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Accurate monitoring of drowsy driving through electroencephalography (EEG) can 
effectively reduce traffic accidents. Developing a calibration-free drowsiness detection 
system with single-channel EEG alone is very challenging due to the non-stationarity of 
EEG signals, the heterogeneity among different individuals, and the relatively parsimonious 
compared to multi-channel EEG. Although deep learning-based approaches can 
effectively decode EEG signals, most deep learning models lack interpretability due 
to their black-box nature. To address these issues, we propose a novel interpretable 
residual shrinkage network, namely, ID3RSNet, for cross-subject driver drowsiness 
detection using single-channel EEG signals. First, a base feature extractor is employed 
to extract the essential features of EEG frequencies; to enhance the discriminative 
feature learning ability, the residual shrinkage building unit with attention mechanism 
is adopted to perform adaptive feature recalibration and soft threshold denoising 
inside the residual network is further applied to achieve automatic feature extraction. 
In addition, a fully connected layer with weight freezing is utilized to effectively 
suppress the negative influence of neurons on the model classification. With the 
global average pooling (GAP) layer incorporated in the residual shrinkage network 
structure, we introduce an EEG-based Class Activation Map (ECAM) interpretable 
method to enable visualization analysis of sample-wise learned patterns to effectively 
explain the model decision. Extensive experimental results demonstrate that the 
proposed method achieves the superior classification performance and has found 
neurophysiologically reliable evidence of classification.
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1 Introduction

Driver drowsiness is a significant factor leading to traffic accidents as it can cause a serious 
decline in vigilance, attention, and cognitive ability (Balam and Chinara, 2021). Statistics 
indicate that fatigue driving may cause up to as much as 20% of all vehicle collisions (Zhang 
Z. et al., 2022). Effectively predicting and warming about drowsiness in driving can help 
drivers stay alert before they become drowsy or fall asleep (Perkins et al., 2023). Therefore, 
developing a reliable and effective drowsiness monitoring system has emerged as a critical 
priority in preventing traffic accidents and saving lives (Zhang Y. et al., 2022).
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Currently, there are a number of reported approaches for detecting 
driver fatigue or drowsiness, including behavioral (Zhang Z. et al., 
2022; Perkins et al., 2023; You et al., 2020), vehicle-based (Perkins 
et al., 2023; Lan et al., 2024), and physiological (Zhang Z. et al., 2022; 
Lan et al., 2024) approaches. For example, behavior-based approaches 
allow to analyze behavioral characteristics of a driver’s face, eyes, or 
mouth using machine vision technique. These approaches assess 
alertness level by detecting facial expressions, calculating eye closure 
time, estimating head posture, and yawning frequency. However, they 
may be  disturbed by lighting conditions and require accurate 
evaluation of head posture. Vehicle-based approaches focus on 
detecting drowsiness through vehicle motion and driver handling 
behavior data (e.g., steering wheel angle, driving acceleration, and 
vehicle speed) (You et  al., 2020). However, they rely on multiple 
vehicle sensors to monitor driving parameters and may face 
limitations such as sensitivity and adaptability to environmental 
factors. In addition, physiological signal-based methods monitor signs 
of driver drowsiness by analyzing the driver’s physiological signals 
such as electrocardiogram (ECG), electromyogram (EMG), 
electrooculogram (EOG), and electroencephalogram (EEG) (Perkins 
et al., 2023). Drowsiness correlates closely with brain activity, and EEG 
is the most adaptable and widely used for studying brain functions 
compared to other physiological signals. Therefore, EEG is often 
considered the gold standard for detecting driver drowsiness (Lan 
et al., 2024).

With the rapid development of EEG acquisition devices, an 
increasing number of researchers have studied EEG-based drowsiness 
detection (Cui et  al., 2022a,c; Wan et  al., 2023). Conventional 
EEG-based drowsiness detection methods laid a solid foundation for 
ongoing research in this field. To capture the EEG features of interest, 
they often rely on expert knowledge or priori knowledge (Cui et al., 
2022c). For instance, Ogino and Mitsukura (2018) proposed a feature 
selection method using stepwise linear discriminant analysis and 
power spectral density features from a single-channel EEG signal. Hu 
and Min (2018) utilized sample entropy, approximate entropy, spectral 
entropy, and fuzzy entropy of EEG signals as features for recognizing 
driving fatigue. In contrast, deep learning (DL) enables end-to-end 
learning from raw, high-dimensional EEG data without prior feature 
crafting, achieving remarkable performance (Lawhern et al., 2018; 
Schirrmeister et  al., 2017; Gao et  al., 2019). For example, a novel 
EEG-based spatiotemporal convolutional neural network was 
developed to detect driver fatigue from multi-channel EEG signals 
(Gao et al., 2019). Paulo et al. (2021) proposed a deep convolutional 
neural network for cross-subject calibration-free drowsiness detection 
based on EEG signals’ spatiotemporal image encoding representations. 
Di Flumeri et al. (2022) developed a synthetic EEG-based index to 
detect drowsy events in automotive applications. The proposed 
MDrow index is proved to be reliable and effective. To further improve 
classification performance, Li et al. (2023) also attempted to propose 
an enhanced ensemble deep random vector functional link network 
for cross-subject fatigue detection performance.

Most of these methods are based on multi-channel EEG, achieving 
excellent performance. However, multi-channel EEG recording 
methods are complex to operate, difficult to carry, and have high 
device costs, all of which hinder their practical application. In addition, 
many EEG electrodes required to perform an EEG acquisition impose 
significant restrictions on the user’s mobility on the user’s movement. 
Compared to multi-channel EEG, only single-channel schedule can 

offer more practical advantages such as reduced relevant costs, easy 
signal acquisition, and improved user comfort (Gong et al., 2024). 
However, due to the individual variability among subjects and 
non-stationarity in EEG signals and the relatively parsimonious 
compared to multi-channel EEG (Gong et al., 2024; Liu et al., 2024), 
designing a zero-calibration drowsiness detection system using only 
single-channel EEG remains a very challenging task. Additionally, the 
high sensitivity to artifacts and the low signal-to-noise ratio of EEG 
signals also exacerbate the difficulty of this task (Cui et al., 2022c).

To address these limitations, some researchers recently focus on 
single-channel EEG-based drowsiness detection using DL methods 
(Liu et al., 2024; Fahimi et al., 2019; Ding et al., 2019; Reddy et al., 
2024). For example, Liu et  al. (2024) explored a single-channel 
EEG-based self-training semi-supervised method to transform the 
unlabeled data into pseudo-labeled data and combine the fuzzy 
entropy feature for fatigue driving detection. Fahimi et  al. (2019) 
proposed an end-to-end deep convolutional neural network (CNN) 
to detect attentive mental states using a single-channel EEG. To design 
a portable wearable EEG device for recognizing driver drowsiness, 
Ding et al. (2019) designed a DL model with a cascaded CNN and an 
attention mechanism. Reddy et al. (2024) proposed an effective hybrid 
DL model for single-channel EEG-based subject-independent 
drowsiness detection, which combined discrete wavelet long short-
term memory and convolutional neural networks. To extract task-
relevant discriminative features, Divvala and Mishra (2024) proposed 
a DL-based attention mechanism to recognize drowsiness state. 
However, these DL models in previous works are often regarded as 
“black-box” classifiers due to their lack of interpretability while 
maintaining accuracy (Gao et al., 2023b; Cui et al., 2021). Hence, it is 
crucial to develop an inherently interpretable DL model to address 
this limitation.

Some efforts had been made to explore interpretable models to 
understand the decision-making process based on the learned 
characteristics of input EEG. For instance, Cui et al. (2021) proposed 
a CNN with long short-term memory (LSTM) to visualize the 
common EEG features learned from single-channel EEG signals for 
driver drowsiness classification. Furthermore, Cui et  al. (2022b) 
proposed an interpretable DL model with compact CNN structure to 
explain what features the model had learned from single-channel EEG 
signals. However, there is usually a trade-off between interpretability 
and performance (Wang et al., 2020). Both inherently interpretable 
methods were designed at the cost of performance degradation as they 
did not adequately mine and extract the salient features implicit in raw 
single-channel EEG signals.

To address the above issues, we  propose a novel interpretable 
residual shrinkage network (ID3RSNet) for driver drowsiness detection 
from single-channel EEG signals. The framework consists of a base 
feature extractor (BaseFE), residual shrinkage building unit (RSBU) 
with soft thresholding (ST), a global average pooling (GAP) layer, and a 
fully connected layer with weight freezing (FC-WF). First, the base 
feature extractor (BaseFE) extracts the essential features of EEG 
frequencies. Second, a residual shrinkage building unit (RSBU) with 
channel-wise thresholds is adopted to improve the feature learning 
ability. Automatic feature extraction is achieved by applying soft 
threshold denoising and attention mechanism within the residual 
shrinkage neural network. Then, a following GAP layer is added to 
avoid overfitting and improve generalization ability. In addition, a 
regularization method of weight freezing is applied in the FC layer to 
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effectively suppress the negative influence of some input neurons on the 
model classification. Based on the designed residual shrinkage network 
structure, we  can use an EEG-based class activation map (ECAM) 
interpretation method to visualize neurophysiologically common 
patterns learned from single-channel EEG signals for classification  
decision.

The main contributions in this work are as follows:

 (1) To the best of our knowledge, we propose the first end-to-end 
inherently interpretable deep residual shrinkage network 
framework to achieve automatic feature extraction and 
enhance the feature learning ability for driver drowsiness 
detection. With only single-channel EEG used, the framework 
has greater potential practical value.

 (2) With the inherently interpretable model framework 
designed, we propose a class activation map interpretation 
method for raw single-channel EEG signals to reveal 
neurophysiologically common patterns in terms of the 
driver’s mental state.

 (3) Extensive experiments with leave-one-subject-out cross-
validation (LOSO-CV) demonstrate the effectiveness of the 
proposed method with reliable classification evidence 
discovered. This work also provides insight into the 
development of portable single-channel EEG devices 
with interpretable neural network for driver drowsiness  
detection.

The study is organized as follows. Section 2 is the materials and 
methods. Section 3 is the experimental results. Section 4 is the 
discussion and future works. The last section is conclusion.

2 Methods

2.1 Overview

To accurately characterize drowsiness-related patterns and enhance 
feature representation from non-stationarity EEG signals with high 
randomness and low signal-to-noise ratio, we  propose a novel 
interpretable residual shrinkage network (ID3RSNet) framework shown 
in Figure 1, whose framework mainly consists of three modules: base 
feature extractor (BaseFE), residual shrinkage building unit (RSBU), and 
classification. First, the BaseFE extracts the essential features from a 3-s 
EEG signal. Following BaseFE, we propose a residual shrinkage building 
unit with channel-wise thresholds (RSBU-CW) to enhance the quality of 
the extracted features and achieve automatic extraction of important 
features, which helps to improve classification performance. Then, a 
global average pooling layer is added as a key component in the inherently 
interpretable model structure, which helps to avoid overfitting and 
improve the generalization ability. In addition, a regularization method of 
weight freezing in the FC layer is applied to effectively suppress the 
negative influence of some input neurons on the model classification. To 
provide trustworthy interpretation classification for the proposed 
ID3RSNet, we introduce an EEG-based class activation map (ECAM) 
interpretation method to reveal neurophysiologically task-related patterns.

2.2 Network of the proposed model

2.2.1 Base feature extractor
Considering that convolutional neural networks (CNNs) are 

widely utilized to capture the EEG features of time series data 

FIGURE 1

Overall architecture of the proposed interpretable network framework.
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(Hu et al., 2023), we designed a base feature extractor (BaseFE) to 
extract the key EEG features. The BaseFE network is designed in a 
shallow network structure. As shown in Figure 1, the S-CNN module 
contains five layers: a 1-D convolution layer, a batch normalization 
layer, a Softshrink activation layer, and a dropout layer.

The Conv1D (32, 64, 2) in Figure 1 refers to 1-D convolution layer 
with 32 filters, a kernel size of 64, and a stride of 2. Setting the kernel 
size to 64, half of the 128 Hz data sampling rate, enables the model to 
extract the EEG frequency features in the range above 2 Hz. Then, a 
batch normalization layer and a Softshrink activation layer are 
followed. The batch normalization is utilized to normalize small 
batches across each feature dimension, effectively mitigating internal 
covariate shifts (Ioffe and Szegedy, 2015). Softshrink function is a 
non-linear activation function that is mainly used for sparse 
representation of EEG data and noise suppression. To mitigate model 
overfitting, a dropout layer is introduced in the following layer.

2.2.2 Residual shrinkage building unit
Inspired that deep residual shrinkage networks achieved high 

fault diagnosing performance in vibration signals (Zhao et  al., 
2020), we introduce the residual shrinkage network to improve the 
feature learning ability from single-channel EEG signals. Both the 
attention mechanism and automatic soft thresholding are 
integrated into the residual network to adaptively eliminate 
redundant information and selected the most discriminative useful 
features during feature learning. This residual structure is to 
prevent vanishing gradients and exploding gradients in 
deep network.

Based on the fact that the importance between each channel of the 
features learned from the EEG signal is different, we use a residual 
shrinkage building unit with channel-wise thresholds (RSBU-CW) in 
this work. In particular, the squeeze and excitation (SE) network is 
adopted to obtain a set of thresholds related to the individual channels 
by modeling the inter-dependencies between the features (Hu et al., 
2020). Soft thresholding incorporated in the RSBU structure can 
adaptively eliminate redundant information and select highly 
discriminative features.

As is shown in Figure 1, two convolutions Conv1D (32, 1, 1) with 
a kernel size of 1 and a stride of 1 are implemented in this block. 
Assuming that the BaseFE module generates a feature map I ∈ RL × T, 
we  apply two convolutions operations (Conv1 and Conv2) to I to 
obtain U (U∈ ℝN × T) in Equation 1:

 ( )( )2 1U Conv Conv I=  (1)

where T represents the length of U, and N represents the total 
number of features.

Then, the feature map X is squeezed to a 1-D vector using an 
absolute operation and an adaptive average pooling layer. The 
excitation operation is used to capture the correlation between the 
individual channels, which can retain the channels with the most 
useful feature information and suppress the channels with less feature 
information (Eldele et al., 2021). In this study, two fully connected 
(FC) layers are added for information aggregation. The first FC layer, 
followed by ReLU, aims to reduce dimensionality, while the subsequent 
layer, followed by a sigmoid function, aims to raise dimensionality. 

The output of the FC layers is scaled to between (0, 1) with the scaling 
parameters. And the scaling parameter is described in Equation 2:

 

1
1 r

r ze
σ −=

+  
(2)

where zr represents the feature at the rth neuron, and σr represents 
the rth scaling parameter. To make the soft threshold positive and not 
too large, the scaling parameter σr is multiplied with the average 
absolute value of Ur to obtain the threshold. The threshold used in 
RSBU-CW is expressed in Equation 3:

 
,averager r i r
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(3)

where τr represents the threshold for the rth channel of the feature 
map, and i, r represent the indexes of length and channel of the feature 
map U, respectively. Rather than the artificial design of filters by 
experts, the threshold is automatically determined through the SE 
attention mechanism. The mechanism is that the CNN automatically 
conducts filter learning and transforms the original data to a new 
space for soft thresholding. The soft thresholding function formula 
can be expressed in Equation 4:
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In this study, τ is a parameter that can be learned by means of 
automatic learning. The thresholds can be kept in a reasonable range, 
thereby preventing the output of soft thresholding being all zeros. 
Finally, the input I is combined with the enhanced features O learned 
from the residual unit by adding an identity shortcut connection. The 
final output of this residual unit is expressed in Equation 5:

 P OI= +  (5)

2.2.3 GAP and FC-WF
To avoid overfitting, the GAP is used to replace the FC layer, 

and the number of model parameters is further reduced 
significantly. The GAP reduces the N dimensional filtered signal to 
N feature points through an average pooling operation. It not only 
helps to improve generalization capability of the network but also 
allows an EEG-based Class Activation Map (ECAM) interpretable 
method to reveal learned patterns in terms of the driver’s 
mental state.

In the fully connected layer, the weight freezing method is 
introduced to suppress the update of some learnable parameters by 
freezing some weights during the backpropagation process. Assuming 
the features inputted into the FC layer are denoted as F = {f1,…, fn}, 
where F∈RL × N. L denotes the size of the mini-batch, and N is the 
feature dimension. Wn denotes the weights and the vector of inputs of 
the FC layer, respectively. Weight freezing is proposed as a 
regularization method to improve classification accuracy, which can 
be implemented in Equation 6:
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(6)

where K is a mask matrix with identical dimensions to Wn, and 
the elements of K are uniformly distributed within the range [0,1]. ⊙ 
is the element-wise multiplication and η denotes the learning rate of 
the optimizer.

When an element is masked, it cannot be  updated during 
backpropagation. Here, we set the threshold value t (=0.2) of K, which 
determines the number of frozen parameters in Wn. In the FC layer, 
we  utilize the weight freezing method not only to make sparse 
connections but also to improve classification accuracy. Finally, the 
cross-entropy loss function with label smoothing regularization of 
parameter α (=0.1) is utilized to optimize the classification model, 
which can be described in Equation 7:

 
( ) ( )1L y 1 log pC

c ccoss C
αα=

 = − − + ∑
 

(7)

where yc is the true label, pc is the predicted probability of the 
model for the class c, and C is the number of classes.

2.3 ECAM interpretation method

Class activation map (CAM) is a heatmap that contains 
classification information, and it can highlight regions most pertinent 
to a specific class through region-level feature highlighting (Zhou 
et al., 2016). The designed residual shrinkage network structure is 
combined with an EEG-based class activation map (ECAM) 
interpretation technique, which allows to visualize 
neurophysiologically common patterns learned from single-channel 
EEG signals for classification decision.

The process of the interpretation method over the input signal is 
shown in Figure  2. The SE residual block is utilized to pay more 
attention to the significant channel information in the feature map by 
adaptively adjusting the weights of each channel. Each channel 

correlates with a different feature and contributes differently to each 
output classes. In this study, the class activation weights (CAWs) are 
the weights of the FC layers, leading to different weights for each 
feature map channel. The generated CAM will give more prominence 
to features that contribute significantly to the model’s decision-
making, while less relevant features will be well suppressed. The CAWs 
of each channel allow us to visualize discriminative regions of the EEG 
signals, which are considered as the basis for classification.

Assuming the 3-s EEG input signal is X = {xi} (i = 1,2,…,384), and 
the activation of the kth node in the output layer of the residual 
shrinkage unit is hk,j. Where k = (1,…,N) with N = 32 representing the 
number of features, and j = (1,2,3,…,T) with T representing the length 
in time dimension. Since the first convolution layer reduces the raw 
signal of length 384 to 192, the final output of the residual shrinkage 
unit is a feature map of 192 (T)*32 (N). Let g

km  denotes the feature 
activation of the kth node output by the GAP layer, and it can 
be computed as follows:

 
,

1 h
T

g
k jk

j
m = ∑

 
(8)

Suppose d
cm  denotes the activation of the node corresponding to 

class c in dense layer. Here, c = 0 or 1 denotes the state of alert or 
drowsy, respectively. We compute d

cm  as follows:

 

g
, kw bd

c k c c
k

m m= +∑
 

(9)

where ωk,c represents the FC-WF layer’s weight associated with 
class c for the node activation g

km , and bc is the bias of class c in the 
FC-WF layer. It is also the CAW utilized in this interpretation method. 
The d

cm  is considered as the final activation of the network. Mc(j) 
denotes the activation map for class c. From Equations 8, 9, Mc(j) is 
computed in Equation 10:

 
( ) , ,j wc k c k j

k
M h=∑

 
(10)

FIGURE 2

Process of the interpretation method over the input EEG signal.
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where bc and 1∕n are neglected for simplicity. Then, the heatmap 
is further normalized by z-score. We can have the heatmap Mc, where 
Mc = (z1,c, z2,c,…, zT,c).

Similar to the CAM method (Zhou et al., 2016), the heatmap 
indicating the classification decision of the model is obtained by 
upsampling Mc(j) to the same length as the input signal. The 
upsampling is to use an equal interpolation method to fill the 
elements based on the original activation length of 192. According 
to the network structure, the convolution and pooling layers of 
BaseFE module reduce the temporal dimension to 1/2 of the input 
signal, and the residual shrinkage block does not change its temporal 
dimension. Therefore, the heatmap can be restored to the original 
length of 384, which is same as the input signal, by duplicating and 
filling each element zj,c two times. The final heatmap is obtained in 
Equation 11:

 

1, 1, , , ,

2 2

, , , , ,c c c n c n cM z z z z
 
 = … … …
 
 
 

 

(11)

2.4 Methods for comparison

In this section, there are several leading single-channel EEG-based 
baseline methods for comparison, including the conventional machine 
learning methods and state-of-the-art deep learning methods.

 (1) Conventional methods: The power feature of EEG bands is one 
of the crucial features for EEG drowsy state recognition (Cui 
et al., 2021). We calculate the relative power (delta, theta, alpha, 
and delta bands) from the Oz channel signal using the Welch’s 
method. Different conventional classifiers are tested, which 
include k-nearest neighbors (KNN), Random Forest (RF), 
Gaussian Naive Bayes (GNB), and SVM.

 (2) EEGNet: EEGNet was designed as a compact CNN model 
(Lawhern et al., 2018). We opt for EEGNet-8,2 over EEGNet-
4,2 due to its higher classification accuracy. Despite its compact 
network, EEGNet-8,2 can achieve the state-of-the-art 
performance in various EEG recognition tasks.

 (3) ShallowConvNet (Schirrmeister et al., 2017): ShallowConvNet 
is a shallow CNN consisting of temporal convolution, spatial 
convolution, and pooling layers.

 (4) DeepConvNet: In addition to the Shallow CNN model, 
Schirrmeister et  al. (2017) proposed another effective deep 
CNN model (DeepConvNet) to capture discriminative EEG 
features for motor imagery classification.

 (5) CNN-LSTM: CNN-LSTM was designed to recognize subject-
independent drowsiness from single-channel EEG and provide 
interpretable analyze for classification (Cui et al., 2021).

 (6) CompactCNN: CompactCNN is proposed as an interpretable 
DL model, which applies the CAM method to visualize EEG 
common features learned from single-channel EEG (Cui 
et al., 2022b).

 (7) TSANet: TSANet is a deep neural network model based on 
temporal-spectral fused and attention which is originally 
used for automatic sleep staging from single-channel EEG (Fu 
et al., 2023).

3 Experimental results

In this section, we  first describe the widely used dataset, our 
experiment, and evaluation metrics. Then, we  conduct extensive 
experiments and present the performance of our model in comparison 
with the strong baselines.

3.1 Data description

In this study, we  use a public sustained-attention driving task 
(SADT) dataset to explore driver drowsiness detection (Cao et al., 2019). 
The EEG data were collected from 27 participants (ranging in age from 
22 to 28) with headset EEG of 32 electrodes at 500 Hz. The driver drowsy 
state was induced through a 90-min nighttime driving simulation which 
is conducted in a VR-based driving simulator. During this procedure, 
lane departure events occurred when the car was drifted from the center 
lane either to the left or right. Participants were asked to promptly steer 
the car back to the center lane as soon as the events occurred. The 
drowsy degree was quantitatively assessed on the basis of the subjects’ 
reaction times to these departure events. By analyzing subjects’ reaction 
time to these events, it was able to gauge their level of drowsiness.

The recorded signals were first filtered by 1–50 Hz band-pass filters 
and then processed by artifact rejection. Cui et al. (2022b) further 
preprocessed the EEG signals by down-sampling to 128 Hz. Then, they 
selected and labeled the samples to generate a preprocessed version of 
the dataset. The samples were extracted for each EEG trail at 3-s length 
before the car deviation event (Gong et al., 2024). Notably, studies have 
shown that drowsiness is associated with EEG power spectrum in the 
theta and/or alpha band (Joutsiniemi et al., 1995). After attempting to 
find good choices of the EEG channel and power spectrum features for 
assessing the drowsiness-related EEG dynamics, it was found that the 
Oz channel is the most effective channel and its power spectrum 
features in the theta and alpha band have good distinguishing ability 
(Pal et al., 2008). Therefore, we select the Oz channel data to find the 
most discriminative features for identifying drowsiness from alert 
samples from the single-channel EEG signals in the study. The 
dimension of each sample is 1 (Oz channel) × 384 (sample points).

To ensure sufficient training and testing samples, each subject 
containing at least 50 samples for each state was selected for the 
dataset. Finally, 2,952 samples from 11 different subjects were collected 
to produce an unbalanced dataset (Cui, 2021a) for the real situation, 
which is described in Table  1. In addition, they also generated a 
balanced dataset including 2022 samples which has been uploaded 
online (Cui, 2021b). In this study, we view the balanced dataset as an 
ideal training dataset for the models and utilize the unbalanced data 
of each subject to evaluate the training model.

3.2 Experimental settings and evaluation 
metrics

In our experiment, we  conduct comparisons on a desktop 
computer with an Intel(R) Core(TM) i5-12600KF CPU and a 
NVIDIA GeForce GTX 1080 Ti graphics card. All the codes were 
implemented in Python 3.6, and our model along with the baseline 
methods was implemented using the PyTorch Library. For EEGNet, 
ShallowConvNet, and DeepConvNet, we made a slight modification 
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to their original models. Since each second convolutional layer in 
these three models is designed to extract features from multi-
channel EEG, here we made a slight modification in each second 
convolutional layer with a 1 × 1 kernel used to adapt for single-
channel EEG signals, which can enhance spatial feature extraction 
and the feature representation ability. We  utilized the Adam 
optimization method with a learning rate of 0.001 and set the batch 
size as 50.

For cross-subject driver drowsiness detection, the leave-one-
subject-out cross-validation (LOSO-CV) is conducted to evaluate our 
model’s effectiveness on a widely used dataset of 11 subjects 
(Autthasan et  al., 2022). In each fold of LOSO-CV, the EEG data 
samples from one subject are set up as a testing set for testing, and the 
data samples from all the other subjects are set up as a training set for 
training. This iterative process is repeated until each subject has been 
tested once as the test subject.

We use accuracy as an evaluation metric of our method in our 
experiment. As the metric of the F1-score considers both the precision 
and recall of the classification model, it is generally considered to 
be the most suitable metric for the unbalanced dataset. Therefore, 
we also adopt the F1-score as an evaluation metric on the unbalanced 
dataset. The metrics of sensitivity test and deletion test are also used 
to evaluate the interpretation of interpretable models.

3.3 Results and comparison

3.3.1 Mean accuracy comparison on the balanced 
dataset

In this section, we compared the classification accuracy of five 
deep learning models tested on the balanced dataset for a standard 
evaluation. Each model was trained from 1 to 20 epochs, with network 
parameters randomized for each iteration. We  conducted each 
evaluation by repeating each model on every subject 10 times, 
resulting in 110-fold for each epoch (10 times × 11 subjects).

Figure 3 shows that the proposed ID3RANet outperforms other 
benchmark DL models. After 5 epochs of training, it achieves a peak 
mean accuracy of 77.16% with the fastest convergence speed. In the 

rest of the first 20 epochs, its mean accuracy stabilizes at above 74.42%, 
outperforming the other four models. In contrast, the CNN-LSTM 
model exhibits slower convergence, reaching an average accuracy of 
73.78% after 16 epochs of training. The CompactCNN and CNN-LSTM 
models achieve the overall higher mean accuracies than both models 
of the EEGNet and ShallowCovnet, and their highest mean accuracies 
in the first 20 training epochs are 73.80 and 73.78%, respectively. Even 
though the CompactCNN model reaches a good performance rapidly 
in the first 10 epochs and stabilizes at approximately 72.20%, it is lower 
than that of the proposed model. The results indicate that the proposed 
method can better capture the class-discriminative EEG features for 
drowsiness detection from single-channel EEG signals.

3.3.2 Comparison results on the unbalanced 
dataset

In this section, we show the accuracies and F1 score comparison 
results of different methods tested on the unbalanced dataset, which 
is closer to the real-life scenarios. As shown in Tables 2, 3, comparing 
to all baseline models (including conventional methods and six deep 
learning methods), our proposed method achieves the better 
performance, due to its enhanced features learning ability. Moreover, 
we can also draw the following conclusions. First, it can be found that 
conventional methods (KNN, RF, GNB, and SVM) generally achieve 
relatively inferior classification performance compared to deep 
learning-based approaches except EEGNet. This demonstrates that the 
end-to-end deep learning methods can learn more task-relevant 
discriminative features for classification. Second, our method 
improves the average classification accuracy of approximately 4.85% 
on average and 7.8% on maximum in comparison with the deep 
learning methods such as CompactCNN and TSANet. This 
demonstrates that our method can achieve effective mining of 
important information implicit within single-channel EEG signals by 
effectively exploiting attention and soft thresholding in the residual 
shrinkage network. Furthermore, our method achieves an average 
F1-score almost 1.38% higher than the best TSANet method, all of 
which demonstrates its effectiveness and potential practical value. 
Finally, multiple optimal or suboptimal classification results (optimal 
results bolded in black) are achieved in individual test for each subject, 

TABLE 1 Number of samples in the unbalanced dataset.

Subject ID Sample number

Alert Drowsiness

1 94 96

2 363 66

3 75 180

4 118 74

5 161 112

6 83 116

7 51 103

8 238 132

9 243 157

10 192 54

11 113 131

Total 1,731 1,221

FIGURE 3

Average cross-subject classification accuracies of the proposed 
model and four benchmark deep learning models for training 
epochs from 1 to 20.
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which also proves its strong generalization ability for classifying cross-
subject drowsy states from single-channel EEG signals.

3.3.3 Ablation experiments of the proposed 
modules

To verify the effectiveness of each module of our model, 
we conduct ablation experiments tested on the unbalanced dataset. 
Note that our proposed is made up of base feature extractor (BaseFE), 
residual shrinkage building unit (RSBU) with soft thresholding (ST), 
GAP, and a fully connected layer (FC) with weight freezing (WF). 
Specifically, we derive six model variants as follows.

 1) BaseFE: The base feature extractor module only.
 2) w/o ℝSBU: The model removes the residual shrinkage building 

unit with soft thresholding.
 3) w/o ST: The model removes the soft thresholding.
 4) w/o GAP: The model removes the global average pooling layer.
 5) w/o WF: The model removes the weight freezing from the fully 

connected layer.
 6) ID3ℝSNet: The model includes each module of proposed model 

in this study.

From the results of ablation study shown in Figures 4A,B, we can 
probably summarize as follows. First, the model variable w/o ℝSBU, 
which completely removes the residual shrinkage building unit 
module, yields almost the worst results. This suggests that the channel-
wise residual shrinkage building unit contributes significantly to 
enhance the features learning ability and model classification 
performance. Furthermore, in comparison with the model variable 
w/o ST and w/o ℝSBU, we know that the residual SE block contributes 
more to boosting feature representation. Second, the model variable 
w/o GAP achieves obviously inferior results, indicating that the GAP 
can effectively reduce overfitting and improve generalization capability 
of the proposed model. Finally, the proposed ID3ℝSNet achieves 
superior classification performance with each module integrated, 
which shows the necessity and effectiveness of each module.

3.3.4 Evaluation of sensitivity test and deletion 
test

For sensitivity tests, we randomly selected 50 samples of each class 
from each subject in the unbalanced dataset and thus have in total 11 
(subjects) × 2 (classes) × 50(samples) = 1,100 samples for evaluation 
(Cui et al., 2023). Inspired by the sensitivity test proposed by Cui et al. 

TABLE 2 Comparison of different methods for cross-subject classification accuracy on the unbalanced dataset (%).

Methods Subject ID Avg. 
Acc.

1 2 3 4 5 6 7 8 9 10 11

KNN 71.05 41.96 36.86 67.71 69.60 67.34 68.83 62.16 76.00 83.33 61.89 64.25

RF 70.53 40.33 35.29 68.75 72.53 73.87 71.43 63.24 77.25 86.59 56.15 65.09

GNB 77.89 48.48 32.16 73.96 76.92 72.36 70.78 45.95 76.25 85.77 60.66 65.56

SVM 76.32 44.76 34.12 68.75 74.36 71.86 74.68 57.03 82.50 90.24 63.11 67.07

EEGNet 80.00 46.15 32.94 71.88 75.09 73.37 71.43 52.16 83.75 85.77 63.52 66.92

ShallowConvNet 85.26 45.92 32.94 59.90 67.40 80.40 78.57 42.97 84.00 89.02 73.36 67.25

DeepConvNet 72.63 59.21 30.59 59.90 61.90 75.38 75.97 70.54 81.00 92.68 57.38 67.02

CNN-LSTM 77.89 42.89 52.55 66.67 78.02 79.40 75.97 72.43 81.25 86.99 75.41 71.77

CompactCNN 78.42 53.85 52.16 64.58 78.39 77.39 72.73 72.97 89.25 84.15 72.95 72.44

TSANet 84.21 48.25 46.67 71.88 78.75 86.43 77.92 63.24 91.25 90.65 72.54 73.80

Ours 83.68 50.82 49.41 76.56 86.81 79.40 77.27 69.73 89.50 82.11 76.64 74.72

TABLE 3 Comparison of different methods for cross-subject classification F1-scores on the unbalanced dataset (%).

Methods Subject ID Avg. 
F1.

1 2 3 4 5 6 7 8 9 10 11

KNN 72.08 23.85 29.69 65.17 50.89 67.01 78.18 62.96 74.74 62.39 57.14 58.55

RF 70.83 24.26 26.01 65.91 56.14 73.74 79.82 64.95 75.86 69.72 51.14 59.85

GNB 76.67 28.48 11.28 73.12 64.41 71.20 79.82 56.90 76.31 66.67 45.45 59.12

SVM 75.41 26.17 17.65 64.71 56.25 69.89 82.19 62.23 80.45 76.92 51.61 60.32

EEGNet 81.77 24.92 15.08 65.90 56.05 72.13 82.14 57.59 81.20 74.07 43.02 59.44

ShallowConvNet 82.41 25.42 53.38 53.13 37.58 73.96 82.57 56.51 77.18 74.02 50.28 60.58

DeepConvNet 65.79 10.26 3.29 38.40 13.33 73.80 81.59 56.57 70.08 81.25 37.35 48.34

CNN-LSTM 76.40 25.53 64.52 65.22 75.61 80.75 82.13 64.58 79.34 72.88 78.57 69.59

CompactCNN 76.57 26.67 60.89 65.66 74.46 78.05 78.35 70.23 87.09 67.77 73.60 69.03

TSANet 83.87 23.97 51.77 70.97 65.88 87.78 83.65 65.66 89.55 78.10 67.63 69.89

Ours 83.06 26.48 58.25 73.37 84.07 79.40 82.59 66.27 87.35 65.63 77.47 71.27
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(2023), we adopted the non-linear perturbation (sine wave combined 
with noise) and adjusted the perturbation strength dynamically with 
a ranged perturbation scale of the input sample. It is assumed that the 
perturbations will not cause the sample to deviate significantly from 
its original distributed. The sensitivity test is performed on the original 
contribution heatmap to reflect the best correlation obtained between 
the perturbed batches and the model output. Here, we set the scaling 
factor n of perturbation to 1–5 and calculate the Pearson correlation 
coefficient (PCC) between the original heatmap and perturbed 
heatmap as a quality metric of the contribution map. From Figure 5A, 
it can be observed that our method achieves higher average correlation 
coefficients in the sensitivity tests compared to the CompactCNN 
baseline (Cui et al., 2022b). It indicates that the contribution maps 
generated by our model have higher stability and consistency under 
different input perturbations.

According to the deletion test proposed in the reference (Petsiuk 
et al., 2018), we also use the metric of deletion test in this study. In this 
test, we ranked the sampling points of the input sample according to 
their descending order based on their values in the contribution map 
(Cui et al., 2023). By setting the sample threshold for deleting values 
in the heatmap, we calculated the predicted probabilities when the 
corresponding points were removed from the sample by setting their 
values to zeros. The indicative of a high-quality contribution map is a 
sharp drop of the predicted probabilities for the corresponding class. 
From Figure 5B, it can be seen that our method achieves lower average 
values of predicted probabilities with the different sample thresholds 
compared to the CompactCNN baseline. It indicates that the 
interpretation of our method is more effective than the CompactCNN 
due to the removal of important features.

3.3.5 Interpretation on the learned patterns from 
single-channel EEG signals

In this section, we explore what EEG patterns our proposed 
ID3RSNet has learned using the proposed ECAM interpretation 
method, which is described in Section 2.3. From the generated 
heatmap of EEG amplitude fluctuation and the bar graph of relative 
power, we can explain the most discriminative features learned as 
evidence of the model classification. To verify the reliable 

interpretation of the model decision, we compare our method with 
the leading interpretable deep learning method CompactCNN (Cui 
et  al., 2022b). Figures  6, 7 show the visualization of some 
representative EEG samples labeled as drowsy and alert, respectively. 
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Result of ablation experiments on unbalanced data settings. The ‘w/o’ represents ‘without’. The values of accuracy and F1-score are percentile. 
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FIGURE 5

Evaluation results of sensitivity test and deletion test for interpretable 
models. (A) Sensitivity test. (B) Deletion test.
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The label and prediction probability of each OZ channel signal 
sample are titled.

Extensive experiments have found that most drowsy samples 
typically contain a high ratio of theta and delta waves, e.g., as shown 

in Figure 6A, or alpha waves, e.g., as shown in Figure 6B. From the 
visualization of amplitude fluctuation and relative power displayed in 
Figure  6A, we  have discovered that both methods have captured 
several episodes, which contain rhythmic bursts of slow waves in the 

FIGURE 6

Illustrative comparison of the visualization of learned patterns on correctly classified drowsy samples: (A) theta-delta burst; (B) alpha spindle.

FIGURE 7

Illustrative comparison of the visualization of learned patterns on correctly classified alert samples: (A) beta rhythm; (B) delta rhythm.
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theta-delta band, which is identified as strong evidence for drowsy 
classification. Actually, these bursts located in the theta-delta band are 
closely associated with drowsiness (Britton et al., 2016). From the 
second sample displayed in Figure 6B, we found that the EEG signal 
in the alpha band has a stronger amplitude and higher relative power, 
characterized by the narrow frequency peaks. Compared to 
CompactCNN, our method has captured more regions of spindle-like 
structures in the alpha band from the central part of the input signal, 
recognized as strong evidence of drowsiness. It is well known that the 
captured alpha spindles in EEG signals have been demonstrated to 
be a strong indicator for recognizing fatigue driving (Simon et al., 
2011). Compared with CompactCNN in Figure 6, we can discover 
that our method have learned more discriminative effective features 
such as the slow theta-delta waves and alpha waves, to achieve higher 
classification accuracy.

It can be seen that most alert samples typically contain a high ratio 
of beta waves, e.g., as shown in Figure 7A, or a high ratio of delta 
waves, e.g., as shown in Figure 7B. From Figure 7A, we can discover 
that both methods have captured some short EEG episodes containing 
lots of high-frequency beta waves as strong evidence for alertness. 
Notably, these identified beta waves were typically linked to active, 
busy, attention, or even electromyography (EMG) activities, which is 
known as the signals during wakeful state (Baumeister et al., 2008; 
Goncharova et al., 2003). Compared to CompactCNN, our method 
has not identified the pattern of one high amplitude peak wave that 
may be caused by eye blinking or eye movement, as the evidence of 
alertness. This suggests that our method is not only more resistant to 
the interference caused by the artifacts in the EEG signals, but it also 
achieves the superior classification result.

From Figure  7B, we  can discover that both methods have 
captured these large-voltage and low-frequency waves (delta band) as 
strong evidence for alertness. With these discriminative invariant 
features found, both two methods have achieved high likelihoods. 
Due to the fact that delta waves are dominant during the deep sleep 
phase, they are more likely caused by sensor drifts or subject 
movements during wakeful state. In fact, these typical patterns in 
EEG signals including EMG and movements are the strongest 
indicators for wakefulness (Britton et al., 2016). The visualization 
results prove that our method achieves higher classification accuracy 

with neurophysiologically reliable patterns found in single-channel 
EEG signals.

4 Discussion and future work

4.1 Analysis of confusion matrixes

The confusion matrixes of the proposed ID3RSNet are shown 
in Figure 8. These matrixes were generated by summing the scores 
for each subject when serving as test data. In the case of the 
balanced dataset, Figure 8A shows that the model recognized alert 
and drowsy states with similar results, correctly predicting 
approximately 80% of each category. This indicates that the model 
has a relatively balanced ability to discriminate between different 
categories. In addition, Figure  8B reveals that the proposed 
method performed slightly better in recognizing the alert state 
compared to the drowsy state on the unbalanced dataset since 
there are more data with drowsy label than the alert. Furthermore, 
it can be also found that the achieved classification results of the 
proposed method tested on unbalanced dataset are inferior to the 
results tested on the balanced dataset, since the unbalanced 
dataset has 930 more unseen test EEG samples than the 
balanced dataset.

4.2 Analysis of computational complexity

To verify the computational efficiency of the proposed ID3RSNet, 
we  evaluate the testing time for each subject, the FLOPs and the 
number of parameters on the unbalanced dataset, and the mean 
training time for each subject on the balanced dataset for different 
lightweight deep learning methods. All experiments used the same 
platform with the same hardware configuration and the same software 
configuration, which are described in Section 3.2. Table 4 indicates 
that, comparing to the state-of-the-art lightweight methods, the 
proposed method achieves optimal performance with no significant 
difference in computational complexity. Even though the proposed 
model takes a little longer testing time for each subject than other 

FIGURE 8

Confounder matrix for two types of data. (A) Confusion matrix on the balanced dataset. (B) Confusion matrix on the unbalanced dataset.

https://doi.org/10.3389/fnins.2024.1508747
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Feng et al. 10.3389/fnins.2024.1508747

Frontiers in Neuroscience 12 frontiersin.org

baselines due to the extensive computation of weighting freezing 
(WF), this speed is still quite fast for driver drowsiness detection.

4.3 Analysis of different types of thresholds

There are two types of thresholds in residual shrinkage building 
unit (RSBU): channel-shared (CS) thresholds and channel-wise 
(CW) thresholds. The RSBU-CW differs from the RSBU-CS by 
applying an individual threshold to each feature map channel. As 
shown in Table  5, the results demonstrate the effectiveness of 
channel-wise thresholds for each channel of the extracted feature 
map, which is adopted in our proposed ID3RSNet. This also 
indicates that the RSBU-CW is more effective for eliminating 
redundant information and automatically selecting important 
features comparing to the RSBU-CW.

4.4 Considering federated transfer learning 
in future work

In this study, we explore a promising research topic that an 
inherently interpretable residual shrinkage network (ID3RSNet) is 
developed to improve classification performance with interpretable 
evidence for driver drowsiness detection. To further generalize well 
to unseen subjects in real-world scenarios, we must try to make 
further exploration to design transfer learning including 
unsupervised domain adaptation (UDA) methods, which have the 
potential in mitigating domain discrepancies among different 
subjects (Gao et al., 2023a). It is important to note that EEG data 
contain rich privacy information from each individual, posing a 
potential risk for privacy leakage when sharing personal source data 
for training. Federated learning (Rao et al., 2024) that can jointly 
deploy the deep learning model in the edge devices may address the 
problem of protecting data privacy and security. In the future, 
we  will focus on the optimized solution of federated transfer 
learning for driver drowsiness detection with single-channel 
EEG. With private data for training provided by different edge 
devices and aligned feature distribution, this solution will further 
improve generalization performance for privacy-preserving 
drowsiness detection of source subjects.

5 Conclusion

In this study, we propose a novel interpretable residual shrinkage 
network (ID3RSNet) for cross-subject driver drowsiness detection 
with single-channel EEG. Soft thresholding and attention mechanisms 
integrated into the residual shrinkage network are applied to 
automatically enhance the representation ability of important features. 
In addition, both the GAP layer and the WF regularization approach 
are utilized to further improve classification performance. With the 
inherently interpretable network structure designed, we propose an 
EEG-based class activation map (ECAM) interpretable method to 
visualize discriminable common patterns of single-channel EEG 
signals that contribute significantly to classification. Extensive 
experimental results indicate that our interpretable model with 
neurophysiologically reliable evidences, e.g., alpha spindles and theta-
delta bursts, achieves the current state-of-the-art performance. 
Moreover, this study also provides insight into the development of 
portable single-channel EEG devices with interpretable neural 
networks for driver drowsiness detection in real-life scenarios.
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