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1 Introduction

In recent years, AI and machine learning (ML) have revolutionized various fields

of science and technology, with significant advancements in computer vision, natural

language processing, and healthcare (Esteva et al., 2019). Despite this progress, applying

these techniques to the analysis of electroencephalography (EEG) signals presents unique

challenges due to the complex, non-stationary nature of brain activity. EEG is a critical

tool for understanding brain dynamics in real-time, often employed in clinical diagnosis,

cognitive neuroscience, and brain-computer interfaces (Schomer and Lopes da Silva, 2017).

However, the noisy, high-dimensional nature of EEG signals makes it difficult to apply

standard deep learning models effectively.

Foundation models, such as transformer-based architectures that have demonstrated

unprecedented performance in fields like natural language processing and computer vision

(Vaswani, 2017; Radford et al., 2021), hold great promise for addressing these challenges.

These models are pre-trained on massive datasets and then fine-tuned for specific tasks,

allowing for broad generalization and adaptability. However, their effectiveness in EEG

analysis is limited, as they often lack mechanisms to capture the temporal precision and

biological plausibility essential for accurately modeling brain signals (Roy et al., 2019).

One promising direction to overcome these limitations is the incorporation of brain-

inspired algorithms into foundation models. Brain-inspired algorithms, such as spiking

neural networks (SNNs), hierarchical temporal memory (HTM), and biologically plausible

learning mechanisms like Hebbian learning, mimic the structure and function of neural

processes (Schmidgall et al., 2024). These algorithms are designed to capture temporal and

spatial dynamicsmore akin to those observed in actual brain networks. Incorporating these

algorithms into foundation models could potentially bridge the gap between standard deep

learning approaches and the dynamic, multi-dimensional nature of EEG signals.

Therefore, in this paper, we provide our opinions on how brain-inspired algorithms

can be integrated with foundation models to enhance the analysis of EEG signals. We

argue that by combining the scalability and generalizability of foundation models with the

temporal specificity and biological plausibility of brain-inspired algorithms, this hybrid

approach could address the current limitations in EEG signal processing. While the

integration of these approaches poses significant technical challenges, their synergy could

offer new pathways for more accurate and interpretable AI systems in neuroscience.
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2 Current advances and challenges in
EEG processing

In this section, we provide an overview of the current work in

AI/ML based EEG signal processing, and discuss their limitations.

2.1 Advances in EEG signal processing

Recent advances in EEG signal processing have significantly

improved our ability to extract meaningful insights from neural

data. Traditionally, the feature-driven methods (Shoeibi et al.,

2021) use specific features extracted from EEG signals to guide

the analysis process. By leveraging the selected features through

traditional machine learning classifiers, the models can uncover

patterns in understanding EEG signals and brain activity. With the

advancement of deep learning methods, researchers have started

to utilize neural networks to better analyze the temporal and high

dimensional EEG signals. Convolutional neural networks (CNNs)

(Lawhern et al., 2018), recurrent neural networks (RNNs) (Li et al.,

2022), Transformers Lee and Lee (2022) have shown promise in

applications such as sleep stage classification, emotion recognition,

and seizure detection (Craik et al., 2019). However, despite these

advancements, limitations still remain in terms of both the data

and model.

2.2 Challenges specific to EEG signal

EEG data present unique challenges that hinder the

performance of conventional machine learning and deep learning

models. First, EEG signals are highly non-stationary, meaning

that the statistical properties of the signals vary over time and

across individuals (Roy et al., 2019). This non-stationarity makes it

difficult to develop models that can generalize well across different

sessions, subjects, and experimental conditions.

Furthermore, EEG is known for its low signal-to-noise ratio

(SNR), as the recorded signals are often contaminated by artifacts

such as muscle movements, eye blinks, and electrical interference

(Islam et al., 2016). Removing these artifacts without losing

valuable information from the underlying brain activity remains a

significant challenge.

Another major challenge is the spatial and temporal resolution

of EEG. While EEG provides excellent temporal resolution (on

the order of milliseconds), its spatial resolution is relatively poor

compared to other neuroimaging techniques like fMRI or MEG.

This limitation makes it difficult to localize brain activity with

high precision, which in turn affects the performance of algorithms

attempting to decode complex cognitive states or neural signatures

(Buzsaki, 2019).

2.3 Limitations of foundation models in
EEG processing

Foundation models, which have achieved remarkable success

in natural language processing and computer vision, have not yet

demonstrated comparable performance in EEG signal processing.

One fundamental limitation is the lack of alignment between the

structure of these models and the temporal dynamics of EEG

signals. Foundation models, such as Transformers (Vaswani, 2017),

are designed to capture relationships within structured data, such

as words in a sentence or pixels in an image, but EEG signals

are far more irregular and dynamic. Unlike text or image data,

which exhibit consistent patterns that foundation models can

exploit through attentionmechanisms, EEG signals require amodel

that can handle continuous temporal fluctuations and low signal

amplitudes (Craik et al., 2019).

Additionally, foundation models require extensive amounts

of training data; however, EEG datasets tend to be limited and

imbalanced due to the high cost and time-intensive nature of

data collection (Kher, 2020; Zheng and Lu, 2015). Pretraining a

foundation model for EEG signals demands the aggregation of

diverse datasets from multiple sources, which presents significant

challenges for the training process. Although techniques like data

augmentation and transfer learning have been proposed to address

these limitations (Jayaram et al., 2016), they remain insufficient

for enabling foundation models to generalize effectively to new

EEG datasets.

Finally, the depth and scale of foundation models inherently

cause higher latency due to the time taken to process multiple layers

and large numbers of parameters. In real-time EEG applications

(Müller et al., 2008), even small delays in data processing

can degrade performance significantly. Thus, the large size and

complexity of foundation models can conflict with the need for

low-latency performance for EEG signal processing.

3 Potential of brain-inspired
algorithms for EEG processing

Brain-inspired algorithms represent a cutting-edge approach

within artificial intelligence (AI), where computational models

are designed to emulate the biological processes and mechanisms

of the brain (Chen et al., 2022). This approach aims to bridge

the gap between the relatively rigid frameworks of traditional AI

models and the flexible, adaptive, and efficient nature of biological

cognition. In this section, we analyze the current brain-inspired

algorithms and discuss their potential to improve the foundation

models for EEG signal processing.

3.1 Spiking neural networks

Spiking neural networks (SNNs) offer a promising approach to

overcoming some of the limitations of foundation models for EEG

processing. Unlike conventional neural networks, SNNs mimic the

brain’s natural processing by incorporating time-dependent spiking

activity, which makes them better suited to handling the temporal

dynamics of EEG signals (Maass, 1997). SNNs process information

as sequences of spikes, which enables them to capture the temporal

structure of neural data more effectively than traditional models

that treat data in a continuous manner. Additionally, SNNs are

event-driven, meaning that computation only occurs when relevant

spikes are received, potentially leading to more efficient processing
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of EEG data compared to standard deep learning models that

rely on continuous input. Recent studies have demonstrated the

advantages of SNNs in various EEG applications (Choi, 2024).

3.2 Hierarchical temporal memory

Hierarchical Temporal Memory (HTM), inspired by the

neocortical structure of the brain, represents another brain inspired

model that shows potential in EEG data processing. HTM is

particularly adept at learning sequences and detecting temporal

patterns, which aligns with the nature of EEG signals (Hawkins

and Ahmad, 2016). Also, HTM networks operate on principles

of temporal memory and spatial pooling, allowing them to detect

and predict complex sequences from noisy, incomplete data—key

characteristics of EEG signals. Due to these properties of HTM, it

has been widely applied to time series analysis (Struye and Latré,

2020; Wu et al., 2018).

3.3 Hebbian learning

Besides the neural network models, the brain-inspired learning

rules such as Hebbian learning also presents potential for

improving the EEG signal processing. Hebbian learning, which is

based on the principle that “cells that fire together wire together,”

allows networks to self-organize based on the correlations between

neuron activations (Markram et al., 1997). In EEG processing, this

could lead to more adaptive models that are better aligned with the

plastic nature of the brain, enabling models to learn representations

that are more flexible and robust to noise and variability. Also,

such learning rules could be combined with brain-inspired neural

networks, improving their performance in various applications

(Uleru et al., 2022; Long and Gupta, 2008; Kozdon and Bentley,

2018).

4 Our opinion: combining
brain-inspired algorithms with
foundation models

Based on the analysis above, we propose one promising

direction for improving EEG signal processing. That is the

integration of brain-inspired algorithms with foundation models

to create hybrid architectures. Hybrid models could combine the

strengths of foundation models–such as their scalability and ability

to generalize across tasks–with the temporal and spatial specificity

of brain-inspired algorithms. We schematically show this idea

in Figure 1.

4.1 Overview

Specifically, SNNs or HTM could be incorporated during

both the training and adaptation phases of foundation models.

The optimization techniques inherent in SNNs and HTM could

enhance the training of foundation models, enabling them to learn

more effective representations of EEG signals. Hebbian learning

could also be applied to train the foundation models which

further enhances the representation. Additionally, when adapting

foundation models to downstream tasks such as Alzheimer’s

disease diagnosis and emotion detection, the dynamic properties

of SNNs could be leveraged for flexible, task-specific adaptation,

allowing the model to more effectively capture the nuances of

each particular application. Studies have begun to explore such

hybrid approaches. For instance, Kheradpisheh et al. (2018)

proposed a hybrid architecture that combines SNNs with deep

learning for image classification tasks, and their approach could

be adapted for EEG signal. This integration could help overcome

the temporal limitations of foundation models, while still allowing

them to leverage large-scale training data and sophisticated

attention mechanisms. Moreover, combining foundation models

with more lightweight, brain-inspired algorithms could offer a

solution that balances performance with the real-time constraints

of EEG processing.

4.2 Strengths

Therefore, hybrid models offer substantial opportunities

for enhancing EEG processing. By incorporating brain-inspired

components, these systems could potentially offer a more accurate

representation of brain activity, enhancing performance in tasks

such as cognitive state classification, seizure detection, and the

diagnosis of neurodegenerative diseases. As research in this area

progresses, it may lead to more advanced models that combine

biological fidelity with the computational power of modern

foundation models, enabling more robust and interpretable

solutions for neural signal analysis.

4.3 Limitations

However, implementing hybrid systems poses several

challenges. First, designing such hybrid systems requires efficient

communication between different model components, as well as

the balance between biological plausibility and computational

efficiency. Moreover, training hybrid models can be difficult, as

integrating spiking networks with conventional deep learning

models requires novel optimization techniques and specialized

hardware. Furthermore, the EEG based applications often require

real time processing, so how to employ the pre-trained foundation

model in real-time systems remains a challenge. Lastly, since

EEG datasets are normally small and task specific, pre-training

over multi-sourced EEG datasets might also adds to the training

challenges of foundation models.

5 Future directions

We here summarize our opinions into several future directions

for the integration of brain-inspired algorithms with foundation

models for EEG signal processing. Specifically, future research

should focus on several key areas:
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FIGURE 1

Schematic representation of hybrid brain-inspired foundation models for EEG signal analysis.

• Improved training techniques for hybrid models: New

training methodologies are needed to enable the integration

of spiking networks with traditional deep learning layers

and to effectively manage diverse pretraining EEG datasets.

This challenge can be addressed from both software and

hardware perspectives. For example, applying surrogate

gradient methods (Neftci et al., 2019) can optimize the hybrid

model in a gradient-based manner, while neuromorphic

hardware optimizations (Davies et al., 2018), can improve the

training efficiency for SNNs.

• Scalability and generalization: For practical use in clinical

applications, hybrid models must be scalable to large,

diverse EEG datasets while maintaining performance across

a wide range of neurophysiological tasks. Transfer learning

approaches that enable pre-trained foundation models to

adapt to smaller EEG datasets could provide a pathway toward

achieving better generalization.

• Real-time applications: Hybrid models need to be

optimized for real-time processing, particularly for BCIs

and neurofeedback applications, where low-latency are

essential (Sharma and Meena, 2024). Future studies should

explore novel architectures and neuromorphic hardware that

allow for efficient online adaptation to incoming EEG data.

6 Conclusion

In conclusion, our opinion for this paper is that incorporating

brain-inspired algorithms into foundation models offers a

promising path forward for enhancing EEG signal processing.

Brain-inspired approaches align more naturally with the

temporal and noisy characteristics of EEG data. However,

challenges remain in optimizing these hybrid systems for large-

scale, real-time applications. Future research should focus on

developing advanced training techniques, ensuring scalability

and generalization, and enabling real-time performance. With

further advancements, these hybrid foundation models could

significantly improve the accuracy and usability of AI-driven

EEG analysis.
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