LRRK2 mutation carriers, such as transketolase 
(TKT), several members of the peroxiredoxin family (e.g., PRDX3) 
and the integrin beta family (e.g., ITGB1) (Karayel et  al., 2022; 
Hadisurya et al., 2023). The second weakness relates to the lack of 
biological replicates. Ideally, additional lines including gene-corrected 
controls could have been used to potentially increase the applicability 
of the findings to a broader spectrum of patients. Unfortunately, a very 
limited number of iPSC lines is available and characterization of 
LRRK2 expression levels has uncovered significant differences in 
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hDaNs, hampering the usability of the second line. Finally, the 
approach included a focus on CNS-related GO terms and later the 
focus on proteins described to be functionally relevant to LRRK2 or 
PD. We are convinced that this approach allowed for a streamlined 
analysis and efficient way to identify a comprehensive list of potential 
biomarker candidates starting from a larger number of proteins. Using 
Metascape, we have further tried to broaden the approach and single 
out proteins independent of their CNS-relatedness. However, it is 
possible that by engaging in a focused approach, we  might have 
overlooked other promising candidates within the dataset.

4.2 Future studies

In our view, future studies could build on the discussed findings 
and use targeted biochemical quantification methods on patient 
material, such as plasma or CSF-derived EVs, to measure potential 
differences in expression levels of one or multiple proteins identified 
throughout this manuscript. To quantify the exact effect LRRK2 
activity, which is discussed as the biochemical correlate of LRRK2 
mutations, has on the cellular and extracellular proteome, LRRK2 
inhibition experiments could be a promising path to follow. With 
relatively large volumes of CCM needed to reach EV yields great 
enough to perform proteomics experiments, longer incubation 
times with LRRK2 inhibitors will be necessary. Therefore, finding 
the right dosage to treat the cells with over a period of at least 
10 days without reducing their viability will be challenging. Finally, 
using a larger number of cell lines, for example, those available from 
the FOUNDIN PD consortium, might provide more robust and 
translatable insights into disease-related changes of the cellular and 
extracellular proteome in the context of PD-related mutations.

4.3 Conclusion

In summary, in the present study, we used iPSC-derived hDaNs 
and their EVs to characterize the proteomic changes in the context of 
the LRRK2 G2019S mutation. While previous studies on the 
proteome of urinary EVs and the CSF of LRRK2 PD patients have 
been performed, to the best of our knowledge this was the first study 
that directly characterized the proteome of dopaminergic neurons 
carrying an LRRK2 mutation and their EVs (Karayel et al., 2022; 
Hadisurya et al., 2023; Virreira Winter et al., 2021). We identified a 
plethora of dysregulated proteins and gene ontology enrichment 
analysis highlighted pathways that are functionally relevant for 
neurodegeneration. Finally, we  focused on proteins that showed 
dysregulation on both cellular and extracellular levels, intending to 
increase the robustness of the findings. We thoroughly discussed ten 
promising protein biomarker candidates, their functional relevance 
in neurodegeneration and PD as well as their connection to LRRK2, 
thereby providing researchers with a solid foundation for future 
biomarker studies.
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SUPPLEMENTARY FIGURE S1

Statistical analysis of EV marker protein expression. Dots correspond to EVs, 
triangles correspond to cell lysates. Each data point represents a technical 
replicate. The y-axis shows the log10 relative abundancy of the respective 
EV marker protein. In EVs, expression of CD81 was significantly increased 
compared to cell lysates (A). Data corresponding to L1 GC are depicted as 
round dots while triangles represent data from L1 G2019S. Here, expression 
of CD81 in EVs derived from L1 G2019S seemed to significantly higher 
compared to L1 GC. In contrast, the other EV markers were not significantly 
different between the lines.

SUPPLEMENTARY FIGURE S2

Cryo-TEM images of vesicles isolated from hDaNs. Images were taken 
from vesicles isolated from L1 GC (A, B) as well as from L1 G2019S (C, D). 
Vesicles appeared as solitary, spherical and membrane-encapsulated 
structures. No morphological difference between genotypes 
were observed.

SUPPLEMENTARY FIGURE S3

Literature review for dysregulated proteins. For 22 of the 123 proteins 
dysregulated in both EVs and hDaNs, there was at least one publication 
connecting it to both Parkinson’s disease (A) and LRRK2 (B).
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