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Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer’s 
disease (AD) correlates to olfactory performance. Aging and disease progression both 
show marked olfactory deficits in humans and rodents. As a clear understanding of 
what causes olfactory deficits is still missing, research on this topic is paramount to 
diagnostics and early intervention therapy. A recent development of this research 
is focusing on GABAergic interneurons. Both aging and AD show a change in 
excitation/inhibition balance, indicating reduced inhibitory network functions. 
In the olfactory system, inhibition has an especially prominent role in processing 
information, as the olfactory bulb (OB), the first relay station of olfactory information 
in the brain, contains an unusually high number of inhibitory interneurons. This 
review summarizes the current knowledge on inhibitory interneurons at the level 
of the OB and the primary olfactory cortices to gain an overview of how these 
neurons might influence olfactory behavior. We also compare changes in interneuron 
composition in different olfactory brain areas between healthy aging and AD as 
the most common neurodegenerative disease. We find that pathophysiological 
changes in olfactory areas mirror findings from hippocampal and cortical regions 
that describe a marked cell loss for GABAergic interneurons in AD but not aging. 
Rather than differences in brain areas, differences in vulnerability were shown for 
different interneuron populations through all olfactory regions, with somatostatin-
positive cells most strongly affected.
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Introduction

Maintaining cognitive function is a central point in preserving the quality of life in aging 
individuals (Majmundar and Hayward, 2018). Both healthy aging as well as dementia-inducing 
“pathological” aging show, to differing degrees, signs of cognitive decline in the form of 
memory loss, as well as a decrease in attention and executive function (Harada et al., 2013). 
Alzheimer’s disease (AD) is a critical public health issue and the leading cause of dementia, 
with an estimated 32 million persons suffering from AD dementia globally (Gustavsson et al., 
2023), constituting between 10 and 30% of individuals above the age of 65 (Masters et al., 2015; 
Prince et al., 2015). AD is characterized by the buildup of two proteins: Amyloid beta (Aβ), 
which accumulates extracellularly as plaques, and hyperphosphorylated τ, which accumulates 
intracellularly as neurofibrillary tangles (Braak and Braak, 1991). These neuropathological 
changes are detectable in olfactory areas in the earliest stages of AD, even preceding damage 
to the entorhinal cortex (Kovács et al., 2001).

Besides a decrease in cognitive capabilities, olfactory perceptual performance decline is 
also a widespread occurrence (Kondo et al., 2020; Tzeng et al., 2021). This decline in olfactory 
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function is associated with various measures of cognition and 
memory performance decline (Wilson et al., 2007; Devanand, 2016; 
Olofsson et al., 2016; Papadatos and Phillips, 2023). The severity of 
olfactory dysfunction has been associated with the rate of cognitive 
decline in patients with dementia (Dintica et al., 2019) showed that 
odor identification impairment has an even higher predictive value 
for cognitive decline than deficits in verbal episodic memory. Most 
often, olfactory deficits are noticeable years before the first signs of 
cognitive decline are apparent (Swan and Carmelli, 2002; Wilson and 
Mainen, 2006). As this line of research is of high value for early 
diagnostics of AD, many publications have investigated the 
correlation of aging and disease severity with olfactory symptoms, 
and this topic has been the subject of many reviews (Attems et al., 
2014; Doty and Kamath, 2014; Mobley et al., 2014; Franks et al., 2015; 
Murphy, 2019; Kondo et al., 2020; Olofsson et al., 2021). Therefore, 
we would like to give a brief overview:

Olfactory perceptual decline is highly prevalent in aging 
individuals, with smell loss experienced by around half the population 
between 65 and 80 years of age and about three-quarters of the 
population by age 80 (Doty and Kamath, 2014). Consequences of this 
loss in olfactory abilities are dietary changes, i.e., anorexia due to 
reduced pleasantness of food or obesity, reduced threat detection for 
environmental hazards or spoiled food, and problems in personal 
hygiene (Olofsson et al., 2021). Additionally, it has been shown that 
olfactory assessment can identify individuals with a higher risk of 
developing dementia (Graves et  al., 1999; Devanand et  al., 2008; 
Conti et al., 2013; Tebrügge et al., 2018; Olofsson et al., 2020). Despite 
this high relevance of olfactory decline in aging individuals, the 
characterization of “normal” olfactory aging is far from complete. It 
is generally assumed that two major contributing factors to changes 
in olfactory perception are a reduction in the number of olfactory 
receptor neurons and a more than 50% reduction in the number of 
adult-born periglomerular cells within the olfactory bulb due to 
reduced stem cell proliferation in the subventricular zone (SVZ) 
(Mobley et al., 2013; Mobley et al., 2014). These changes in more 
peripheral olfactory areas, however, cannot fully account for the 
nature of modifications in olfactory perception, which are more 
associated with odor identification and odor memory than detection 
thresholds (Cerf-Ducastel and Murphy, 2009; Sela et al., 2009).

In AD, similar changes in odor identification as well as odorant 
detection and discrimination have been shown (Dan et al., 2021), 
which point to defects, especially in central regions, as being 
responsible for olfactory dysfunction (Rawson, 2006). Despite the 
apparent association between olfactory and cognitive performance, 
the underlying causes of olfactory deficits in aging and AD 
are unclear.

Compared to cognitive changes, systematic research on the 
cellular nature of olfactory dysfunctions is in its infancy. The 
hippocampus (HC) has been shown to undergo many structural 
changes in aging and AD, ranging from astrogliosis, microgliosis, 
changes in mitochondria morphology, and reduction in neurogenesis 
to cell morphology changes, synaptic and cellular decline, and 
decrease in volume (Hullinger and Puglielli, 2017). Besides these 
well-established changes, the hippocampus, as well as cortical 
structures, have been shown to exhibit hyperexcitability manifesting 
in increased network activity, epileptic activity, slowing of neural 
oscillations, and reductions in waveform complexity (Kazim et al., 
2021; Maestú et al., 2021; Tok et al., 2022).

Changes in the intrinsic properties of excitatory neurons or 
changes in inhibitory drive could cause these hyperexcitable states. 
As GABAergic interneurons were initially shown to be resistant to Aβ 
toxicity (Pike and Cotman, 1993) much research in AD has focused 
on excitatory neurons in different brain areas. Recent research, 
however, has strongly implicated a reduction of inhibitory input to 
local networks (Xu et al., 2020; Tok et al., 2022) that could either 
originate in a reduction of long-range inputs or a decrease in local 
inhibitory tone. Local inhibitory interneurons, here, are the most 
promising avenue of research as they account for 75% of the total 
inhibitory input hippocampal neurons receive (Mody and Pearce, 
2004). Detectable changes in GABAergic interneurons are a reduction 
of function (Verret et al., 2012) but predominantly a loss of neuronal 
numbers in hippocampal and cortical regions of both AD patients as 
well as mouse models (Xu et al., 2020).

Likewise, aberrant neuronal network activity has been identified 
as one of the hallmarks of the aging brain (Mattson and Arumugam, 
2018). This line of research presents the possibility of connecting 
cellular changes to behavioral dysfunctions (Maestú et al., 2021). 
Despite reports on interneuron loss (Cha et al., 1997; Potier et al., 
2006) the predominant cause for aberrant excitation seems to be a 
reduction of inhibitory synapses and GABAergic transmission 
(Rozycka and Liguz-Lecznar, 2017). GABAergic interneurons and 
their influence on local networks are, therefore, believed to play a 
large part in the occurrence of cognitive deficits and neuropathology 
in both AD (Xu et  al., 2020) and aging (Rozycka and Liguz-
Lecznar, 2017).

Olfactory sensory circuits, so far, have rarely been probed for 
changes in excitability, although hyperexcitability in the olfactory 
bulb was shown to lead to impaired olfactory behavior in a mouse 
model for Fragile X syndrome (Kuruppath et al., 2023). However, 
several reports exist of reduced numbers of inhibitory interneurons 
in several olfactory areas. As the underlying cause of olfactory 
decline in AD and aging is still undefined, we felt it was time to 
spotlight the interneuron populations of the OB and olfactory 
cortex regions. We  will give an overview of the interneuron 
populations described so far (Figure 1). This we take as a basis to 
outline changes to these interneuron populations in AD and aging 
(Figure 2).
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FIGURE 1

Distribution of interneuron markers in primary and secondary olfactory areas. (A) Example pictures from the Allen Mouse Brain Atlas showing coronal 
brain sections containing olfactory areas in reference to Nissl staining of these regions. Images were derived from Allen Mouse Brain Atlas and Allen 
Reference Atlas, Experiment 77869074 (https://mouse.brain-map.org/experiment/show/77869074) for cholecystokinin (cck), Experiment 1001 (https://
mouse.brain-map.org/experiment/show/1001) for somatostatin (sst), and Experiment 71717640 (https://mouse.brain-map.org/experiment/
show/71717640) for calbindin (calb1) (Allen Institute for Brain Science, 2004; Lein et al., 2007). (B) Overview on the distribution of the most common 
interneuron markers. Data points represent estimates from ISH experiments from the Allen Mouse Brain Atlas but have been matched to reports of 
protein expression as far as these data are available. pv, parvalbumin; sst, somatostatin; vip, vasoactive intestinal peptide; cr, calretinin; cb, calbindin; 
npy, neuropeptide y; cck, cholecystokinin.
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Interneuron composition of the 
primary olfactory cortex and changes 
in healthy and pathological aging

Common interneuron markers

Inhibitory interneurons of different brain areas can be incredibly 
diverse, with each brain area featuring different populations with 
unique properties. Inhibitory interneurons, in general, are defined by 
various morphological, molecular, and physiological features, 
including their location, morphology, spiking properties, 
connections, and expression profile (Kepecs and Fishell, 2014). The 
easiest way to broadly classify these neuronal subtypes is through 
their expression of several specific interneuron markers. The 
description of interneuron populations through these markers has 
become more popular as they provide a means to label particular 
populations with optogenetic tools. According to the Petilla 
terminology of molecular classification of cortical interneurons 
(Ascoli et al., 2008), these markers are the calcium-binding protein 
parvalbumin (PV) and the neuropeptides somatostatin (SST), 
vasoactive intestinal peptide (VIP), neuropeptide Y (NPY) and 
cholecystokinin (CCK) (DeFelipe et  al., 2013) with further 
subclassification with other calcium-binding proteins like calretinin 

(CR) and calbindin (CB) (DeFelipe et al., 2013). Of these, PV and SST 
neurons make up the majority of interneurons of the neocortex, but 
different areas have been shown to exhibit varying ratios of 
interneuron markers (Whissell et al., 2015).

We have gathered information on interneuron subtypes of 
different olfactory areas and listed them concerning location, 
morphology, and function, as far as this information is available. 
We have also gathered information on their changes in AD and aging 
to provide a starting point for discussing the possible involvement of 
interneurons in the etiology of olfactory dysfunction.

Olfactory bulb (OB)

The OB is the brain’s first relay station of olfactory information. 
Olfactory receptor neurons in the olfactory epithelium detect odor 
molecules and send unbranched axons to the OB (Klenoff and Greer, 
1998). There, they converge and form synaptic structures called 
glomeruli with output neurons, tufted and mitral cells, which are 
located in the external plexiform layer (EPL) and mitral cell layer 
(ML), respectively (Nagayama et al., 2004; Sarafoleanu et al., 2009).

The OB is unique as it contains a much higher proportion of 
interneurons in relation to excitatory neurons than other brain 

FIGURE 2

Alzheimer’s Disease (A) and aging (B) derived changes of interneuron numbers in different olfactory areas. AON, anterior olfactory nucleus; CoA, 
cortical amygdala; EPL, external plexiform layer; GL, glomerular layer; Grl, granule cell layer; iPL, internal plexiform layer; ML, mitral cell layer; OB, 
Olfactory bulb; OT, olfactory tubercle; PC, piriform cortex; LEC, lateral entorhinal cortex.
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areas [100:1 compared to 1:5 (Kim and Choe, 2020)] allowing for 
robust processing and modulation of olfactory information at this 
early processing stage (Wachowiak and Shipley, 2006; Brunert and 
Rothermel, 2021). Furthermore, it receives adult-born neuroblasts 
from the subventricular zone (SVZ) through the rostral migratory 
stream. These neuroblasts get integrated into the glomerular or 
granule cell layer and constitute a separate population of 
predominantly CR-positive interneurons (Kim and Choe, 2020). 
The OB exhibits a heterogeneous population of GABAergic 
interneurons that can be  differentiated by their morphology, 
electrophysiological properties, and connectivity patterns 
(Markram et  al., 2004) but are described mainly by their soma 
location (Nagayama et al., 2014) as periglomerular cells (PGCs) 
(also juxtaglomerular cells), granule cells, or interneurons of the 
mitral and internal plexiform layer. Though PGCs constitute only 
about 4% of OB interneurons, they have been well described, 
especially by their expression profile (Kosaka and Kosaka, 2005) 
and synaptic processing (Wachowiak and Shipley, 2006). They are 
characterized mainly by three different molecular markers: CB, CR, 
and tyrosine hydroxylase (TH). The latter constitutes a population 
of approximately 10% of PGCs, also called short axon cells, that are 
GABAergic and dopaminergic in nature and connect multiple 
glomeruli. Other PGCs are connected to a single glomerulus, 
express CB or CR, and about 30% of them receive monosynaptic 
input from olfactory receptor neurons (Kiyokage et  al., 2010). 
Functions of PGC have been shown in presynaptic inhibition of OB 
input (Pírez and Wachowiak, 2008) as well as top-down modulation 
of OB circuits (De Saint Jan, 2022). Neurons in the external 
plexiform layer, deeper in the OB, only constitute 2% of the neurons 
and are characterized by the expression of PV or corticotropin-
releasing hormone (CRH). PV-expressing interneurons are typically 
axonless and have electrophysiological properties similar to fast-
spiking PV cells found throughout the cortex (Kato et al., 2013). 
They furthermore are strongly connected to mitral cells via 
dendrodendritic synapses and have been reported to modulate the 
gain of olfactory bulb output (Kato et al., 2013). Another type of 
interneuron expressing trophoblast glycoprotein gene, 5T4, was 
found to be located primarily in the mitral cell layer but is low in 
number (Yoshihara et al., 2014) and has been shown to play a role 
in olfactory detection and discrimination.

Granule cells (GC) of the granule cell layer are the most abundant 
type of interneurons in the OB. These neurons are axonless, 
CR-expressing cells that can be divided into three subtypes based on 
morphology, connectivity, and expression (Lledo et al., 2008). They 
provide strong dendrodendritic inhibition to either tufted cells 
(superficial GCs) or mitral cells (deep GCs), thus providing the 
cellular basis for increasing sensory resolution and discrimination 
through lateral inhibition (Egger and Kuner, 2021).

Expression of other typical interneuron markers is distributed 
within these already described groups. Like the relatively sparse 
expression of PV, SST expression is also lower in the OB compared 
to neocortical areas. In the OB, SST is predominantly expressed in 
CR-positive neurons of the EPL as well as in a subtype of short 
axon cells in the granule cell layer (Lepousez et  al., 2010) but 
ablation of SST receptors significantly affects olfactory 
discrimination (Nocera et al., 2019). Information is also available 
on VIP-positive interneurons located primarily in the glomerular 
layer. Knocking out this population of neurons also causes 

deficiencies in odor detection and discrimination (Wang 
et al., 2022).

Aging in humans has been shown to elicit a substantial reduction 
in the volume of all cellular layers, most notably the glomerular layer 
(Doty and Kamath, 2014). Despite this apparent change in the human 
OB, the exact nature of these age-related changes on a cellular level is 
still largely unclear since aging rodents seem to either show no 
(Richard et al., 2010) or little (Hwang et al., 2004) change in cellular 
composition. While numbers of CB and CR neurons stay constant 
(Mobley et al., 2013), an aging-associated decline in cell numbers has 
only been shown for PV-interneurons. These decrease by about 30% 
in rats between the ages of 12 and 24 months (Hwang et al., 2003) 
while the amount of SST-positive cells increases strongly, however, 
exclusively in the granule cell layer (Figure 2B; Hwang et al., 2004). In 
contrast, it was shown that synaptic density in the glomerular layer 
strongly decreases in aging mice (Richard et al., 2010) with potential 
effects on olfactory discrimination.

In AD, the OB shows a high number of senile plaques and strong 
tauopathy in the early stages of the disease (Kovács et  al., 2001). 
Cellular changes in the OB of an AD mouse model are pronounced 
(Saiz-Sanchez et  al., 2013; La Rosa-Prieto et  al., 2016): Though 
CB-positive neurons were not altered in number, CR-positive neurons 
showed a significant reduction in the granule cell layer compared to 
healthy control mice, at least in younger animals. PV cell numbers 
were lower in younger animals of an AD mouse model than controls 
but higher in animals older than a year, thus showing a solid 
age-dependent modulation. SST-positive neurons, in contrast, showed 
a substantial decrease, with the strongest reduction occurring in the 
granule cell layer. At least this substantial reduction in SST-positive 
cells seems to be present also in AD patients (Figure 2A; Saiz-Sanchez 
et al., 2020). How these changes would affect olfactory behavior is 
still unclear.

Anterior olfactory nucleus (AON)

The AON is located in the olfactory stalk between the OB and the 
piriform cortex. Though the AON receives the predominant amount 
of olfactory information input from the olfactory bulb (Chae et al., 
2022) and is intensely connected to olfactory and non-olfactory areas 
(Brunjes et  al., 2005; Brunert et  al., 2023), its role for olfactory 
perception is still unclear. So far, it has been shown that it can store 
olfactory contextual memory (Aqrabawi and Kim, 2020) can intensely 
regulate information output from the olfactory bulb (Medinaceli 
Quintela et al., 2020), and might have a role in social recognition 
(Oettl et  al., 2016). However, a clear picture has still to emerge. 
Likewise, the interneurons of the AON have not been tied to a clear 
behavioral output.

The AON itself is a two-layered structure consisting of a pars 
principalis (pP) and a pars externa (pE) structure, with pP composed 
of four different subsections that differ in connectivity and, potentially, 
function. pP and pE are very different in their composition, though 
both exhibit a surprising variety of different interneurons (Kay and 
Brunjes, 2014) for such simplified cortical structures. Just a limited 
characterization of glutamate dehydrogenase 1 positive cells in pP 
based on their electrophysiology and morphology found at least five 
possible distinct subtypes, while immunohistochemical 
characterization showed 13 possible subtypes (Kay and Brunjes, 
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2014). This histochemical characterization showed an overlapping but 
distinct marker composition compared to the hippocampus or 
neocortex, with CB, CR, and PV as the most prominent markers. VIP 
and SST-positive neurons could also be found in significant numbers, 
while the number of NPY and CCK-positive cells was low in AON pP 
(Figure  1B). The number of neurons expressing one of the tested 
markers was higher in layer I of AON pP and could differ significantly 
depending on the examined subsection.

While a detailed characterization of pE interneuron composition 
is still pending, limited experiments have shown a high number of 
CR-positive cells as well as some cell types with unique properties 
(Kay and Brunjes, 2014).

As the olfactory bulb shows a high density of senile plaques and 
neurofibrillary tangles in the early phases of AD, efforts have been 
made to characterize the cellular changes the AON undergoes in this 
disease for humans and mouse models. Both human (Saiz-Sanchez 
et al., 2010) as well as mouse models (Saiz-Sanchez et al., 2013) show 
a significant reduction of SST-positive cells that manifests in mice as 
early as 6 months of age. In mice, the number of CR-positive cells also 
showed a substantial reduction in number while PV-positive cells 
were less vulnerable to disease progression and showed no reduction 
(Figure 2A; Saiz-Sanchez et al., 2013). Research on other interneuron 
populations in the AON during AD disease progression is 
still pending.

Even less is known about the changes the AON undergoes in 
aging; the only report comes from NPY-positive cells in the AON of 
rats that decline considerably in number between the ages of 12 and 
24 months for all subsections of pP (Figure 2B; Hwang et al., 2001).

Despite its predominant role in olfactory processing and 
contextual memory, functional studies examining the association of 
olfactory decline in aging and AD to AON are missing so far.

Piriform cortex (PC)

The PC is the largest cortical area receiving olfactory signals from 
the OB (Neville and Haberly, 2004). It consists of two parts, the 
anterior piriform cortex (APC) and the posterior piriform cortex 
(PPC), that differ strongly in connectivity (Hagiwara et al., 2012) and, 
most probably, function (Kadohisa and Wilson, 2006; Dhawale et al., 
2010). The PC is a three-layered cortical structure that contains 
principal neurons in layers II and III, while interneurons are more 
homogenously distributed throughout all layers (Bekkers and 
Suzuki, 2013).

Odor processing in the PC is governed by strong feedforward as 
well as feedback inhibition through local recurrent networks (Franks 
et al., 2011; Suzuki and Bekkers, 2012). In contrast to other olfactory 
areas, PC has been well characterized in terms of interneuron 
composition (Young and Sun, 2009; Gavrilovici et al., 2010; Suzuki 
and Bekkers, 2010a,b; Bekkers and Suzuki, 2013; Agarwal et al., 2014). 
Though similar to neocortical composition, PC has a more simple 
makeup of inhibitory interneurons with just five main classes that can 
be  identified in the APC (Suzuki and Bekkers, 2010a,b). There, 
morphologically identified neurogliaform and horizontal cells in layer 
I seem to provide feedforward inhibition, while bitufted, fast, and 
regular spiking neurons, as well as chandelier cells and deep 
neurogliaform cells, are located mainly in layer II and III mediating 
feedback inhibition (Suzuki and Bekkers, 2012). Interestingly, neither 

neurogliaform nor horizontal cells are positive for common 
interneuron markers (Suzuki and Bekkers, 2012). Neurons located in 
the deeper layers of APC responsible for feedback inhibition, bitufted 
cells, fast-spiking multipolar and regular spiking multipolar cells have 
been shown to stain for VIP, CB, and/or PV and SST, respectively 
(Suzuki and Bekkers, 2010a). Feedback inhibition is far more potent 
than feedforward inhibition for the PC (Franks et al., 2011) and can 
powerfully shape odor coding.

The PPC gets less olfactory input from the OB than the APC and 
more associational input, leading to the hypothesis that the APC 
might be responsible for odor learning and identity coding and the 
PPC for odor valence coding (Calu et al., 2007). Experiments suggest 
that the inhibitory networks in the PPC seem to be even stronger than 
in the APC. In the PPC, different interneuron cell types have been 
identified according to their firing properties (Young and Sun, 2009): 
Late spiking (LS) and irregular spiking (IS) cells that were 
predominantly located in layer I of the piriform cortex, as well as 
regular spiking nonpyramidal cells (RSNP) and fast-spiking (FS) 
neurons. All of these neurons exhibit either no (FS and LS) or minor 
staining for calcium-binding proteins, though low numbers of CB and 
CR positive neurons can be seen scattered throughout all layers, and 
PV cells are located in layer II (Kiselycznyk et al., 2006) Only 20% of 
the IS cells showed to be positive for CR, while 33% of all RSNP were 
positive for VIP but no calcium-binding proteins.

Multiple functions for inhibitory interneurons in PC have been 
shown. SST and NPY infusion to APC changed feeding behavior 
(Cummings et al., 1998), and PV-positive.

FS cells are the recipient of top-down dopaminergic inputs (Potts 
and Bekkers, 2022). Furthermore, it was shown that long-term 
potentiation within APC requires the inactivation of SST or 
PV-positive neurons by VIP-positive interneurons that act as 
gatekeepers for sensory processing and learning (Canto-Bustos 
et al., 2022).

Though APC and PPC have been hailed as the new frontier in 
aging research more than 10 years ago (Mobley et al., 2014) we still 
know little about “healthy” aging processes in the PC. There are 
reports that PC interneuron populations might change during the life 
of a mouse (Saiz-Sanchez et al., 2012), with the number of CB and PV 
positive neurons being higher in older mice, these data track the aging 
process only up until 8 months and thus do not cover the “aging” 
process. Reports on functional changes report cortical thickness, 
synaptic density, and cell numbers in layer II to remain stable in PC 
even in advanced ages (Curcio et al., 1985; Diamond et al., 1977) 
which contrasts strongly with the decline seen in the OB and olfactory 
epithelium (Mobley et al., 2014). One reason for this could be that the 
population of cortical immature neurons (cIN) of the PC is created 
prenatally and lays dormant inside layer II until needed (Gómez-
Climent et al., 2008). The cells thus act as a lifelong neurogenic pool 
that reduces with age but provides new neurons during the lifespan of 
an animal (Ghibaudi et al., 2023).

In AD, the number of interneurons is severely affected in humans 
and AD mouse models. In mice, CB, CR, PV, and SST cell numbers 
were significantly decreased at 8 months of age (Figure 2A), with CR 
and especially SST showing effects in very early stages (Saiz-Sanchez 
et  al., 2012). Here, it is interesting that PPC showed more robust 
effects that manifested slightly later than in the APC. In AD patients, 
a similar pattern in interneuron decline was shown, except that the 
number of PV neurons increased (Saiz-Sanchez et  al., 2015). 
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Numerous functional deficiencies of the PC in AD, including 
disruption of odor quality coding (Li et al., 2010), and reduction of 
neuromodulatory input due to noradrenergic fiber degeneration 
(Rajani and Yuan, 2022) or decreased excitability of pyramidal cells 
through activation of 2-HT2c receptors (Wang X. et al., 2023) have 
been shown. None of these defects have been tied to the function of 
inhibitory interneurons yet.

Tenia tecta (TT)

Another system underrepresented in research on olfactory 
deficits is the TT. This region consists of two separate three-
layered subregions, dorsal and ventral tenia tecta (dTT and vTT), 
which are evolutionarily derived from two different formations 
and present distinct cellular compositions. dTT, also called the 
hippocampal anterior continuation (McNamara et  al., 2004), 
contains a more hippocampal-like cell composition (Haberly and 
Price, 1978) and connectivity (Brunjes et al., 2005). Reports on the 
presence of common interneuronal markers show a medium 
amount of CR-positive (Qi et al., 2022) and CB-positive neurons 
(Tsuneoka et al., 2017) as well as a low number of SST-positive 
neurons (Nocera et al., 2019). Though the dTT exhibits robust 
odor responses, presumed to stem from PC and lateral entorhinal 
cortex inputs (Cousens, 2020), the primary input of the OB is 
received by the vTT. This area, separated by a thin, cell-free layer 
from the dTT, shows less robust odor responses (Cousens, 2020) 
but has been shown to integrate odor information with distinct 
environmental and behavioral contexts of learned behaviors 
(Shiotani et al., 2020). Besides OB, the vTT receives inputs from 
the APC and PPC and medial prefrontal cortex. Projections of 
vTT extend to the OB, AON and APC. Cell selective studies have 
predominantly addressed the pyramidal cells in layers 2 and 3 of 
the vTT (Haberly and Price, 1978). Still, immunohistochemistry 
for common interneuron markers has shown the presence of these 
markers, calcium-binding proteins CB, CR, and PV, and 
neuropeptidergic cells like VIP, NPY, SST, and CCK (Brunjes 
et al., 2011; Bjerke et al., 2021).

Research on aging and AD has only recently included 
TT. Oxytocin receptor mRNA did not show any age-related changes 
in the rat, different from hypothalamic areas (Ravenel et al., 2024), but 
TT showed substantial Aβ plaque deposition and amyloid precursor 
protein deposition in AD mice (Tsui et al., 2022; Ono et al., 2024). 
Though there was no measurement of olfactory dysfunction in these 
studies, it has been shown that neurotoxic exposure to methylmercury 
leads to olfactory dysfunction while causing strong neuronal loss in 
the olfactory system, particularly in the vTT (Iijima et al., 2024). So 
far, nothing has been published on the fate of interneurons of the TT 
during aging or AD. Intense amyloid deposition and the close 
connection to hippocampal areas suggest that this area might 
be  highly relevant to olfactory dysfunction and potentially 
disease progression.

Olfactory tubercle (OT)

The OT is part of the ventral striatum and is located at the ventral 
part of the olfactory peduncle posterior to AON and vTT. It is a 

three-layered structure that, similar to PC, contains a superficial layer 
I that receives monosynaptic input from the OB, a cell-dense layer II, 
and a deeper layer 3 (Xiong and Wesson, 2016). Like other striatal 
regions, OT contains primarily GABAergic neurons, including local 
interneurons and spiny projection neurons projecting to other striatal 
regions and into midbrain structures (Zhang et  al., 2017). It also 
contains the majority of the “islands of Cajella” (IC), dense clusters of 
GABAergic granule cells (Hsieh and Puche, 2013), scattered 
throughout the OT at variable locations with multiple behaviorally 
relevant functions for motivation and self-reward (Zhang et al., 2023). 
The OT displays odor-specific responses (Wesson and Wilson, 2010), 
is a site of multisensory integration (Wesson and Wilson, 2011), and 
is speculated to play a large part in coding odor valence (Gadziola 
et  al., 2015) and the regulation of odor-guided food intake 
(Murata, 2020).

Similar to several other olfactory regions, different morphological 
types of putative interneurons have been described (Millhouse and 
Heimer, 1984), but these morphological types have not been matched 
with expression types. The OT shows expression for all of the common 
interneuron markers (Brunjes et al., 2011; Martin-Lopez et al., 2019; 
Zandt et al., 2019). Some of these show a pronounced heterogeneity 
in terms of localization, with CB and PV-positive neurons residing 
primarily in layer III while reelin-positive cells residing predominantly 
in layer I (Martin-Lopez et al., 2019). Direct functions for GABAergic 
interneurons in the OT have yet to be shown.

Aging had a measurable effect on OT, predominantly on the 
IC. The IC receives small numbers of adult-born neuroblasts that 
decline as a result of aging-related changes in the SVZ (Mobley et al., 
2014). Potentially due to this process or increased accumulation of 
autophagosomes (Soontornniyomkij et al., 2012), the number and 
volume of ICs were significantly reduced in older mice (Adjei et al., 
2013) with the potential to lead to depression-like behaviors (Zhang 
et al., 2023).

The OT of AD mouse models show a high number of senile 
plaques (Wesson and Wilson, 2010; Saiz-Sanchez et al., 2013) though 
the increase is slightly delayed compared to OB and AON in the APP/
PS1 mouse line (Saiz-Sanchez et al., 2013). Multiple different types of 
interneurons show a decrease in numbers, like CB (Selden et  al., 
1994), PV, CR, and SST positive neurons (Figure 2A; Saiz-Sanchez 
et al., 2013). None of these interneuron populations’ functions are 
defined, so it remains to be  determined whether and how these 
changes in the OT contribute to olfactory dysfunction.

Cortical amygdala (CoA)

The CoA is, like other paleocortical areas, a three-layered 
structure consisting of multiple different subnuclei such as the nucleus 
of the lateral olfactory tract (nLOT), bed nucleus of the accessory 
olfactory tract (BAOT), anterior cortical amygdala posterolateral 
(PLCo) and posteromedial nuclei (PMCo). Located between the 
piriform cortex (rostrally), the entorhinal cortex (caudally), and the 
medial amygdala, it receives direct olfactory input from the OB in 
layer I and with projections that seem to maintain spatial patterns of 
the OB (Sosulski et al., 2011). Functionally, it is believed that CoA 
controls innate odor responses with negative and positive valence 
(Iurilli and Datta, 2017). In contrast to the basolateral amygdala, the 
cellular composition of CoA has not been studied extensively, but it is 
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well established that it contains few inhibitory interneurons, most of 
which are CB or PV-positive (Olucha-Bordonau et al., 2015).

The nLOT represents a unique structure within CoA due to its 
developmental origin, cellular composition, and connectivity 
(Santiago and Shammah-Lagnado, 2004). It only comprises about 
2,500 neurons and is bi-directionally connected with the OB and 
PC (Price, 1973; Luskin and Price, 1983). nLOT-lesioned mice 
display substantial olfactory defects, including decreased detection 
and discrimination abilities (Vaz et  al., 2017). Interestingly, OB 
input to the nLOT is relatively weak, with more robust input from 
PC, TT, and basolateral amygdala (Penker et al., 2024). Apart from 
a low number of VIP-positive interneurons in layer 2, the nLOT has 
also been shown to contain medium to low numbers of PV, CB, and 
CR-positive neurons vulnerable to stress-mediated cell atrophy (Vaz 
et al., 2018).

Neuropeptidergic cells expressing SST, NPY (Real et al., 2009), 
and VIP (Salamanca et al., 2024) can also be found in CoA and nLOT, 
mostly in meager numbers. nLOT additionally shows a distinct 
population of small CCK-positive interneurons (Olucha-Bordonau 
et al., 2015).

The effects of aging on the entire CoA have not been well 
described, except for a slight but significant change in volume 
(Aghamohammadi-Sereshki et al., 2018). In contrast, the volume of 
nLOT of aged rats showed no noticeable volume reduction. More 
detailed analysis revealed that aging was associated with a 14% 
reduction in the total number of nLOT neurons due to cell loss in 
layers 2 and 3. This included a substantial decline of NPY and VIP 
positive interneurons with a 55 and 30% reduction, respectively 
(Figure 2B; Vaz et al., 2016).

The amygdaloid complex also shows substantial atrophy in AD in 
the early phases of the disease (Poulin et al., 2011). Among these 
structures, CoA seems to be affected most in terms of senile plaque 
density, increase in astrocyte number, and volume reduction 
(Gonzalez-Rodriguez et al., 2023). This study found no reduction in 
cell numbers but attributed the reduction in volume to neuropil loss 
and a decrease in synaptic connectivity.

Lateral entorhinal cortex (LEC)

One main task of the lateral entorhinal cortex (LEC) is to feed 
nonspatial multisensory information to the hippocampus (Bilash 
et al., 2023). It has been considered transitional between olfactory 
allocortices and the isocortex, as its six layers do not precisely match 
the six layers of the isocortex. The superficial layers (I-III) and deep 
layers (V and VI) differ strongly in terms of connectivity, with layers 
II and III receiving cortical inputs and innervating dentate gyrus 
(DG)/CA3 and CA1/subiculum, respectively, and layers V and VI 
(deep layers) receiving the output from the hippocampus and sending 
projections to cortical and subcortical areas as well as the superficial 
layers of the entorhinal cortex (Wang C. et  al., 2023). The LEC 
receives olfactory information directly from OB and PC, which are 
both projecting to layer II. It is essential to rapid discrimination of 
odor identity and intensity (Bitzenhofer et  al., 2022) and to 
be involved in odor-dependent memories and navigation (Li et al., 
2017; Radvansky and Dombeck, 2018). With its function in memory 
formation and retrieval (Pilkiw et al., 2022) and odorant perception 

(Bitzenhofer et al., 2022), the LEC would be the perfect area to bridge 
olfactory and cognitive deficits.

The LEC contains a diverse array of GABAergic interneurons that, 
at least for the superficial layers, have been characterized well in terms 
of morphology, location, and marker expression (Canto et al., 2008): 
Layer I contains multipolar cells that express CR and, in a minority of 
cells, also CB or NPY, and a population of horizontal cells partially 
expressing VIP. The cell-dense layer II contains many of the principal 
cells of LEC, pyramidal, and fan cells. Interneurons within layer II are 
described as multi-polar neurons that can express VIP, CCK, SST, or 
NPY, horizontal bipolar cells, expressing CR, VIP, CCK, or NPY, as 
well as PV positive fast-spiking basket and horizontal and vertical 
chandelier cells (Canto et al., 2008). Layer III also contains chandelier 
cells and multipolar neurons expressing CCK, SST, or VIP and bipolar 
cells positive for VIP or CR (Canto et  al., 2008). PV-positive 
interneurons are particularly prominent, comprising approximately 
half of the interneuron population, especially in layer II, and are 
essential for synchronizing neural activity and contributing to the 
oscillatory dynamics of the region (Wouterlood et al., 1995; Miettinen 
et  al., 1996). Furthermore, they can gate information flow in the 
entorhinal-perirhinal network in a feedforward manner (Willems 
et al., 2018) and control the output of at least some principal cells to 
the hippocampus (Nilssen et al., 2018).

The LEC seems to be especially vulnerable to adverse effects in 
aging and AD (Stranahan and Mattson, 2010) as it shows early changes 
in aging (Yassa et al., 2010) as well as in AD patients (Igarashi, 2023). 
Despite substantial changes in function, surprisingly little is known 
about GABAergic interneurons in both conditions. So far, changes in 
LEC function in aging have been attributed to changes in intrinsic 
pyramidal cell excitability (Lin et al., 2022) and expression levels of 
GABA receptors, as well as GABA synthesizing enzymes, were 
negligible (Ethiraj et al., 2021).

Substantial alterations in GABAergic neurons have, however, been 
shown in AD. Significant reductions in the densities of SST and CR 
interneurons were observed in the LEC of an AD mouse model 
compared to wild-type (WT) mice (Figure 2A; Klein et al., 2016) while 
fast-spiking PV-expressing interneurons do not show a significant 
decline (Ruden et al., 2021).

Discussion

Olfaction, specifically olfactory dysfunction, has been described 
to be  associated with but precede cognitive decline in aging and 
AD. Despite intense efforts to define the underlying causes of 
olfactory decline, our grasp on this issue is still tenuous at best. New 
evidence suggests that local inhibition might play a more significant 
part in aging and disease-mediated changes in the brain than 
previously thought. Therefore, we would also like to promote this 
idea for research on olfactory dysfunction. We  thus summarized 
knowledge on inhibitory interneurons in different primary olfactory 
cortical areas to build a basis for examining potential changes. As 
we  have shown the various regions of olfactory information 
processing are very diverse regarding interneuron content (Figure 1). 
Furthermore, there are regional differences in the strength of local 
inhibitory circuits, from the OB consisting predominantly of 
inhibitory interneurons (Lledo et al., 2008) and the PC which has a, 
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though more simple, similar interneuron makeup to other cortical 
areas while still heavily relying on feedforward and feedback 
inhibitory connections for information processing (Franks et  al., 
2011), to areas with a very low number of inhibitory interneurons like 
CoA (Olucha-Bordonau et al., 2015).

Changes in interneuron function, like GABA expression and 
oscillatory activity, as well as changes in interneuron number in AD, 
have been shown in multiple brain areas (Xu et al., 2020). So far, the 
olfactory areas included in this line of research show similar 
interneuronal changes as the hippocampus and cortex, with PV—and 
CR-positive neuron decline only detectable in some mouse models 
and brain areas. In contrast, SST-positive neuron numbers have been 
shown to decrease invariably.

Research on “olfactory aging” has been sparse, leaving 
interneuronal changes poorly defined. The existing literature, 
however, already reflects that a decrease in interneuron numbers is 
far less pronounced than in AD. Though a lot more research is 
required, our review thus shows that changes in inhibitory local 
networks mirror the current view derived from wider brain areas that 
neuronal cell loss was found predominantly in pathological aging, 
such as AD, while normal aging is accompanied by dendritic, 
synaptic, and axonal degeneration with nearly no cell loss (Schliebs 
and Arendt, 2011). This leads to the question of whether these 
processes are fundamentally different or just occurrences on a 
different time scale. Would a better understanding of olfactory 
changes enable us to create a more detailed battery of olfactory tests 
to detect neurodegenerative diseases, or is this delineation impossible?

Our review deals with the loss of olfactory interneurons as a 
proxy and the most apparent sign of reduced inhibitory drive in the 
different olfactory brain areas. Other detectable signs are, among 
others, a reduction of iPSCs in patch clamp recordings, a reduction 
of synaptic connections in  local circuits, and an increase in the 
activity of principal neurons (Meftah and Gan, 2023). A decrease in 
GABA release can cause these changes but they might, at least 
partially, stem from a reduction in GABA receptor-mediated 
signaling at the postsynapse (Sakimoto et al., 2021). GABAA receptors 
seem to be  mainly involved in Aβ-associated pathology as the 
expression of several subunits of GABAA receptors is changed in AD 
patients (Kwakowsky et al., 2018), and pre-treatment of rat cortical 
cell cultures with a GABAA antagonist was able to inhibit Aβ-induced 
neuronal apoptosis (Lee et al., 2005). In this respect, it is interesting 
that expression levels of GABAA receptors are very different between 
different olfactory areas, with, e.g., the AON showing little GABAA 
receptor density and several of the olfactory brain areas showing 
substantial differences in receptor density in other layers (Lothmann 
et al., 2021). This raises the possibility that different olfactory areas 
might show similar numbers of senile plaques but are not equally 
vulnerable to neuronal deterioration due to Aβ deposition.

Apart from differences in vulnerability, an increase in olfactory 
interneuron-related research might further be essential to understand 
olfactory dysfunction as interneurons are involved in the function of 
local networks in numerous ways.

Aberrant excitation

We have mentioned previously that a change in local inhibitory 
drive can lead to aberrant excitation of principal cells in any brain 

area. This increase in excitation on a single cell level has not only been 
shown in the hippocampus (Targa Dias Anastacio et al., 2022) but 
also in a slice preparation of the OB (Li et al., 2019) and in OB, PC 
(Wesson et al., 2011b) and the lateral entorhinal cortex of anesthetized 
mice in an AD model (Xu M. et al., 2015). An increase in excitatory 
activity and a decrease in inhibitory drive might explain the effects 
on discrimination abilities by increasing sensory fields and affect 
detection due to the reduction in signal-to-noise ratio.

Oscillatory activity

Hyperexcitatory activity can also be seen on the network level in 
the form of local field potentials (LFP). Olfactory LFP activity is 
commonly organized into the theta or the “respiratory” band 
(2–12 Hz), the beta band (18–30 Hz), and the gamma band 
(30–100 Hz), with each of those bands representing unique aspects of 
odor perception (Kay et al., 2009). It was shown that OB and PC of 
transgenic mice of an AD model exhibit a detectable shift in LFP power 
already at 3–4 months of age preceding the reduction in olfactory 
performance (Wesson et al., 2011b). A couple of publications were able 
to confirm changes in LFP in the OB of AD models (Li et al., 2019; 
Chen et al., 2021). As at least gamma frequency bands of the LFP stem 
predominantly from the interplay of granule cells with mitral cells in 
the EPL, the finding corresponds well with findings of the impairment 
of dendrodendritic inhibition between these two cell types in an AD 
model (Li et al., 2019; Chen et al., 2021).

Changes in gamma band oscillations from the OB have also been 
shown in aging mice (Ahnaou et al., 2020) presumed to stem from a 
reduction in PV neuron function in the EPL. Gamma band oscillations 
have been described to be specifically crucial for olfactory discrimination 
(Nusser et al., 2001) and olfactory processing (Martin and Ravel, 2014) 
and, therefore, may account for the decline in olfactory performance.

Olfactory bulb plasticity

The olfactory bulb is one of the few brain areas that exhibit 
lifelong regeneration. Neuronal progenitor cells from the rostral 
migratory stream are integrated into the glomerular and granule cell 
layer and differentiate into mostly calretinin-positive neurons in an 
input-dependent manner (Kim and Choe, 2020). As we  have 
mentioned above, a decrease in neuro-regeneration in the OB is 
supposed to be  one of the main underlying factors of olfactory 
dysfunction in aging and AD (Dibattista et al., 2020). Proliferation in 
the subventricular zone and rostral migratory stream declines with 
age and in AD. That this dwindling number of migrating neuroblasts 
is causing changes in the OB circuit is, however, far from clear and 
seems to stem mainly from notions gained from HC neurogenesis 
(Choi and Tanzi, 2023). Changes in CR-positive neurons have not 
been shown for the aging OB (Mobley et al., 2013) while in an AD 
mouse model, the OB seems to exhibit a smaller amount of adult-
born neurons in the glomerular layer that does, however, not 
significantly affect the numbers of CR-positive neurons (La Rosa-
Prieto et al., 2016). More research is required to clarify this critical 
issue as newly integrated neurons have been shown to affect gamma-
band oscillations in the OB and affect olfactory discrimination and 
odor memory (Sakamoto et al., 2014).
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Interneurons as targets for top-down 
cholinergic input

A hallmark of brain dysfunction in aging and neurodegenerative 
diseases is reduced cholinergic input from the basal forebrain to 
different brain areas. This reduction is well described in AD as well as 
in aging (Schliebs and Arendt, 2006; Sultzer, 2018; Chen et al., 2022). 
As these neuromodulatory inputs also target local inhibitory 
interneurons, they can strongly affect the function of inhibitory 
interneurons (Picciotto et al., 2012). The role of acetylcholine (ACh) 
in the olfactory system has yet to be clarified. For the olfactory bulb, 
it has been shown that cholinergic input increases activity in output 
neurons indiscriminately (Rothermel et al., 2013; Boehm et al., 2020). 
Therefore, a decrease in input would be  expected to dampen OB 
output. In the piriform cortex, ACh has been shown to inhibit 
recurrent excitatory activity, specifically (Hasselmo and Bower, 1992) 
Therefore, reducing ACh would mean increased recurrent excitation 
and a more robust gating of olfactory information at this processing 
level. As the cholinergic system innervates all other levels of olfactory 
processing, the net effect of reduced cholinergic modulation is hard to 
predict. Still, it is feasible that cholinergic decline is also an underlying 
factor for olfactory dysfunction.

Conclusion

Inhibitory interneurons and their function in regulating local 
circuit functions are of great importance for cognitive function in the 
hippocampus and, as we  have shown in this review, for olfactory 
function. Olfactory information processing relies heavily on local 
inhibitory effects, especially in the early stages like the OB (Burton, 
2017). This inhibition might play a large part in the manifestation of 
olfactory behavioral symptoms in AD and aging.

Our comparison of reports on interneuron changes in aging and 
AD shows that these alterations are different between the two 
conditions but similar to those shown for cortical and hippocampal 
regions. In this respect, neuronal populations expressing SST and PV 
seem most vulnerable to AD pathological aging. As these neurons are 
not expressed in higher numbers in the olfactory system, these 
changes cannot explain the early and robust manifestation of 
olfactory dysfunction.

Previous reports have shown that hyperexcitability in various 
olfactory areas like OB, PC (Wesson et  al., 2011a), and LEC 
(Xu W. et  al., 2015) precedes behavioral and hippocampal 
dysfunction and a detectable decrease in cell numbers in an AD 
mouse model. Therefore, one might speculate that the earliest 
symptoms are GABAergic dysfunctions on a synaptic level, similar 
to what has been shown for aging (Rozycka and Liguz-Lecznar, 
2017). The increase in hyperexcitability on both peripheral and 
central olfactory circuits also raises the possibility that not one 
olfactory area is responsible for olfactory deficits but that a concerted 

effort of all olfactory regions is required to enable discrimination, 
detection, and recognition. This would explain why experimental 
disturbances on every level of the olfactory processing and many 
neurodegenerative diseases create similar deficits. This theory of 
“wholistic” perception, under robust inhibitory control, might help 
us to further our understanding of the olfactory system as a warning 
system for changes in brain function.
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