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Recently, significant advancements have been made in the field of e�cient

single-image super-resolution, primarily driven by the innovative concept of

information distillation. This method adeptly leverages multi-level features to

facilitate high-resolution image reconstruction, allowing for enhanced detail

and clarity. However, many existing approaches predominantly emphasize the

enhancement of distilled features, often overlooking the critical aspect of

improving the feature extraction capabilities of the distillation module itself.

In this paper, we address this limitation by introducing an asymmetric large-

kernel convolution design. By increasing the size of the convolution kernel,

we expand the receptive field, which enables the model to more e�ectively

capture long-range dependencies among image pixels. This enhancement

significantly improves the model’s perceptual ability, leading to more accurate

reconstructions. To maintain a manageable level of model complexity, we adopt

a lightweight architecture that employs asymmetric convolution techniques.

Building on this foundation, we propose the Lightweight Asymmetric Large

Kernel Distillation Network (ALKDNet). Comprehensive experiments conducted

on five widely recognized benchmark datasets-Set5, Set14, BSD100, Urban100,

and Manga109-indicate that ALKDNet not only preserves e�ciency but also

demonstrates performance enhancements relative to existing super-resolution

methods. The average PSNR and SSIM values show improvements of 0.10 dB and

0.0013, respectively, thereby achieving state-of-the art performance.

KEYWORDS

single image super-resolution, e�cient method, asymmetric large kernel convolution,

information distillation, convolutional neural network

1 Introduction

Single image super-resolution (SISR) is a fundamental task in low-level computer

vision, aimed at recovering fine details lost during image degradation and reconstructing

a high-resolution (HR) image from a given low-resolution (LR) input. In recent years,

the advancement of deep learning has led to numerous methods leveraging deep neural

networks to address the challenges of image SR.

Dong et al. (2014) were the first to apply convolutional neural networks to image SR.

Their method involved upsampling the low-resolution image to match the high-resolution

size using bicubic interpolation, followed by the use of a Super-Resolution Convolutional

Neural Network (SRCNN) to learn the mapping from the upsampled image to the high-

resolution counterpart. Although SRCNN consisted of only three convolutional layers,

it achieved remarkable performance. Kim et al. (2016a) introduced residual connections

in their Very Deep Super-Resolution (VDSR) network, which enabled deeper networks

(up to 20 layers) and significantly improved reconstruction performance. In response to
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the limitations of residual networks for low-level vision tasks,

Lim et al. (2017) proposed the Enhanced Deep Super-Resolution

(EDSR) network, which utilized simplified residual blocks by

removing redundant batch normalization layers. Their findings

demonstrated that batch normalization was unnecessary for SR

tasks, leading to fewer reconstruction artifacts and reducing

the computational complexity of the model. Nevertheless, the

reliance of these super-resolution methods on intricate deep

convolutional neural networks poses significant challenges

for practical deployment, particularly in resource-constrained

settings such as real-time processing, mobile platforms, or

embedded devices.

Various methods have been introduced to address lightweight

SR task, including recurrent learning (Kim et al., 2016b), neural

network pruning (Zhang et al., 2021a,b; Wang et al., 2023),

knowledge distillation (Gao et al., 2018; He et al., 2020), neural

architecture search (Chu et al., 2021), etc. Recently, information

distillation (Hui et al., 2018) has emerged as a preferred strategy

for designing lightweight networks for super-resolution. This

technique involves stacking distillation blocks, which incorporate

feature enhancement and compression units, to extract features

at different depths for image reconstruction. IMDN (Hui et al.,

2019) expands on the concept of information distillation by

employing a distillation module and a fusion module within

each Information Multi-Distillation Block (IMDB) to extract

and integrate hierarchical features. Building on this foundation,

RFDN (Liu et al., 2020) introduces a shallow residual block

that enhances performance without increasing the number of

parameters. BSRN (Li et al., 2022) employs Blueprint Separable

Convolutions (BSConv) (Haase and Amthor, 2020) to optimize

the Super Resolution Block (SRB) and integrates enhanced

spatial attention for feature refinement, achieving state-of-the-

art results. BSConv operates on the premise that a blueprint

serves as a template for the convolutional weights, allowing

all convolution kernels within a model to be derived through

linear transformations of this blueprint. Specifically, BSConv first

performs a weighted combination of depth features, followed

by channel-wise convolutions to regulate the interdependencies

within the learned convolution kernels. However, this regulation

inadvertently limits the potential for further enhancement in

feature extraction capacity.

To address this issue, we present an Asymmetric Large

Kernel Distillation Network (ALKDNet), designed to enhance

the quality of reconstructed images while maintaining efficient

super-resolution performance. The proposed method incorporates

large kernel convolutions to better extract and refine features.

Increasing the kernel size effectively expands the receptive field,

allowing the model to leverage more contextual information for

improved task completion. However, directly enlarging the kernel

size leads to a dramatic increase in parameters and computational

cost. To mitigate this, we propose an asymmetric large kernel

convolution, which replicates the effects of a large kernel by

utilizing two asymmetric rectangular convolutions and a smaller

square convolution. Additionally, we introduced an Anchor-Based

Residual Learning (ABRL) (Du et al., 2021) method, built upon the

conventional feature space residual learning, to further enhance the

visual quality of the reconstructed images. This method establishes

anchor points for each pixel in the high-resolution image using

the corresponding low-resolution pixels, providing richer detail for

image reconstruction.

Our contributions in this paper can be summarized as

follows:

• We propose a novel Asymmetric Large Kernel Distillation

Network (ALKDNet) aimed at addressing the challenge

of lightweight super-resolution. Experiments on benchmark

datasets demonstrate that the proposed ALKDNet achieves

state-of-the-art performance.

• We design a novel Asymmetric Large Kernel Convolution

(ALKConv), which enhances model performance while

preserving computational efficiency and manageable

complexity.

• We incorporate an anchor-based residual learning method

into our ALKDNet alongside the conventional feature space

residual learning, which results in improved performance

compared to using either residual learning method in

isolation.

The remainder of the paper is organized as follows: Section 2

shows an overview of the related work, Section 3 details the

proposed model, Section 4 presents the empirical research results,

and Section 5 shows the conclusion.

2 Related work

2.1 E�cient SR methods

As previously mentioned, Dong et al. (2014) were the first

to apply CNNs to the SR problem, though their initial method

was highly inefficient. In response, they introduced FSRCNN

(Dong et al., 2016), which utilized a deconvolution layer as

the upsampling module placed at the end of the network. This

significantly accelerated the model and established a new paradigm

for network design in SR tasks. Subsequently, ESPCN (Shi et al.,

2016) proposed a sub-pixel convolutional upsampling method that

delivered superior performance, making it the go-to upsampling

strategy for SR tasks. Kim et al. (2016b) introduced recursive

learning in DRCN, reducing the model size without sacrificing

effectiveness. Subsequently, Tai et al. (2017) enhanced DRCN

by proposing the Deep Recurrent Residual Network (DRRN),

which achieved superior performance with fewer parameters while

maintaining the same network depth. Building upon the Laplacian

pyramid framework, Lai et al. (2017) developed a deep laplacian

pyramid network (LapSRN), which leverages low-resolution

feature maps at each pyramid layer to predict high-frequency

details, achieving notable performance improvements. Ahn et al.

(2018) advanced this by proposing CARN, which incorporated a

cascading mechanism into the residual network. Hui et al. (2018)

were the first to apply the information distillation mechanism for

efficient SR in their IDN. Later, Hui et al. (2019) extended this

concept with IMDN, introducing information multi–distillation,

which considerably boosted model performance. RFDN (Liu et al.,

2020) further lightened the model while improving its performance

by designing shallow residual blocks and incorporating extensive

feature distillation connections. Finally, BSRN (Li et al., 2022)
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FIGURE 1

The architecture of ALKDNet. The ALKDNet replicates the LR image m times as the input, maps it to the feature space via BSConv, and progressively

refines the features through a series of ALKDB blocks. After feature fusion stage, the fused features are sent to the image reconstruction module to

obtain the reconstructed image.

FIGURE 2

The architecture of BSConv. BSConv initially applies a 1× 1

pointwise convolution, which is subsequently followed by

independent depthwise convolutions executed for each individual

channel.

achieved state-of-the-art results by replacing standard convolutions

with blueprint separable convolutions and enhancing feature

extraction through enhanced spatial attention, further reducing

model complexity. Furthermore, Hui et al. (2020) integrated non-

local operations into the residual block architecture, introducing a

lightweight Feature Enhancement Residual Network (FERN). This

design significantly strengthened the model’s capacity to capture

long-range dependencies. Moreover, Wang et al. (2021) developed

a Sparse Masked Super-Resolution (SMSR) model that utilizes

sparse masks. This method employs spatial masks to identify salient

regions and channel masks to filter out unnecessary channels,

thereby reducing redundant computations and enhancing super-

resolution performance. Kong et al. (2022) streamlined the feature

aggregation process by employing three convolutional layers for

local feature learning, and introduced a Residual Local Feature

Network (RLFN), achieving a balance between model performance

and inference time. Additionally, Gendy et al. (2023) further

advanced the SISR task by proposing a Mixer-based Local

Residual Network (MLRN), which utilizes convolutional mixer

blocks to blend channel and spatial features, achieving favorable

performance.

2.2 Large kernel convolution

Since VGG (Simonyan and Zisserman, 2014) popularized the

method of replacing large convolution kernels with stacked smaller

convolutions, it has been widely adopted for its lightweight and

efficient characteristics. With the advent of Transformer (Vaswani,

2017), many researchers sought to understand the source of

their superior performance. Some attributed this to the extensive

receptive field provided by the attention mechanism and aimed

to enhance CNNs by expanding their receptive fields. According

to the theory of effective receptive fields (ERF) (Luo et al., 2016),

the ERF is proportional to O(K
√
L), where K represents the

kernel size and L the network depth. This shows that increasing

the kernel size is a more effective way to expand the ERF

than merely stacking smaller convolutions. ConvNeXt (Liu Z.

et al., 2022) expands the convolution kernel size to enhance the

receptive field, ultimately achieving performance comparable to

that of the Swin Transformer (Liu et al., 2021). RepLKNet (Ding

et al., 2022) leveraged reparameterization technique and depth-

wise convolution to scale the kernel size up to 31 × 31, achieving

results that are comparable to, and in some cases surpass, those

of the Swin Transformer across various tasks. Guo et al. (2023)

integrated large kernel convolution with an attention mechanism,

introducing a novel Large Kernel Attention (LKA) module in their

VAN architecture, which demonstrated significant effectiveness

across various tasks. LargeKernel3D (Chen et al., 2023) applied

the concept of large kernel design to 3D networks, expanding the

kernel size to 17 × 17 × 17. SLaK (Liu S. et al., 2022) simulated

large kernel convolutions with two rectangular convolutions and

integrated dynamic sparsity, pushing the kernel size to 51 × 51.

Meanwhile, PeLK (Chen et al., 2024) further extended the kernel to

101× 101 using a parameter-sharing mechanism and kernel-based

position embedding, achieving impressive results across various

computer vision tasks.

2.3 Asymmetric convolution

Szegedy et al. (2016) first introduced the concept of asymmetric

convolution decomposition in Inception-v3, wherein the 7 × 7

convolution kernel is split into two smaller kernels of 7 × 1

and 1 × 7 to reduce the parameters for image recognition. This
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FIGURE 3

The architecture of ALKDB. ALKDB extracts and refines features using a sequence of ALKConvs, while simultaneously employing 1× 1 convolutions

for feature compression. Following the concatenation and fusion of the features, the ESA and CCA modules are utilized for further feature

enhancement.

FIGURE 4

The architecture of ALKConv. We decompose a 9× 9 convolution

into 9× 1 and 1× 9 convolutions. In line with prior research, we also

introduce a 3× 3 convolution to operate in parallel with the large

kernel convolution, subsequently summing their outputs.

technique was adopted in Global Convolutional Network (GCN)

(Peng et al., 2017) to increase the kernel size to 15× 15, enhancing

performance in semantic segmentation tasks. However, it has been

reported that this methodmay lead to a decrease in performance on

ImageNet. EDANet (Lo et al., 2019) also employed this strategy by

substituting 3× 3 convolutions with 3× 1 and 1× 3 convolutions

to reduce computational cost, albeit at the expense of performance.

Nevertheless, it experienced a decline in performance when applied

to semantic segmentation tasks. In contrast, Ding et al. (2019)

utilized asymmetric convolution for structural reparameterization

in ACNet, where asymmetric convolutions were employed to

strengthen horizontal and vertical information, which was then

aggregated on a square convolution kernel, leading to significant

performance improvements. Furthermore, Tian et al. (2021)

were the first to apply asymmetric convolution in the realm of

image super-resolution, achieving notable results. Building on

this foundation, SLaK (Liu S. et al., 2022) integrates convolution

decomposition with dynamic sparsity, expanding the kernel size to

51× 51 and thereby significantly improving model performance.

3 Proposed method

In this section, we firstly introduce the overall network

architecture of ALKDNet and the loss function, then we give

a detailed introduction to the designed asymmetric large kernel

distillation block. Next, we introduce the proposed asymmetric

large kernel convolution in detail.

3.1 Network architecture

The proposed method adopts the structural design of BSRN (Li

et al., 2022), as illustrated in Figure 1. The complete model consists

of four main components: a shallow feature extraction module, a

deep feature extraction module, a deep feature fusion module, and

a high-resolution image reconstruction module.

Initially, the input image ILR is duplicated m times and

concatenated along the channel dimension to form ImLR. This

process is described as follows:

ImLR = Concatm(ILR), (1)

where Concat(·) represents the concatenation operation along the

channel dimension, where m indicates the number of times the

input image ILR is replicated and concatenated. Subsequently,

higher-dimensional shallow features are extracted through the

shallow feature extraction module:

F0 = HSFE(I
m
LR), (2)

where HSFE(·) represents the shallow feature extraction module,

implemented as a 3 × 3 BSConv, with F0 denoting the

extracted shallow features. The structure of BSConv, illustrated in

Figure 2, consists of both a channel convolution and a depthwise

convolution. Following this, a series of asymmetric large kernel

distillation blocks (ALKDB) are employed to progressively extract

and refine deep features. This process can be expressed as follows:

Fk = Hk(Fk−1), k = 1, 2, ..., n, (3)

whereHk represents the i-th ALKDB, while Fk and Fk−1 refer to the

output and input of the i-th ALKDB, respectively.

After the progressive extraction and refinement of ALKDBs, all

intermediate features are concatenated via a 1 × 1 convolution,
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TABLE 1 Ablation study on large kernel convolution.

Method Params Multi-adds Set5 Set14 BSD100 Urban100 Manga109

(K) (G) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSRN 332 73.0 38.09 0.9609 33.74 0.9193 32.24 0.9007 32.36 0.9301 39.11 0.9780

ALKConv5× 5 354 78.3 38.09 0.9607 33.81 0.9197 32.24 0.9005 32.44 0.9312 39.15 0.9781

ALKConv7× 7 361 79.9 38.11 0.9608 33.77 0.9191 32.25 0.9008 32.41 0.9307 39.20 0.9782

ALKConv9× 9 368 81.6 38.13 0.9610 33.78 0.9191 32.27 0.9009 32.51 0.9318 39.21 0.9782

ALKConv11×11 375 83.2 38.08 0.9609 33.80 0.9198 32.27 0.9010 32.50 0.9316 39.20 0.9781

The best and second-best results are highlighted and underlined, respectively.

TABLE 2 Ablation study on residual learning.

Method Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FSRL 38.09 0.9609 33.74 0.9193 32.24 0.9007 32.36 0.9301 39.11 0.9780

ABRL 38.12 0.9609 33.76 0.9194 32.24 0.9006 32.45 0.9310 39.19 0.9782

FSRL+ABRL 38.09 0.9608 33.68 0.9190 32.24 0.9006 32.40 0.9308 39.14 0.9780

ALKConv+FSRL 38.13 0.9610 33.78 0.9191 32.27 0.9009 32.51 0.9318 39.21 0.9782

ALKConv+ABRL 38.14 0.9609 33.81 0.9197 32.28 0.9010 32.49 0.9316 39.17 0.9782

ALKConv+FSRL+ABRL 38.13 0.9609 33.76 0.9192 32.28 0.9010 32.61 0.9327 39.26 0.9783

The best and second-best results are highlighted and underlined, respectively.

followed by GELU activation for feature fusion and activation.

Finally, asymmetric Large Kernel Convolution (ALKConv) is

applied to smooth the features. This deep feature fusion process can

be described as follows:

Ffused = Hfusion(Concat(F1, ..., Fk)), (4)

where Ffused represents the aggregated deep features, while Hfusion

refers to the feature fusion module as described above.

In the final stage, the image reconstruction module of BSRN

employs a long-range skip connection for residual learning. While

maintaining this residual learning in the feature space, we introduce

an anchor-based residual learningmethod. This method repeats the

squared upscaling factor for each pixel in the LR space, using it

as an anchor point for the corresponding pixel in the HR space.

Subsequently, the pixel shuffle operation is applied to generate the

reconstructed image. This process can be formulated as follows:

ISR = HPS(Convup(Ffused + f0)+Hrepeat(ILR)), (5)

where HPS(·) denotes the pixel shuffle operation, while Hrepeat(·)
refers to repeating the squared upscaling factor of the LR images,

organizing them by color channels, and concatenating them along

the channel dimension. The Convup(·) operation is a 3 × 3

convolution, used to expand the fused features learned through

residual learning in the feature space, ensuring that their channels

are aligned with the output of Hrepeat(·).
Our model is optimized using the L1 loss function, which is

formulated as:

L1 = ‖ISR − IHR‖1. (6)

3.2 Asymmetric large kernel distillation
block

Drawing inspiration from the ESDB structure in BSRN (Li et al.,

2022), we designed a asymmetric large kernel distillation block

(ALKDB) with a similar architecture. The ALKDB is composed of

three key components: feature distillation, feature condensation,

and feature enhancement. The overall structure of ALKDB is

illustrated in Figure 3. Given an input feature Fin, the feature

distillation process in the initial stage can be formulated as follows:

Fd1, Fr1 = D1(Fin),R1(Fin),

Fd2, Fr2 = D2(Fr1),R2(Fr1),

Fd3, Fr3 = D3(Fr2),R3(Fr2),

Fd4 = D4(Fr3),

(7)

where Di represents the i-th distillation layer, responsible for

extracting the distilled feature Fdi, while Ri denotes the i-

th refinement layer, used to iteratively refine the feature Fri.

Specifically, the distillation layer is composed of a 1×1 convolution

followed by GELU activation, while the refinement layer consists

of a asymmetric large kernel convolution with skip connections,

also followed by GELU activation. In the feature condensation

stage, the four distilled features are concatenated along the channel

dimension, followed by a 1× 1 convolution for feature fusion. This

process can be described as follows:

Fcondensed = Conv_1(Concat(Fd1, ..., Fd4)), (8)

where Fcondensed represents the condensed feature obtained from

the fusion process. In the subsequent feature enhancement stage,
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FIGURE 5

To further explore the impact of the two residual learning methods, we visualize the average feature maps obtained before and after applying FSRL

and ABRL. The feature map following FSRL exhibits enhanced activation of high-frequency textures, while the feature map after ABRL contains richer

detailed information.

we employ both a Enhanced Spatial Attention (ESA) block and a

Contrast-aware Channel Attention (CCA) block to further enhance

the features. Simultaneously, the pixel normalization module is

applied to ensure stability during the model’s training process:

Fenhanced = Normpixel(HCCA(HESA(Fcondensed))), (9)

where HCCA(·) and HESA(·) represent the CCA and ESA

modules, respectively, while Normpixel(·) denotes the pixel-level

normalization module. The output, Fenhanced, is the enhanced

feature. Ultimately, the input features Fin are employed for long-

range residual learning to derive the final output features Fout :

Fout = Fenhanced + Fin. (10)

3.3 Asymmetric large kernel convolution

Liu S. et al. (2022) proposed the decomposition of a large

51 × 51 convolutional kernel into three smaller kernels of size

51 × 5, 5 × 51, and 5 × 5 in their SLaK model, enhancing

performance while keeping computational complexity manageable.

Drawing inspiration from this method, we adopt a similar strategy

to construct a 9 × 9 large kernel convolution, as illustrated in

Figure 4.

Specifically, for the input feature Fin, we apply three

convolution operations with kernel sizes of 9 × 1, 1 × 9, and

3 × 3, respectively. Feature activation is performed using the

GELU function. The resulting three feature maps are then summed

together, followed by a pixel normalization operation to enhance

the stability of the training process. This procedure can be

formulated as follows:

Fout = Normpixel(Hact(Conv_9×1(Fin))+Hact(Conv_1×9(Fin))

+Hact(Conv_3(Fin))), (11)

where Fout represents the output feature after processing with the

large kernel convolution, and Hact denotes the GELU activation

function.
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TABLE 3 Ablation study on pixel normalization.

Method Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSRN 38.09 0.9609 33.74 0.9193 32.24 0.9007 32.36 0.9301 39.11 0.9780

BSRN+norm 38.09 0.9608 33.69 0.9189 32.25 0.9006 32.42 0.9308 39.15 0.9780

BSRN+ABRL 38.09 0.9608 33.68 0.9190 32.24 0.9006 32.40 0.9308 39.14 0.9780

BSRN+ABRL+norm 38.06 0.9607 33.72 0.9190 32.25 0.9006 32.50 0.9316 39.16 0.9781

BSRN+ALKConv 38.13 0.9610 33.78 0.9191 32.27 0.9009 32.51 0.9318 39.21 0.9782

BSRN+ALKConv+norm 38.13 0.9609 33.89 0.9198 32.27 0.9010 32.45 0.9313 39.21 0.9782

BSRN+ALKConv+ABRL 38.13 0.9609 33.76 0.9192 32.28 0.9010 32.61 0.9327 39.26 0.9783

BSRN+ALKConv+ABRL+

norm

38.14 0.9609 33.81 0.9193 32.29 0.9011 32.71 0.9332 39.28 0.9783

The best and second-best results are highlighted and underlined, respectively.

FIGURE 6

The PSNR test results on ×2 scale benchmark dataset Set5 during training. The proposed final model, as indicated by the red line, demonstrated

superior performance and convergence speed, while also exhibiting the highest stability throughout the training process.

4 Experiments

In this section, the datasets, evaluation metrics and

implementation details are firstly introduced in detail, and

then a series of ablation experiments on ALKDNet are conducted

to verify the efficiency. Next, we compare our ALKDNet with many

other state-of-the art lightweight SR methods quantitatively and

visually.

4.1 Datasets and evaluation metrics

We follow the method in previous work (Li et al., 2022) for

model training and testing. DIV2K (Timofte et al., 2017) and

Flickr2K (Lim et al., 2017) datasets were used for model training,

and five benchmark datasets Set5 (Bevilacqua et al., 2012), Set14

(Zeyde et al., 2012), BSD100 (Arbelaez et al., 2010), Urban100

(Huang et al., 2015) and Manga109 (Matsui et al., 2017) were

used for testing. LR images were generated from HR images

through bicubic degradation. The evaluation of super-resolution

reconstruction results is to convert the image to YCbCr format,

and only calculate the PSNR and SSIM (Wang et al., 2004) of the

Y component. The Multi-Adds of the evaluation method is based

on the acquisition of output image with a spatial resolution of 1280

× 720 pixels.

4.2 Implementation details

The proposed method consists of 8 blocks and the number of

channels is set to 64. The size of all convolution kernels is set to

3 unless otherwise noted. Data augmentation was performed by

random rotations of 90◦, 180◦, 270◦ and horizontal flipping. The

minibatch size is set to 64 and the patch size of each LR input is
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TABLE 4 Quantitative results of state-of-the-art lightweight SR methods on benchmark datasets.

Method Scale Params Multi-adds Set5 Set14 BSD100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN ×2 8 52.7 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN ×2 13 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR ×2 666 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750

DRRN ×2 298 6796.9 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749

IDN ×2 553 124.6 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749

IMDN ×2 694 158.8 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

RFDN ×2 534 95.0 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773

FMEN ×2 748 172.0 38.10/0.9609 33.75/0.9192 32.26/0.9007 32.41/0.9311 38.95/0.9778

BSRN ×2 332 73.0 38.10/0.9610 33.74/0.9193 32.24/0.9006 32.34/0.9303 39.14/0.9782

SAFMN ×2 228 52.0 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771

MLRN ×2 488 90.4 38.07/0.9607 33.59/0.9180 32.21/0.9000 32.28/0.9297 38.76/0.9773

HSNet ×2 302 81 38.07/0.9607 33.65/0.9185 33.22/0.9002 32.27/0.9295 39.00/0.9778

CFSR ×2 291 62.6 38.07/0.9607 33.74/0.9192 32.24/0.9005 32.28/0.9300 39.00/0.9778

ALKDNet(Ours) ×2 373 83.7 38.14/0.9609 33.81/0.9193 32.29/0.9011 32.71/0.9332 39.28/0.9783

Bicubic ×3 - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN ×3 8 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN ×3 13 5.0 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR ×3 666 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340

DRRN ×3 298 6796.9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379

IDN ×3 553 56.3 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

IMDN ×3 703 71.5 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

RFDN ×3 541 42.2 34.41/0.9273 30.34/0.8420 29.09/0.8042 28.21/0.8525 33.67/0.9449

FMEN ×3 757 77.2 34.45/0.9275 30.40/0.8435 29.17 0.8063 28.33/0.8562 33.86/0.9462

BSRN ×3 340 33.3 34.46/0.9277 30.47/0.8449 29.18/0.8068 28.39/0.8567 34.05/0.9471

SAFMN ×3 233 23.0 34.34/0.9267 30.33/0.8418 29.08/0.8048 27.95/0.8474 33.52/0.9437

MLRN ×3 496 40.9 34.46/0.9267 30.35/0.8426 29.10/0.8054 28.20/0.8533 33.66/0.9450

HSNet ×3 302 36 34.49/0.9278 30.44/0.8434 29.15/0.8063 28.36/0.8555 33.95/0.9466

CFSR ×3 298 28.5 34.50/0.9279 30.44/0.8437 29.16/0.8066 28.29/0.8553 33.85/0.9462

ALKDNet(Ours) ×3 381 37.3 34.56/0.9284 30.50/0.8457 29.22/0.8079 28.58/0.8608 34.18/0.9478

Bicubic ×4 - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN ×4 8 52.7 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN ×4 13 4.6 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR ×4 666 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

DRRN ×4 298 6796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946

IDN ×4 553 32.3 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

IMDN ×4 715 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

RFDN ×4 550 23.9 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

FMEN ×4 769 44.2 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107

BSRN ×4 352 19.4 32.35/0.8966 28.73/0.7847 27.65/0.7387 26.27/0.7908 30.84/0.9123

(Continued)
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TABLE 4 (Continued)

Method Scale Params Multi-adds Set5 Set14 BSD100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SAFMN ×4 240 14.0 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063

MLRN ×4 507 23.5 32.30/0.8956 28.62/0.7824 27.57/0.7365 26.10/0.7867 30.56/0.9092

HSNet ×4 313 30 32.32/0.8970 28.65/0.7838 27.63/0.7393 26.29/0.7918 30.72/0.9124

CFSR ×4 307 17.5 32.33/0.8964 28.73/0.7842 27.63/0.7381 26.21/0.7897 30.72/0.9111

ALKDNet(Ours) ×4 393 21.6 32.37/0.8976 28.80/0.7860 27.69/0.7399 26.46/0.7970 30.97/0.9137

The best and second-best results are highlighted and underlined, respectively.

FIGURE 7

Qualitative comparison of ours model with the state-of-the-art methods for ×2 SR. We selected three images from the Urban100 dataset to evaluate

and compare the visual e�ects of the reconstructed images. The images, presented in order from top to bottom, are img024, img047 and img071.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1502499
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Qu and Ke 10.3389/fnins.2024.1502499

FIGURE 8

Qualitative comparison of ours model with the state-of-the-art methods for ×4 SR. We selected three images from the Set5 dataset, Set14 dataset

and Manga109 dataset to evaluate and compare the visual e�ects of the reconstructed images. The images, presented in order from top to bottom,

are butterfly in Set5, zebra in Set14 and EienNoWith in Manga109.

set to 48 × 48. We trained our model using the Adam optimizer

(Kingma, 2014) with the initial learning rate set to 1 × 10−3, β1 =
0.9, β2 = 0.999, and adjusted the learning rate using cosine learning

rate decay.L1 loss is used to optimize the model for total 1 × 106

iterations.We use Pytorch 2.2.0 to implement ourmodel on a single

GeForce RTX 3090 GPU.
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4.3 Ablation study

In this section, we demonstrate the effectiveness of the

proposed method. All experiments presented here are conducted

at the×2 scaling factor.

4.3.1 Impact of asymmetric large kernel
convolution

We conduct ablation experiments to verify the effectiveness

of the proposed large kernel convolution. We simply replaced the

BSConvs used in ESDB of BSRN with the ALKConvs we designed,

and explored the impact of the size of the convolution kernel

on the performance. The results are shown in the Table 1. It can

be found that the performance of the model has been improved

when the convolution kernel size is only 5, and the comprehensive

performance on each benchmark dataset has reached the best

when the convolution kernel size is 9. Specifically, when the

convolution kernel size is expanded to 5, the model demonstrates

improved performance on all benchmark datasets except Set5

and BSD100, with an average PSNR increase of 0.04 dB and an

average SSIM increase of 0.0002. Expanding the kernel size further

to 9 results in an average PSNR improvement of 0.07 dB and

an SSIM increase of 0.0004. We speculated that continuing to

expand the convolution kernel would help further improve the

performance of the model, but we decided to set the size of the

convolution kernel to 9 as a trade-off between model performance

and efficiency.

4.3.2 Impact of residual learning method
In this section, we explored the impact of two residual learning

methods on model performance, and the results are presented in

the Table 2. Among them, FSRL is the original BSRN, ABRL is

to replace the FSRL method in BSRN with ABRL, FSRL+ABRL is

to add the ABRL method on the basis of the original BSRN, and

with lkconv means that we replace the BSConvs in the ESDB of

BSRN with our ALKConvs. It can be seen from the data in the

table that themodel performance has been improved after replacing

the FSRL method with ABRL, but the performance decreases after

applying the two residual learning methods on BSRN at the same

time. However, it is interesting to see that the performance of the

model is significantly improved after using large kernel convolution

and two kinds of residual learning at the same time. Except for the

slightly worse performance on Set5 and Set14, the best results are

obtained on the other Benchmark datasets. Specifically, replacing

the FSRL method with ABRL leads to an average improvement of

0.04 dB in PSNR and 0.0002 in SSIM. The highest performance is

obtained when ALKConv is combined with both residual learning

methods, resulting in an average gain of 0.10 dB in PSNR and

0.0006 in SSIM. On the Urban100 dataset, this method achieves a

significant increase of 0.25 dB in PSNR and 0.0026 in SSIM.

We visualized the average feature maps before and after

residual learning in Figure 5 to demonstrate the impact of residual

learning. As observed, the high-frequency texture details in the

feature map are effectively activated after applying FSRL. This can

be attributed to FSRL’s utilization of shallow features extracted

by the convolutional layer for feature fusion. The convolutional

layer possesses a strong capability to capture local high-frequency

features, which contributes to this activation. Furthermore, after

applying ABRL, the feature map exhibits a significant enhancement

in image detail richness. This is primarily due to ABRL’s direct

utilization of information from the low-resolution image, allowing

it to effectively enrich the detail representation.

4.3.3 Impact of pixel normalization
In this section, we evaluate the effect of pixel normalization

on model performance, as shown in Table 3. The term +norm

indicates the application of pixel normalization at the end of

the original ESDB. The addition of pixel normalization results

in minimal impact on overall model performance, with only

slight improvements observed on certain benchmarks. Specifically,

incorporating the pixel normalization layer yields the greatest

performance improvement on the Urban100 dataset, with an

average increase of 0.05 dB in PSNR and 0.0004 in SSIM.

Figure 6 presents the PSNR test results during training after

integrating our proposed method. The inclusion of ALKConv

leads to a notable improvement in model performance, though

the PSNR exhibits significant fluctuations in the early stages,

suggesting instability in the training process. When ABRL is

further incorporated, while the performance gain is modest,

the convergence speed is notably accelerated in the initial

training phase, and the overall training process becomes more

stable. Finally, with the addition of pixel normalization, model

performance continues to improve, and PSNR fluctuations are

further reduced, indicating enhanced training stability.

4.4 Comparison with the state-of-the-art
methods

In this section, we contrast our model with 13 other state of

the art methods in lightweight SR, including SRCNN (Dong et al.,

2014), FSRCNN (Dong et al., 2016), VDSR (Kim et al., 2016a),

DRRN (Kim et al., 2016b), IDN (Hui et al., 2018), IMDN (Hui et al.,

2019), RFDN (Liu et al., 2020), FMEN (Du et al., 2022), BSRN (Li

et al., 2022), SAFMN (Sun et al., 2023), MLRN (Gendy et al., 2023),

HSNet (Cui et al., 2024), and CFSR (Wu et al., 2024). Table 4 shows

quantitative comparisons for ×2, ×3, and ×4 SR. It is easy to find

that our model performs slightly worse on set5 of×2 and the SSIM

result is 0.0001 lower than that of BSRN, and the other test results

are better than the compared advanced methods.

Specifically, the performance of our model is improved

compared with the suboptimal method at all three scales, for the

×2 scale, our model achieves an average improvement of 0.11 dB

in PSNR and 0.0005 in SSIM. At the ×3 scale, the PSNR shows an

average increase of 0.09 dB, while the SSIM improves by 0.0014.

For the ×4 scale, the model delivers an average gain of 0.09 dB in

PSNR and 0.0019 in SSIM. Among them, the gain of our model

is the most obvious on Urban100, and the performance increases

at ×2, ×3, and ×4 scales are 0.30dB/0.0021, 0.19dB/0.0041, and

0.17dB/0.0052, respectively.

To demonstrate the visual effects of our model’s reconstructed

images, we use six images from the benchmark dataset to conduct
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a qualitative evaluation of the model. Figures 7, 8 displays the

reconstruction results of our model compared to other state-of-

the-art methods. It can be seen that our reconstruction results are

still better even in the state-of-the-art methods. For example, in

the image captured from img024, the images obtained by other

methods have obvious artifacts at the top left continuous curved

to the left texture, and the images obtained by other methods are

very blurred at the bottom middle continuous vertical texture.

In contrast, the image reconstructed by the proposed method is

free from prominent artifacts and demonstrates the highest clarity,

closely resembling the HR reference in terms of visual quality.

Furthermore, within the zebra from the Set14 dataset, our method

was the only one to reconstruct the high-resolution image without

introducing any erroneous textures.

5 Conclusion

In this paper, we introduced the Asymmetric Large Kernel

Distillation Network (ALKDNet), designed for lightweight super-

resolution based on the BSRN architecture. The proposed method

combines Asymmetric Large Kernel Convolution (ALKConv)

in the distillation block, effectively balancing efficiency and

performance to enhance model capability while maintaining

acceptable complexity. Additionally, we introduced an anchor-

point-based residual learning method in the image reconstruction

module, which establishes anchor points for each corresponding

pixel in the HR image using pixels from the LR image, thereby

improving the quality of the reconstruction output. Results from

five widely used benchmark datasets demonstrate that the proposed

method achieves state-of-the-art performance.

Despite the contributions of our research, certain limitations

remain. The low-resolution images used in the paper’s experiments

were generated through bicubic downsampling. However, in real-

world scenarios, low-resolution images may be affected by various

complex factors, such as limitations of acquisition devices, noise

interference, and data compression. Therefore, further research

is needed to effectively apply the proposed method in practical

environments.
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