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1 Introduction

After more than a decade since the Imagenet breakthrough (Krizhevsky et al., 2012),

there is no doubt that Deep Learning (DL) has established itself as a powerful resource

whose limits and risks remain difficult to assess (Bengio et al., 2024). This success,

originated from the ability of deep neural networks to create representations of complex

data with multiple levels of abstraction (LeCun et al., 2015), has inevitably attracted

researchers from different domains, including multidisciplinary ones.

In computational neuroscience (Trappenberg, 2009), deep learning has offered novel

insights into the functionalities of the brain, demonstrating a remarkable ability to

exploit the intrinsic multimodality of the field (Saxe et al., 2021). This is also reflected

in the increasing volume of publications encompassing diverse data types such as

electroencephalographam (EEG), magnetoencephalographam (MEG), structural (MRI)

and functional magnetic resonance imaging (fMRI) (Zhu et al., 2019; Zhang et al., 2021).

Nevertheless, the potential of deep learning in neuroimaging data analysis is countered by

several critical issues (Miotto et al., 2018), including the scarcity of large open datasets,

the poor generalizability of DL models, their lack of interpretability, and the poor

reproducibility of results, which is discussed in this work.

According to National Academies of Sciences, Engineering, and Medicine et al.

(2019), reproducibility is defined as the ability to “obtain consistent results using the

same input data; computational steps, methods, and code; and conditions of analysis.”

This definition differs from that of replicability, commonly mistaken as a synonym,

which is instead defined as the ability to “obtain consistent results across studies

aimed at answering the same scientific question, each of which has obtained its own

data.” From the above definitions, it is possible to derive how reproducibility solely

depends on how authors facilitate the emulation of the same computational environment.

Improving reproducibility, especially in a deep learning scenario, is therefore crucial for

ensuring methodological robustness and result trustworthiness. However, when analyzing

neuroimaging deep learning studies, several researchers have expressed concerns on how

authors rarely report the key elements that make a study reproducible (Ciobanu-Caraus

et al., 2024; Colliot et al., 2023). A recent review of DL applications for medical image

segmentation found that only 9% of the selected studies were reproducible (Renard et al.,

2020), a conclusion also supported by other independent studies (Moassefi et al., 2024;

Marrone et al., 2019; Ligneris et al., 2023). Furthermore, the same problem was discovered

in DL-EEG applications, where, from a review of 154 selected papers, only 12 were found

to be easily reproducible (Roy et al., 2019).
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The above statistics highlight not only the severity of the

reproducibility crisis, but also how often this important issue

is overlooked by both authors and publishers. Insufficient

reproducibility not only threatens the credibility of scientific

findings, potentially hindering the discovery of new knowledge

in the domain (e.g., treatments for neurological disorders),

but also introduces inconsistencies in results due to factors

such as dataset diversity, variability in preprocessing, and

discrepancies in model implementation and evaluation. Such

inconsistencies heighten the risk of misinterpreting data or

drawing incorrect conclusions that support the validity of a

framework over another, thereby posing a potential negative

impact on clinical outcomes. For instance, various studies

using deep learning to classify different types of dementia or

to predict cognitive scores with extremely high accuracies have

been questioned not only for their lack of reproducibility, but

also for potential performance biases arising from inadequate

data partitioning methods or ambiguous validation or model

selection procedures (Brookshire et al., 2024; Wen et al.,

2020). In contrast, other disciplines have achieved greater

reproducibility through the use of standardized datasets and

methodologies. For example, the ImageNet dataset (Krizhevsky

et al., 2012) has significantly advanced computer vision by

establishing benchmarks categorized by learning methods,

while the General Language Understanding Evaluation (GLUE)

benchmark provides a collection of resources for training,

evaluating, and analyzing natural language understanding systems

(Wang et al., 2018).

Consequently, there is a need for the neuroimaging

field to adopt similar practices to improve the reliability

of published research, which heavily depends on its

reproducibility. To contribute in this direction, this

paper outlines the key elements necessary for achieving

reproducibility in neuroimaging deep learning studies

and organize them in a table that can be also used as

a checklist.

2 Improving reproducibility

Reproducibility can only be achieved if considered since

the design of the study. Even in such cases, deep learning

presents numerous sources of irreproducibility, making it difficult

for researchers to account for them all. Various checklists

have been proposed to guide neuroscientists in designing DL

studies (Roy et al., 2019; Moassefi et al., 2024), yet they

often focus on specific data types or do not effectively explain

how certain features affect reproducibility. To provide a clear

checklist for researchers, this section introduces an updated

table listing 30 key elements that are essential to ensuring

reproducibility. Features in Table 1 are organized into six

categories and discussed concisely in the following sub-paragraphs,

highlighting how the absence of such information can hinder

reproducibility and affect the reliability of results. Additionally,

specific locations (paper, supplementary material, repository) are

suggested to help authors improve clarity and reduce density in

the papers.

2.1 Software and hardware

Reproducibility is ensured only if authors share the source

code within an open platform like GitHub.1 However, in

neuroscience this is done only 10% of the times, in contrast

with other domains like computer vision, where the percentage

can reach 70% (Pineau et al., 2021). Sharing a well organized

code is crucial, as it provides valuable insight into the

implementation correctness. Additionally, releasing an easily

executable code can facilitate the design of fair comparisons

between the original and new results, which helps building

useful benchmarks.

On the paper side, the name and version of each main

software library should be clearly reported. This helps to

limit any randomness introduced by unnoticed changes in

the library’s code base, which can potentially compromise the

reproducibility and repeatability of results (Alahmari et al.,

2020). For the same reason, the entire environment should be

also exported and uploaded within the repository. Furthermore,

authors should report additional computational details to

help tracking other known hardware non-determinism (Chen

et al., 2022). These include: GPU model and number, CUDA

version, training time, memory allocation, and parallelization

across devices.

2.2 Dataset

Previously cited review studies agree that only a small portion

of researchers share the data on dedicated open platforms. Sharing

health data is indeed problematic due to strict privacy regulations.

However, researchers should not feel discouraged, since there are

many tools nowadays designed to facilitate data de-identification,

reorganization in standardized formats (e.g., BIDS Gorgolewski

et al., 2016), and sharing with a digital object identifier (e.g.,

Zenodo,2 OpenNeuro3 Markiewicz et al., 2021). Sharing raw data

not only enhances the reliability of research, but also encourages

other teams to try improving the original results. In addition,

increasing the number of public data can facilitate the creation

of multi-center datasets, which are crucial for training DL models

being able to better generalize on unseen data. For example, the

increasing availability large open-source datasets has encouraged

researchers to explore promising deep learning architectures, such

as transformers, improving the investigation of the spatiotemporal

dynamics of the human brain (Kim et al., 2023; Tang et al., 2023).

Describing the dataset in detail is also important. The

paper should clearly indicate the number of subjects, relevant

demographic data, number of training samples, and data

acquisition modalities. Data acquisition modalities may include the

channel map, sampling rate, and reference for EEG data, or the

scanner model, voxel size, and acquisition sequence for MRI data.

1 https://github.com

2 https://zenodo.org

3 https://openneuro.org
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TABLE 1 List of criteria a research study should fulfill to ensure

reproducibility.

Category Feature Placement

Software and hardware

1 Source code Open repository (e.g., GitHub)

2 Software environment Paper and source code

3 Computational resources Paper

Dataset

1 Raw or preprocessed

data

Open platform (e.g., OpenNeuro)

2 Number of subjects Paper and supplementary

3 Demographic data If multiple datasets are used,

provide a summary table

within the paper’s main body4 Number of samples

5 Acquisition modalities

Data preprocessing

1 Artifact handling

algorithms

Paper, supplementary, source code

2 Normalization and

standardization

Specify the parameters used

for each preprocessing step

and annotate manually

performed operations
3 Harmonization and

co-registration

4 Resampling

5 Data augmentation

Model

1 Architecture description Paper, supplementary, source code

2 Number of learnable

parameters

Provide a detailed summary table

within the supplementary material

3 Input dimension

Training hyperparameters

1 Random seed Paper

Provide all the information

in a dedicated subsection

Consider uploading the

hyperparameter search results

within the main repository,

or within the supplementary

material

2 Parameter initialization

3 Batch size

4 Number of epochs

5 Loss functions

6 Optimization algorithms

7 Learning rate and

schedulers

8 Stopping criteria

9 Regularization

10 Hyperparameters search

method

Model evaluation

1 Data partition Paper and supplementary

2 Validation scheme Provide the result of each training

within the main repository,

or as a supplementary material3 Performance metric

4 Baseline comparison

2.3 Data preprocessing

Medical data are usually processed with complex pipelines,

not necessary fully automatic. It is therefore extremely important

to make this step reproducible, as different implementation of

the same pipeline can lead to different results. For example,

minimal changes in the IClabel’s thresholds (Pion-Tonachini et al.,

2019) can drastically alter the EEG’s spectral properties; similarly,

the convergence threshold in the ANTs software (Avants et al.,

2014) can heavily affects the MRI registration. Consequently,

any customizable parameter (or manually performed operation)

should be clearly described in the paper. Alternatively, researchers

may upload preprocessed data alongside the raw data, enabling

consistent input for analysis and assisting laboratories with

limited computational resources in reproducing results. Data

augmentations should also be clearly described, with particular

regard to the range of random values used during their execution.

2.4 Model architecture

Deep learning models should be described on several fronts,

especially if architectures are particularly complex. First, the paper

should include a schematic representation of themodel, and specify

its input dimension and number of trainable parameters. (If the

model comes from an external library, its name and version should

be reported.) Second, supplementary material should provide a

full summary table where the number of parameters, input and

output dimensions, and other customizable features (e.g., weight

constraints, grouped convolutions) are listed for each layer of the

network. Finally, the actual model’s implementation should be

uploaded within the source code, as different implementations are

characterized by different parameters initialization.

2.5 Training hyperparameters

Table 1 lists a set of 10 training hyperparameters that should

be described within the paper. For each of them, it is important

to specify the value of each customizable parameter, if necessary

in a table. Authors are encouraged to pay special attention to the

use of random seeds as a way to control randomness in the code.

Simply setting the random seed at the beginning of a script might

not be enough. Best practice is to check if model’s parameters after

initialization and at the end of the training are the same onmultiple

rerun. Additionally, libraries like Pytorch (Paszke et al., 2019)

can be configured to use a set of deterministic algorithms which,

although slower, can enhance reproducibility in DL experiments.

2.6 Model evaluation

In neuroimaging data analysis, it is best practice to evaluate

DL models with subject-based cross-validation procedures, which

require to partition the dataset multiple times in training

and validation sets (Kunjan et al., 2021). Partitions should be
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reproducible, because different splits can dramatically change the

results due to strong subject-based characteristics that can guide

the learning process toward different loss minima. Furthermore, it

is important to clearly state how the validation set is used during

training. While switching to a train-validation-test split scenario as

part of a nested cross-validation, as proposed in Kim et al. (2022),

is preferable, it is unfortunately usual to find works that use the

validation set to stop the training. This process introduces data

leakage and affects the reliability of the results. Nevertheless, this

information is often omitted (Pandey and Seeja, 2022), leaving the

question of whether data leakage was introduced unanswered.

3 Discussion

Designing a reproducible deep learning experiment, especially

in a complex and heterogeneous field like neuroscience, is

extremely challenging. Researchers must consider several

factors that can influence experimental outcomes; otherwise,

reproducibility can be permanently lost. In computational

neuroscience, DL applications to neuroimaging data require

multiple training instances to be run as part of subject-based

cross-validation procedures (e.g., Leave-N-Subject-Out, typically

using 5 or 10 folds Poldrack et al., 2020). Even with modern GPUs

capable of performing 1012 floating point operations per second,

these strategies can be time-consuming and computationally

intensive. It is natural that researchers might hesitate to re-run

the analysis if they encounter reproducibility issues. Additionally,

deep learning advances rapidly, with numerous papers published

every month. While this rapidity fuels the research teams’ need

to quickly disseminate their work, it should also not undermine

reproducibility, which is central to the scientific method and

a necessary (though not sufficient) condition for a scientific

statement to be accepted as new knowledge (Colliot et al., 2023).

Focusing on reproducibility indirectly compels researchers to

develop methodologically robust experiments that yield more

reliable results.

Technical reproducibility in DL studies can only be assured if

both the code and dataset are released by the study group. Although

privacy regulations can complicate data sharing, teams can

nonetheless make their source code publicly available (Ciobanu-

Caraus et al., 2024). This will provide a complementary resource

that is often necessary for clearly describing neuroimaging deep

learning studies, especially when articles are subjected to word or

page limits. Table 1 not only lists 30 key reproducibility elements,

but also suggests specific places to present them without hindering

the paper’s readability. However, this alone might not be enough.

Actions are required also from the publisher side; in fact, many of

them have begun revising their policies to strongly encourage, and

occasionally mandate, the sharing of code and research data.

In conclusion, while deep learning is a powerful tool, it

still remains extremely sensitive to minimal variations in the

experimental setup. It is essential to re-evaluate priorities, especially

in sensitive applications like medical ones, and look beyond mere

model performance. Without addressing critical issues such as

reproducibility and generalizability, reported accuracies may be

seen as mere numbers lacking practical meaning.
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