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The circadian clock regulates physiological and biochemical processes in nearly 
every species. Sexual and reproductive behaviors are two processes controlled 
by the circadian timing system. Evidence supporting the importance of proper 
clock function on fertility comes from several lines of work demonstrating 
that misalignment of biological rhythms or disrupted function of the body’s 
master clock, such as occurs from repeated shift work or chronic jet lag, 
negatively impacts reproduction by interfering with both male and female 
fertility. Along these lines, dysregulation of clock genes leads to impairments 
in fertility within mammals, and disruption of circadian clock timing negatively 
impacts sex hormone levels and semen quality in males, and it leads to ovulatory 
deficiencies in females. Here, we  review the current understanding of the 
circadian modulation of both male and female reproductive hormones—from 
animal models to humans. Further, we  discuss neural circuits within the 
hypothalamus that may regulate circadian changes in mammalian sexual 
behavior and reproduction, and we explore how knowledge of such circuits 
in animal models may help to improve human sexual function, fertility, and 
reproduction.
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1 Introduction

According to the World Health Organization (WHO), infertility is considered a 
global public health problem. Indeed, both infertility and subfertility affect a significant 
proportion of the population: approximately 17.5% of reproductive-aged adults, 
or ~ 1 in 6 individuals, experience infertility (WHO, 2022). Infertility and subfertility 
can be divided into several categories with both known and unknown (i.e., idiopathic) 
etiologies. Many known factors include age at time of conception, ovulatory dysfunction, 
tubal disease, low sperm count, endocrine, reproductive and/or genetic disorders 
(Carson and Kallen, 2021; Vander Borght and Wyns, 2018). Notably, 30% of infertile 
couples, worldwide, are diagnosed with idiopathic infertility, defined as the inability of 
an otherwise healthy couple (under 35 years of age) to achieve pregnancy after 12 
monthly cycles of unprotected intercourse (Sadeghi, 2015).Thus, while the exact causes 
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that drive infertility may depend on several factors, circadian 
dysfunction likely plays a role in the inability for some of these 
couples to conceive.

Nearly all organisms rely on the ability to synchronize their 
physiological and behavioral processes to external time cues. This 
includes the circadian regulation of sexual behavior and 
reproduction which is entrained daily to improve the odds of 
survival for the individual and the species. In mammals, the ‘master 
clock’ that sustains such intrinsic rhythms is located in the anterior 
portion of the hypothalamus in a region known as the 
suprachiasmatic nucleus (SCN). The SCN resides at the top of a 
hierarchical system consisting of multiple ancillary oscillators found 
throughout the body and other brain regions. The SCN serves to 
orchestrate the phase alignment between environmental signals, 
such as sunrise, with endogenous events, such as peak hormonal 
release, thus allowing for proper functioning of the hypothalamic–
pituitary gonadal (HPG) axis—one of the central regulators of 
sexual behaviors.

We discuss the current literature regarding the role of the 
circadian timing system in the regulation of sexual behavior and 
reproduction in mammals. To begin, we  provide an overview of 
circadian clock timing and its regulation of both male and female 
reproductive hormones. We then summarize the role of the SCN and 
circadian system on conception and outline the hypothalamic neural 
circuits that have been shown to underlie sexual behaviors. Further, 
we review circuits and genes in rodent models that may modulate 
time-of-day dependent changes in sexual behavior(s) (Figure 1), and 
we highlight how a better understanding of circadian timing and sex 
can help advance our knowledge of human reproductive behaviors 
and fertility.

2 Overview of the circadian timing 
system

Nearly every aspect of mammalian physiology and behavior 
is shaped by a ~ 24 h  cycle, or circadian rhythm, which is 
coordinated by the SCN. This biological timekeeping process is 
self-sustaining and functions to adjust the body to geophysical 
time, even in the absence of a zeitgeber, or external timing cue, 
and it is maintained by circadian clock genes that function to 
create a transcription-translation feedback loop. From a basic 
level, at the center of this feedback loop is a basic helix–loop–
helix (bHLH) transcription factor heterodimer formed by two 
proteins: CLOCK and BMAL1. By binding to an E-box enhancer, 
this activator complex functions to drive the expression of Period 
(Per1 and Per2) and Cryptochrome (Cry1 and Cry2) gene families. 
PER and CRY proteins serve as a heterodimer repressor complex 
and translocate to the nucleus to inhibit the CLOCK:BMAL1 
dimer, thus negatively regulating their own transcription. 
Degradation of the PER:CRY complex occurs via a 
phosphorylation and ubiquitin-dependent pathway, and the 
dissociation of this complex then relieves the repressive effect of 
the CLOCK:BMAL1 complex to allow for a subsequent round of 
Per and Cry gene expression to occur, which generates a ~ 24 h 
temporal rhythm. For excellent reviews of the mammalian 
circadian system, we direct reviewers to the following papers: 
Takahashi (2017) and Lowrey and Takahashi (2000).

Light is the most potent stimulus for entraining intrinsic rhythms 
of the SCN to the day-night cycle, and the retinohypothalamic tract 
(RHT) serves as a photic neural input pathway for the SCN to receive 
light cues (Miyamoto and Sancar, 1998). To this end, the SCN 

FIGURE 1

Proposed hypothalamic circuitry modulating time-of-day dependent sexual behaviors in mice. There are several key circuits in the hypothalamus that 
may be responsible for sexual behavior patterns observed across the day in mice. In both males and females, the subparaventricular zone (SPZ), which 
contains mainly GABAergic neurons, receives efferent fibers from the SCN. In males, this circuit is further defined by the VMHvlEsr1 cells, wherein low-
level stimulation of these cells leads to mounting behaviors (though without USVs; Lee et al., 2014). The SPZ also projects to the mPOA, which 
mediates sexual motivation (Jennings and de Lecea, 2020). Notably, activation of mPOAEsr1 cells in males leads to USV-positive mounting behaviors 
and sexual arousal (Karigo et al., 2021). Within females, stimulation of VMHvlCckar cells is known to increase female sexual behaviors (Yin et al., 2022), 
while silencing of mPOAEsr1 cells leads to deficits in female sexual and maternal behaviors (Fang et al., 2018). Asterisks denote the main difference in cell 
type between males and females. Schematic diagram was created with BioRender.
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receives light information via intrinsically photosensitive retinal 
ganglion cells (ipRGCs), which express the photopigment 
melanopsin, in a monosynaptic connection via the RHT (Hattar 
et al., 2002; Gooley et al., 2001; Berson et al., 2002; Hattar et al., 
2006). These cells release glutamate and pituitary adenylate cyclase-
activating polypeptide (PACAP; Hannibal et  al., 2000; for an 
excellent review, please see Morin and Allen, 2006), thus allowing 
the SCN to transmit this light information to coordinate the phase 
of circadian oscillators throughout the brain and body (Welsh 
et al., 2010).

As the master pacemaker of the body, the SCN orchestrates the 
synchronization of many other oscillator systems. The primary 
mechanism for such synchronization is thought to be via autonomic 
neural efferent connections, though non-neural pathways (such as 
hormones) may also facilitate circadian synchronization 
(Balsalobre et al., 2000; Vujovic et al., 2008); for details, please see 
Welsh et al. (2010). Hence, the SCN sends efferent projections to 
several regions of the brain, including neighboring regions of the 
hypothalamus (Abrahamson and Moore, 2001; Berk and 
Finkelstein, 1981; Deurveilher et al., 2002; Deurveilher and Semba, 
2005; Kalsbeek et  al., 1993; Schwartz et  al., 2011), which likely 
mediate circadian rhythms in sexual and reproductive physiology 
and behaviors. These brain circuits will be  discussed in 
later sections.

Importantly, it should be  noted that the SCN also works as a 
‘seasonal clock’, adjusting the general physiology and behavior of the 
organism to changes in the length of the daytime, including sexual 
behavior and reproduction. Indeed, key to the evolution of 
photoperiodism in mammals is the ability to optimize reproductive 
fitness while also balancing the energy demands needed for sex and 
survival, which is why photoperiod is important in determining 
seasonality in many species (Everett and Sawyer, 1950). In organisms 
that reproduce seasonally, the photoperiod is essential to regulating 
reproductive capacity, which allows for offspring to be birthed during 
a time (i.e., season) most suitable for their survival (for review, see 
Mahoney et al., 2004). This topic of seasonality is beyond the scope of 
our review; however, we  would like to direct readers to several 
excellent reviews that describe how the SCN regulates photoperiodic 
information which can subsequently impart control over the 
neuroendocrine axis, HPG cycle, gonad size, hormone release, and 
many other downstream processes that modulate seasonal breeding: 
Brown-Grant and Raisman (1977); de la Iglesia et al. (2003); Mahoney 
et al. (2004); and Van der Beek et al. (1997).

3 Regulation of male reproductive 
hormones by the circadian system

The mammalian SCN controls daily fluctuations in reproductive 
hormones. Expression of receptors for numerous reproductive hormones 
(estrogens, progesterone, and androgens) allows for modulation of the 
SCN by these hormones (for an excellent review of the 
neuroendocrinology of the SCN, please see Karatsoreos and Silver, 2007). 
Of note, while males do possess small amounts of estrogen and 
progesterone, the focus of this section will be on androgens, as they are 
sex steroid hormones that regulate the development and maintenance of 
masculine characteristics via their binding to androgen receptors.

3.1 Androgen receptors in the SCN

Within the master clock of mammals, androgen receptor (AR) 
immunoreactive cells have been shown to localize to the SCN core—
the main retinorecipient area (Aronin et  al., 1990; Rea, 1989). 
Importantly, in addition to rodents, androgen receptors are found in 
the SCN of many mammalian species including ferrets, baboons, 
rhesus macaques, and humans (Fernández-Guasti et  al., 2000; 
Karatsoreos et al., 2007; Kashon et al., 1996; Rees and Michael, 1982; 
Wu et al., 1995), as described in the following sections. Given that the 
SCN core is light responsive, and that cells in the SCN core-region 
contain these ARs, androgen signaling is able to modulate SCN photic 
responsivity. For instance, Karatsoreos et al. (2007) found that murine 
SCN cFos expression after a light pulse (both phase-delaying and 
advancing) is blunted in castrated animals, and replacement with 
dihydrotestosterone (DHT), a precursor to testosterone, normalized 
this effect. While reciprocal regulation of androgens and circadian 
function likely exists (i.e., SCN modulation of androgens and 
androgen regulation of SCN functionality), in the remainder of this 
section (and in Figure 2), we will focus on how the circadian system 
modulates rhythmic changes in testosterone.

3.2 Basic research

Testosterone is necessary for sex drive and many other important 
reproductive functions, such as sperm production (Nassar and Leslie, 
2024). Beginning with rodent models, Auer et al. (2020) examined fecal 
testosterone metabolites excreted from male mice and found that these 
metabolites showed diurnal fluctuations. Similarly, in young male rats, 
Esquifino et al. (2004) found a daily rhythm in plasma testosterone, with 
a peak occurring at approximately zeitgeber time (ZT) 9. Interestingly, the 
amplitude of this rhythm was blunted in socially isolated rats. Here, it 
should be mentioned that in many mammals, testosterone is released 
reflexively during reproduction (Nyby, 2008). Such reflexive pulses occur 
in two reproductive situations: (1) in response to a sexually arousing 
stimulus such as a novel female (‘anticipatory’ reflexive pulse) and (2) 
following ejaculation (‘ejaculatory’ reflexive pulse). In addition to this 
pulsatile testosterone release, several studies in hedgehogs and rats have 
also demonstrated an infradian (i.e., longer than 24 h) rhythm in 
testosterone levels (Diatroptov, 2011; Rutovskaya et al., 2020). Notably, 
Diatroptov (2011) reported changes in testosterone levels equal to 4 days 
in male rats, which is the approximate length of the female rodent estrous 
cycle. Given this, future studies in other species should be conducted to 
test whether such infradian rhythms in testosterone levels correspond to 
the mammalian ~4–5 day estrous or ~ 28-day menstrual cycles in 
females, and if so, whether such an infradian rhythm may contribute to 
fertility success.

Circadian clock genes play an important role in the circadian 
regulation of testosterone. For instance, male Bmal1 knockout mice 
are infertile and exhibit low testosterone and high LH serum 
concentrations, suggestive of a defect in testicular Leydig cells (the 
primary source of testosterone or androgens in males). Importantly, 
Leydig cells express Bmal1 in a rhythmic fashion, which suggests that 
there is peripheral circadian control of testosterone (Alvarez et al., 
2008). It is worthwhile to mention, however, that in these studies using 
Bmal1 null animals, loss of circadian synchrony within the periphery 
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may be impacting testosterone levels on multiple levels, by reducing 
production, desynchronizing individual cells, or by blunting rhythms.

3.3 Non-human primate research

One of the first published reports of a diurnal rhythm in 
testosterone came from non-human primate work conducted by Dubey 
et al. (1983) and Plant (1981). In this study, using rhesus monkeys (a 
diurnal mammal), a continuous light environment was reported to 
have no effect on the daily rhythm in serum testosterone (Dubey et al., 
1983). Additionally, Kholkute et al. (1987) found that a continuous light 
environment had no effect on the circadian testosterone rhythm of the 
marmoset—which are also a diurnal species. These results, showing 
that the rhythms persisted under constant lighting conditions, suggest 
that testosterone fluctuation is endogenous. However, the role of the 
rest-activity cycle and photoperiodism versus an endogenous circadian 
rhythm in diurnal non-human primates is somewhat controversial, 
given that the nighttime rise in testosterone was abolished when 
(diurnal) male bonnet monkeys were exposed to constant light 
conditions (Mukku et al., 1976). In both the Dubey et al. (1983) study 

and the Mukku et al. (1976) study, animals were exposed to continuous 
light for up to 15 days. The reason behind these species differences has 
not yet been elucidated, but the results suggest that testosterone is 
under the endogenous control of the clock, at least in rhesus monkeys 
and marmosets. In nocturnal non-human primates such as the owl 
monkeys and mouse lemurs, testosterone levels were found to be higher 
during the day (during the rest period) compared to the active 
(nighttime) period (Dixson and Gardner, 1981; Perret, 1985). These 
results imply that in some non-human primate species, circadian 
differences in testosterone levels may correspond with the sleep–wake 
cycle. Here, it should also be noted that age likely plays a role in the 
amplitude of the testosterone rhythm given that significant diurnal 
patterns of testosterone were found in both younger and older rhesus 
monkeys, with the circadian rhythm being more pronounced in older 
monkeys (Schlatt et al., 2008).

3.4 Human research

Similar to many animal species, in human males, the testes 
synthesize testosterone—the androgen that is necessary for testicular 

FIGURE 2

Time-of-day modulated factors influencing conception. Various diurnally-regulated factors likely influence the chances of conception in humans. 
Such factors include testosterone, with acrophase near 0600 h in males (range: 0500 to 0800 h; de la Torre et al., 1981; Winters, 1991; Diver et al., 
2003; Brambilla et al., 2009) and estradiol, with acrophase around 2100 h in women, during the follicular phase (Rahman et al., 2019). Sex hormone 
binding globulin (SHBG), also known as sex steroid-binding globulin (SSBG), a protein that binds to and helps modulate the availability of sex 
hormones, has been shown to peak around 1500 in males and 1200 h during the follicular phase in females (Rahman et al., 2019). Additionally, sperm 
quality and motility are thought to peak between 1100 and 1730 h in males (Cagnacci et al., 1999; Liu K. et al., 2022), with the average peak being 
around 1430 h. Here, we should note that there are several different reports in the literature regarding the peak time for sperm quality, and the range 
indicated above is an average, derived from findings in various studies. Finally, many studies have reported peak times for sexual activity in both men 
and women, with sexual encounters peaking in both the morning and evening (Refinetti, 2005; Palmer et al., 1982b; Fortenberry et al., 2006), often 
times between 2300 h and 0100 h and with another peak between 0600 h and 0800 h. Sexual activity is denoted by the intertwined male and female 
sex symbols. Schematic drawing was created with BioRender.
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development and sperm production. Circulating levels of 
testosterone are modulated by the circadian clock, light exposure, 
and sleep duration. For example, in healthy young men, serum 
testosterone concentrations rise with sleep onset, reach the peak 
during the first REM episode, remain stable until awakening, and 
then rapidly decline (Luboshitzky et al., 1999). In a similar study, 
plasma was measured at the following times in 10 men using 
radioimmunoassay (RIA): 07.00 h, 08.00 h, 09.00 h, 10.00 h, 13.00 h, 
16.00 h, 19.00 h, 23.00 h and 03.00 h, and a circadian rhythm was 
noted, with peak levels occurring between 07.00 h and 10.00 h (Gall 
et al., 1979). Similarly, a circadian rhythm of testosterone and DHT 
was detected in three healthy men with a peak at 16.37 (Guignard 
et al., 1980). However, it is important to distinguish true circadian 
rhythmicity from sleep–wake effects of variations in testosterone 
levels. Along these lines, Miyatake et al. (1980) obtained frequent 
blood samples to measure serum levels of testosterone in healthy 
men while awake and during sleep, in addition to using 
electroencephalogram (EEG), electrooculogram (EOG), and 
electromyogram (EMG) recordings. Results from this study revealed 
an increase in testosterone during the early morning, and similar 
results were found using a constant-routine-like paradigm performed 
on two subjects. This data suggests that such a rise was not directly 
related to sleep or any specific sleep stages (or from changes in other 
hormones), but that it is more likely the effect of an endogenous 
rhythm similar to the rhythm in cortisol (Miyatake et al., 1980). 
Here, we also direct readers to Figure 2, for a description of other 
studies that examined circadian rhythms in testosterone 
levels in men.

The circadian rhythm of other hormones has been reported (for 
reviews, see Turek et al., 1984 and Kriegsfeld et al., 2006). Indeed, 
studies have shown that in men, the diurnal pattern of LH and follicle-
stimulating hormone (FSH) gonadotropin secretion increases at night 
and is most pronounced leading up to puberty (for review, see 
Karatsoreos and Silver, 2007). Furthermore, a study by de la Torre 
et  al. (1981) showed that 17-OH-P and other hormones such as 
androstenedione and OH pregnenolone showed diurnal variation 
with highest levels occurring during the morning and lower levels 
occurring at night.

Circadian and sleep disruption are known to negatively impact 
reproduction in men. Indeed, several papers have revealed that sleep 
(a circadian-regulated process) disruption negatively affects 
testosterone levels and sperm count. For example, during the daytime, 
Leproult and Van Cauter (2011) found that testosterone levels were 
decreased by 10 to 15% in young, healthy men who underwent 
1 week of restricted sleep (sleeping only 5 h/night). By comparison, 
it should be noted that normal aging is associated with a decrease in 
testosterone levels by 0.4–2% annually (Harman et al., 2001; Kaufman 
and Vermeulen, 2005; Leproult and Van Cauter, 2011; Wu et  al., 
2008). Whether or not these levels could be normalized upon sleep 
recovery was not tested in this specific study, though a similar study 
performed by Arnal et al. (2016) did show that testosterone levels 
returned to baseline after one night of sleep recovery. Regardless, 
these studies demonstrate the importance of a functional circadian 
clock on testosterone levels. Future studies should examine how 
individual differences in chronotype (Zavada et al., 2005), or how 
behavioral manifestations of circadian-gated processes such as sleep–
wake, diet, activity patterns, etc., affect testosterone production and 
release in men.

3.5 Extrahypothalamic brain structures

Here, it should also be noted that other structures outside of the 
hypothalamus have AR-immunoreactivity and serve as components of 
the circadian system and help regulate male sexual and reproductive 
processes. For instance, in a recently published paper, the activity and 
expression level of AR in the adult mouse brain was monitored using an 
AR-Luc reporter mouse. While the main areas of AR immunoreactivity 
were found to include many regions of the hypothalamus, such as the 
SCN and the medial preoptic area (mPOA), other regions, such as the 
amygdala and the stria terminalis, also showed high expression (Dart 
et al., 2024). Interestingly, a recently paper from the lab of Mark Wu 
showed that an extra-SCN oscillator in the lateral amygdala expresses 
the clock-output molecule mWAKE/ANKFN1, and these mWAKE 
neurons within the amygdala help coordinate rhythmic sensory 
perception (Liu et al., 2024). Given this, and the fact that amygdala is 
involved in the regulation of ejaculation (Huijgens et al., 2021) and 
sexual and aggressive behaviors (Yamaguchi et  al., 2020) in male 
rodents, AR cells within the amygdala may influence the execution of 
male reproductive behaviors as a function of time-of-day. With respect 
to the high levels of AR immunoreactivity within the stria terminalis of 
males (Cara et al., 2021; Dart et al., 2024), it is interesting to note that a 
neural circuit was recently found to connect chemosensory input with 
the Bed Nucleus of the Stria Terminalis (BNST)Tac1 neurons. These 
BNSTTac1 neurons innervate POATacr1 neurons and terminate in centers 
regulating reward during male mating (Bayless et al., 2023).The BNST 
has been show to exhibit a robust circadian rhythm in the expression of 
circadian proteins such as PER2 (Amir et al., 2004), suggesting that AR 
expression within the BNST of males may be  involved in mating 
behavior, drive, and reward across the circadian day.

The pineal gland is another extrahypothalamic structure regulated 
by the circadian timing system, and AR expression and binding sites 
have been confirmed in the pineal gland and in pinealocytes of males 
from many species, including bovine (Haldar and Gupta, 1990), rats 
(Cardinali et al., 1975), and humans (Luboshitzky et al., 1997). While 
the pineal gland has many functions, one of its main responsibilities 
is to receive information regarding the environmental light–dark cycle 
and to secrete the hormone melatonin (for review, see Arendt and 
Aulinas, 2000; Sapède and Cau, 2013). Furthermore, the pineal gland 
has been shown to exert a prominent role in the neuroendocrine 
regulation of reproductive physiology (Aleandri et al., 1996; D’Occhio 
and Suttie, 1992; Li and Zhou, 2015). For example, pineal hormones 
like melatonin regulate reproduction in seasonal animals such that 
adult male hamsters exposed to short photoperiods exhibit gonadal 
regression (Mason et  al., 2010). Additionally, the presence of 
melatonin receptors in the sperm of several species (Casao et  al., 
2012), humans included (van Vuuren et al., 1992; Espino et al., 2011), 
suggests that it may directly modulate the ability of sperm to fertilize 
an egg to form a zygote. While a detailed discussion of melatonin and 
male reproduction is outside the scope of this paper, we direct readers 
to an excellent review on this topic: Li and Zhou (2015).

4 Regulation of female reproductive 
hormones by the circadian system

Estradiol (E2) and progesterone (P) are steroid hormones 
responsible for the development of female sexual characteristics, the 
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maintenance of the reproductive cycle, and pregnancy in females. 
Hence, this section will focus on the circadian regulation of E2 and P 
given that they are important in driving female sex and reproduction 
by binding to estrogen and progesterone receptors (ERs, such as ERα 
and ERβ, and PR).

4.1 Estrogen and progesterone receptors in 
the SCN

Several studies have shown the presence of ERs and PR within the 
SCN. High levels of ERβ and low levels of ERα are expressed in the 
SCN of neonatal rats. Notably, these results differ from work 
conducted in adult rats which failed to show ERα expression and 
showed only low levels of ERβ expression in the SCN. Of note, both 
receptor subtypes are expressed in neurons as well as in astrocytes, 
and some cells express both ERα and ERβ (Su et al., 2001). With 
respect to the topographic distribution of ERα and ERβ in the SCN, 
the shell region displays high levels of ER-immunoreactivity, while the 
SCN core shows little expression (Vida et al., 2008). Interestingly, PR 
expression varies across species, though it is present in the SCN of 
humans, and ERα and ERβ are maintained in the SCN of humans, 
though ERα expression is stronger than ERβ (Yaw et al., 2020; Kruijver 
and Swaab, 2002). Such differential distribution of ERs within the 
master circadian clock suggests several modes of estrogenic signaling 
within the SCN (and between the SCN and other extra-SCN brain 
regions), which may influence the circadian modulation of certain 
reproductive-related events and pathways. Notably, most studies have 
examined how estrogens act on non-SCN, ER-rich regions of the brain 
that receive innervation from the SCN (directly or indirectly), 
including the mPOA, amygdala, and ventromedial hypothalamus 
(VMH; Laflamme et al., 1998). Along these lines, many neural efferent 
fibers from the SCN project to the SPZ (Leak and Moore, 2001; Watts, 
1991; Watts and Swanson, 1987), and the SPZ projects to many of 
these above-listed ER-rich brain regions (Vujovic et  al., 2015). 
Furthermore, some of these ER-rich regions may project to and 
modulate the SCN, and thus, the estrogenic effects on circadian 
rhythms may also arise from indirect actions of estrogens on target 
regions of the SCN. These data suggest that ER signaling may affect 
clock timing or tau length, but this should be  confirmed 
experimentally. The remainder of this section will focus on daily 
rhythms in estrogens and circadian control of estrogenic signaling.

4.2 Basic research

Daily oscillations in ER expression have been reported and may 
contribute to the circadian regulation of estrogen-dependent 
behaviors. For example, a study of mice in constant darkness (DD), 
revealed a circadian pattern of ER𝛽 expression which remained intact 
after 3 days in DD (Cai et al., 2008). ER𝛽 mRNA levels were also 
shown to fluctuate in various peripheral tissues, with a peak occurring 
at the light–dark transition. Notably, this study also found that this 
rhythm was abolished in clock-deficient Bmal1 knockout mice, and 
when CLOCK and BMAL were introduced in vitro, ER𝛽 expression 
increased. These findings not only indicate that ER𝛽 expression 
oscillates in a circadian fashion, but also that this oscillation is 
mediated by endogenous clock genes (Cai et al., 2008). Taken together, 

these studies show that both ERα and ER𝛽 both exhibit circadian 
patterns of expression which occur as a result of proper core clock 
gene expression/function.

The circadian system modulates female reproductive behaviors in 
various ways, and one example is its regulation of the estrous cycle—
the ~4–5-day reproductive cycle in rodents which consists of four 
distinct phases: proestrus, estrus, metestrus, and diestrus. Ovulation 
(which typically occurs during the night of estrus) in female rodents 
is very complex and requires tight temporal control from cells 
spanning from the SCN, to gonadotropin-releasing hormone (GnRH) 
neurons within the hypothalamus, in addition to temporal control of 
many other hormones (for an excellent review, please see Miller and 
Takahashi, 2014). In brief, elevated levels of E2 are necessary for the 
GnRH surge to occur, during the late proestrus phase of the cycle. This 
GnRH signal triggers the surge of LH and promotes FSH release from 
the pituitary gland. Within the ovaries, LH induces ovulation and FSH 
initiates the recruitment of new follicles (Miller and Takahashi, 2014). 
Notably, in addition to the GnRH surge, a time-dependent signal must 
also occur to induce the preovulatory GnRH surge (Everett and 
Sawyer, 1950). The SCN was shown to control this neural time cue 
(i.e., the preovulatory hormone surge) given that SCN dysregulation 
leads to acyclicity of the estrous cycle in rats (Brown-Grant and 
Raisman, 1977; Terasawa et al., 1980; Wiegand and Terasawa, 2008).

How the SCN regulates this circadian neural timing signal leading 
to the preovulatory GnRH surge and subsequent induction of LH has 
not been completely elucidated. However, two peptides within the 
SCN–vasopressin (AVP) and vasoactive intestinal polypeptide 
(VIP)—likely regulate the temporal release of GnRH. Along these 
lines, GnRH neurons are directly innervated by VIPergic projections 
from the SCN (Kriegsfeld et al., 2002; van der Beek et al., 1993), and 
VIP administration has also been shown to stimulate the LH surge 
(Samson et al., 1981). Additionally, AVP administration modulates the 
LH surge such that it occurs in the late afternoon in rats (Palm et al., 
2001). Furthermore, inhibition of either peptide in rats results in a 
decrease in the amplitude of the E2-induced LH surge (Funabashi 
et al., 1999; Harney et al., 1996; van der Beek et al., 1999, and for an 
excellent review, also see Russo et al., 2015). Studies performed on 
GT1-7 neuronal cells (a mature mouse hypothalamic GnRH line) 
revealed that high levels of E2 leads to circadian expression of the 
kisspeptin peptide receptor GPR54 in vitro (Tonsfeldt et al., 2011). 
Notably, the SCN can also regulate circadian GnRH release indirectly 
via kisspeptin-expressing neurons in the anteroventral periventricular 
nucleus (AVPV; Van der Beek et al., 1997). Kisspeptin-expressing 
neurons in this region have been shown to play a relevant role in the 
regulation of GnRH secretion in rodents (see Skorupskaite et al., 2014, 
for review). The SCN targets AVPV kisspeptin neurons via AVP 
projections (Vida et al., 2010), thus inducing a circadian rhythm in the 
response of GnRH to kisspeptin (Williams et al., 2011). Hence, it is 
possible that the SCN regulates the GnRH surge by direct innervation 
via AVP and/or VIP, and by an indirect pathway through AVPV 
kisspeptin neurons. For an excellent review of this topic, see Miller 
and Takahashi (2014). In another line of work, a study by Vieyra et al. 
(2016) demonstrated that for ovulation to occur in rats, the system 
modulating GnRH and LH secretion requires a cholinergic signal 
arriving on either the right or left SCN on the morning of proestrus. 
This study reported that cholinergic innervation arriving on either 
side of the SCN may also help modulate progesterone and estradiol 
secretion according to time-of-day. These experiments may also help 
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to explain why unilateral SCN injury (which would block this 
cholinergic innervation to the SCN) is sufficient to decrease the 
number of shed ova in rats (Ramírez et al., 2017). Taken together, 
these studies suggest that a complex interplay between SCN neuronal 
output and kisspeptin receptors within the AVPV are necessary for the 
preovulatory GnRH surge in females.

Evidence of the importance of a functional master circadian clock 
in the regulation of this LH surge comes from studies showing that 
Clock mutant rats lack a coordinated LH surge on the proestrus day, 
and they exhibit disrupted estrous cycles. Clock mutant rats also show 
a high rate of full-term pregnancy failure and a decrease in P levels 
during pregnancy (Miller et al., 2004). Additionally, SCN injury has 
been shown to affect hormone levels and ovulation, as bilateral SCN 
injury in rats resulted in anovulation and, as noted above, (unilateral) 
right SCN injury led to fewer ova being shed (Ramírez et al., 2017). In 
these studies, however, it is important to consider that many key 
circadian genes (such as Clock) are transcription factors that influence 
the expression of thousands of downstream genes, and thus, their 
pleiotropic effects must be  considered. In a similar fashion, older 
techniques, such as SCN lesion and/or injury often destroy many 
other brain tissues, some of which may be involved in reproduction, 
which must also be taken into consideration. As such, future studies 
that employ targeted deletion of clock gene expression specific to 
certain cell types, will shed light on circadian control of female 
ovulation. For an excellent review that highlights a role for the clock 
in steroid hormone synthesis, ovarian follicular growth, and ovulation, 
we direct readers to Sellix (2015).

4.3 Human research

In humans, several components that modulate sexual and 
reproductive behaviors appear to be rhythmic. This is the case for ERs, 
given that, in a study of human mammary cell lines, Rossetti et al. 
(2012) reported that ERα mRNA oscillates in a circadian fashion in 
ERα-positive breast epithelial cells. Furthermore, Bao et al. (2003) 
found a daily rhythm in free E2  in cycling women, with a peak 
occurring in the early morning. More recently, Rahman et al. (2019) 
also noted a significant circadian rhythm in plasma E2, P, and other 
hormones under both standard sleep–wake cycle and in constant 
routine conditions during the follicular phase. Interestingly, only two 
hormones, FSH and sex hormone binding globulin (SHBG) were 
rhythmic in the luteal phase, suggesting differential circadian control 
depending on menstrual cycle phase (i.e., pre- versus post-ovulation). 
In another study by Fujimoto et al. (1990), 7 of 10 cycling women 
exhibited a significant circadian variation in P during the luteal phase, 
though the acrophase of such a rhythm was not consistent among the 
7 women. Although it was not accounted for in the study, the 
individual differences in tau may have contributed to the differences 
in peak expression. We also direct readers to Figure 2, for a depiction 
of findings related to circadian rhythms in E2 and P.

Circadian clock disruption in women leads to adverse effects on 
hormones that regulate reproduction and fertility. Along these lines, 
several studies have shown that women working night shifts, or those 
who have irregularly scheduled shifts, display an increase in menstrual 
pain and changes in menstrual bleeding (Chung F. F. et al., 2005; 
Labyak et al., 2002). Specifically, Lawson et al. (2011) showed that 
women with over 20 months of rotating shift work were more likely 

to experience irregular cycles, and cycles were more likely to 
be inconsistent in length. Several other studies demonstrated that such 
menstrual changes also included irregular patterns of ovarian and 
pituitary hormone secretion (Chung K. et al., 2005; Lohstroh et al., 
2003, and for excellent reviews, please see Knutsson, 2003; Mahoney, 
2010; Scott, 2000). On a similar note, it has been reported that female 
university students exhibit higher menstrual symptoms, pain, 
behavioral changes, and water retention scales when their social jet lag 
is greater than 1 h (Komada et al., 2019). Furthermore, women who 
partake in transmeridian travel showed a reduction in sleep, in 
addition to fatigue and insomnia (for review, please see Sack, 2009)—
factors that likely impact hormone secretion. Indeed, it is known that 
sleep deprivation alters LH amplitude and E2 concentrations 
(Baumgartner et al., 1993), and thus, circadian disruption stemming 
from jet lag and/or shift work is likely a key factor in endocrine and 
reproductive dysfunction observed in women who consistently work 
irregular hours/night shifts and in those who consistently travel. This 
topic will be discussed in greater detail in the last section.

4.4 Extrahypothalamic brain structures

Similar to the Male section (3) above, other regions of the brain, 
outside of the hypothalamus, have ER and P-immunoreactivity. 
Extrahypothalamic expression of ERα are highly expressed in the 
BNST, the amygdala, and regions of the locus coeruleus and 
periaqueductal gray (Mitra et al., 2003; Shughrue et al., 1998), while 
cells with high ER𝛽 expression are found in the lateral septum, BNST, 
and amygdala (Creutz and Kritzer, 2002; Milner et al., 2010; Mitra 
et al., 2003; Shughrue et al., 1998). For an excellent review of ERs in 
the CNS of females, we direct readers to the following article: Almey 
et al. (2015). High extrahypothalamic expression of PRs within the 
female brain are observed within regions of the frontal cortex and 
hippocampus (Guerra-Araiza et  al., 2002) and the BNST and 
amygdala (Auger and De Vries, 2002; Kato et al., 1994; for review, see 
Brinton et al., 2008). Of these noted brain structures, the BNST and 
amygdala are also known to express circadian clock genes and 
modulate female sexual and reproductive behaviors. For example, in 
the BNST and central nucleus of the amygdala, PER2 protein rhythms 
peak early in the dark phase (Amir et al., 2004; Lamont et al., 2005). 
Yamazaki et al. (2000) recorded multiple unit neural activity from 
both in and outside of the SCN of golden hamsters and found that 
SCN and BNST rhythms were always in-phase, suggesting a strong 
coupling between the two regions. Concerning, the regulation of sex 
and reproductive function, Martinez and Petrulis (2011) found that, 
in female Syrian hamsters, the BNST is important for the normal 
expression of sexual solicitation behaviors in response to male odor. 
Similarly, the medial amygdala is necessary for opposite-sex odor 
preference and vaginal marking (Petrulis and Johnston, 1999), in 
addition to two other female reproductive behaviors: ultrasound 
production and lordosis (Kirn and Floody, 1985; Rajendren and Moss, 
1993; for review, see Sakuma, 2015).

As in males, the pineal gland is another extrahypothalamic 
structure that is involved in both circadian clock timing and in the 
regulation of female reproductive processes. The female rat pineal 
gland contains both ERα and ER𝛽 subtypes (Sànchez et al., 2004), and 
PR expression has been noted in the bovine pineal gland (Vacas et al., 
1979). Interest in the role of the pineal gland in the regulation of 
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female reproduction has grown significantly in recent years given its 
role in producing melatonin. Indeed, Kennaway and Rowe (1997) 
found that female rats treated with melatonin showed inhibition of 
ovarian development and delayed puberty onset, suggestive of 
melatonin’s involvement in modulating ovarian growth and 
functionality. Melatonin levels in follicular fluid (from women) has 
also been shown to vary indirectly with day length and with P levels, 
(Rönnberg et al., 1990; Yie et al., 1995), and such variations indicate 
that melatonin could alter female reproduction in humans prior to 
ovulation. There is a significant positive correlation between melatonin 
in follicular fluid and follicle count in women undergoing IVF which 
suggests that melatonin may also provide a protective role during the 
ovarian cycle (Zheng et al., 2018). However, high dose melatonin, 
when combined with P, is able to inhibit ovulation in women 
(Voordouw et  al., 1992). For a detailed description of the role of 
melatonin in female reproduction, we direct readers to two excellent 
reviews: Olcese (2020) and Fernando and Rombauts (2014). These 
studies demonstrate that the pineal gland—via its ability to modulate 
the circadian clock and secrete melatonin—is a significant player in 
female reproduction.

5 Regulation of conception by the 
circadian system

5.1 Role of the SCN and circadian system in 
conception—with a focus on males

The role of the circadian clock and its modulation of factors that 
influence conception in males is less well studied compared to the 
female estrous cycle/ovulation. Notably, however, the quality of semen 
has been shown to change diurnally in human males. Indeed, semen 
samples have been shown to have the highest levels in sperm 
concentration in the early morning (Xie et al., 2018). However, this is 
in contrast to a study in which seminal fluid was collected by 
masturbation (twice by each subject–once in the morning and once in 
the afternoon). Indeed, in this latter study, Cagnacci et al. (1999) also 
showed the number of spermatozoa with linear motility was higher in 
the afternoon than the morning and that although macroscopic 
parameters were similar, specimens collected in the afternoon showed 
a higher number and concentration of sperm. It should be highlighted 
though, that of these 54 enrolled males, 24 were normozoospermic 
and 30 suffered from oligo-and/or asthenozoospermia. Notably, in 
their experiments, subjects were randomized to have sperm collected 
in the morning or afternoon after 3 days of abstinence, such that the 
time between the previous ejaculation and time of morning or 
afternoon collection was consistent among each subject (Cagnacci 
et al., 1999). Here, we should also report that a daily diurnal variance 
in sperm DNA fragmentation index has been shown in both humans 
and in mice, with a nadir occurring at 10 AM (Ni et al., 2019).

The importance of a proper timekeeping system in the 
regulation of male factors that influence conception is reinforced by 
studies showing the effects that the disruption of clock genes can 
have on various aspects of male reproduction. Perhaps the most 
striking evidence comes from the fact that male mice with 
homozygous mutations in Clock and Bmal1 have reduced fertility 
(Alvarez et al., 2008; Dolatshad et al., 2006; Liang et al., 2013). In 
addition to these reductions in fertility, changes in testosterone 

function have also been reported (see the Male Reproductive 
section). Bmal1 null mice also have alterations in testes physiology 
given their decreased average seminiferous tubule diameter 
(Alvarez et al., 2008), and they have alterations in the structure of 
chromatid bodies of their spermatids (Peruquetti et al., 2012). It 
should also be noted that abnormalities in testicular function have 
been found in Cry1 knockout mice, wherein deficiency of this gene 
increases germ cell apoptosis within the testes of mice and decreases 
sperm count (Li et  al., 2018). Interestingly, Morse et  al. (2003), 
found that constant expression levels of Per1 and Bmal1 were 
observed within the testis of mice but another study found that Per3 
expression did exhibit prominent circadian rhythms within the 
mouse testes (Zylka et al., 1998), suggesting that circadian clock 
machinery can drive testicular function (Baburski et  al., 2016; 
Alvarez et al., 2008), particularly within Leydig cells, which produce 
testosterone. For an excellent overview of the complexity of the 
rhythmic functions of cells within the testis, we direct readers to 
Bittman (2016).

These aforementioned studies provide strong support for the 
necessity of proper circadian functioning in conception. However, as 
noted previously, in the studies that used mice deficient in circadian 
clock genes, the pleiotropic effects of such genes must be considered, 
given that clock genes target a variety of downstream factors that can 
also influence conception and pregnancy viability. On a separate note, 
interestingly, while restricted feeding during either the day or 
nighttime period was found to disrupt rhythms in male mouse mating 
behaviors (Kukino et  al., 2022), no study (to date) has examined 
whether a rhythm exists in sexual behavior within mice housed in 
constant conditions (and in mice fed ad libitum). Given that mice are 
used as a model organism for dissection of neural circuits, future 
studies should test whether a sexual behavior rhythm occurs and if so, 
whether this rhythm may coincide with a rhythm of conception.

5.2 Role of the SCN and circadian system in 
conception—with a focus on females

In female mice, ovulation occurs during the morning of estrus, 
after the proestrus LH surge, and if mating (with a male) occurs, 
copulation allows for circadian-gated prolactin (PRL) surges 
(Freeman and Neill, 1972; Mai et al., 1994; Poletini et al., 2010; for 
an excellent review, please see Miller and Takahashi, 2014). To this 
end, retinorecipient neurons within the SCN release VIP which 
provides an inhibitory stimulus to the dopaminergic neurons 
within the hypothalamic periventricular-arcuate nucleus (Pe). PRL 
release will continue for a period of ~10 days following conception 
or up to 12 days following a pseudopregnancy (Freeman et  al., 
1974). Also modulated by the circadian clock is the LH surge that 
promotes ovulation (as described in the section above; Mosko and 
Moore, 1979; Williams et al., 2011; Williams and Kriegsfeld, 2012). 
Such clock-gated events of hormonal release must occur in females 
to increase the odds of successful conception. Furthermore, 
circadian genes play an important role in the circadian regulation 
of conception since female mice lacking functional Bmal1 or Per1 
or Per2 all show deficiencies in embryonic implantation and/or 
maintenance of pregnancy. For an excellent review depicting the 
role of clock genes in pregnancy maintenance, please see Miller 
and Takahashi (2014).
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Implantation, which, depending on the species, occurs hours to 
weeks after fertilization, is the process by which the fertilized egg(s) 
implants in the female uterus to allow the embryo(s) to grow and 
develop. Interestingly, to date, no studies have been conducted on the 
timing of embryo transfer (into the uterus) during assisted 
reproduction (such as in vitro fertilization). However, circadian clock 
gene expression has been observed in female reproductive structures 
that influence implantation: such as the uterus (Uchikawa et al., 2011; 
Johnson et al., 2002) oviduct (Johnson et al., 2002; Kennaway et al., 
2003), ovarian granulosa cells (Mereness et al., 2016) and embryo 
(prior to implantation; Johnson et al., 2002). Notably, several studies 
have found that BMAL1 null female mice experience implantation 
failure (and subsequent infertility) due to a reduction in progesterone 
production (Ratajczak et al., 2009; Liu et al., 2014). Given this, it may 
be worthwhile to examine whether the time-of-day of embryo transfer 
impacts implantation success. One could postulate that transfer of 
embryos into the uterus during a specific time of day may allow for an 
increased chance of implantation, possibly due to circadian regulation 
of steroidogenesis and endometrial thickness/receptivity (Ratajczak 
et al., 2009; Liao et al., 2022). Such data could have a profound impact 
on assisted reproductive technology advancement.

6 Proposed circadian neuronal circuits 
that control physiology and sexual 
behavior to optimize conception

In 1970, Dr. Curt P. Richter found that, in rats, successful mating 
depends on the presence of estrus (in the female rat) in addition to 
proper functioning of the 24-h circadian clock of both the male and 
the female. Indeed, Richter performed an experiment that involved 
blinding rats (to remove all external light timing cues) and found that 
pregnancy could only be  achieved when the active phases of the 
circadian clocks in both the male and the female rat overlapped, when 
the female was in estrus. This was the first study to report a circadian 
rhythm in sexual behavior within mammals (Richter, 1970). Around 
the time of Dr. Richter’s study, it was becoming increasingly well-
known that circadian rhythms in physiology and behavior arise from 
the SCN (Moore and Eichler, 1972; Ralph et al., 1990; Saper, 2013; 
Hastings et al., 2018). Studies on mechanisms as to how the SCN 
maintains the daily synchrony of such processes demonstrated that 
temporal control highly depends on its efferent targets and the related 
functions of these target areas. Many of these SCN targets are also 
seated in the hypothalamus, which houses structures that are known 
to control sexual behaviors (for reviews, see Calabrò et  al., 2019; 
Iovino et al., 2019). In this section, we will focus on two such brain 
regions: the VMH and the mPOA. However, we will first discuss how 
the subparaventricular zone (SPZ) serves as a relay between the SCN 
and these ‘downstream’ hypothalamic structures.

6.1 Subparaventricular zone

The SPZ is dorsally adjacent to the SCN in the anterior portion of 
the hypothalamus, and it runs in a dorsal-posterior arc just below the 
paraventricular hypothalamus (thus giving it the name 
‘subparaventricular zone’). The SPZ receives the densest efferent fibers 
from the SCN and is thought to be a key relay center for driving 

rhythms in physiology and behavior (Leak and Moore, 2001; Watts, 
1991; Watts and Swanson, 1987). To this end, lesioning the SPZ or 
cutting through it with a knife (Inouye and Kawamura, 1979; Lu et al., 
2001; Schwartz et al., 2009) attenuates rhythms in locomotion and 
behavior. Ibotenic acid lesions to the ventral SPZ (vSPZ) in rats 
impairs the circadian rhythm of sleep and locomotor activity under 
constant conditions. Lesions to the dorsal SPZ (dSPZ) lead to the 
immediate loss of circadian rhythmicity of body temperature, even 
when rats are placed in light/dark conditions (Lu et al., 2001), and 
more recently, a viral-based technique that renders SPZ cells unable 
to release GABA, resulted in the loss of aggression rhythms in male 
mice (Todd et al., 2018). Such results, coupled with the fact that the 
SPZ shows a consistent phase relationship to the SCN (Inouye and 
Kawamura, 1979; Kubota et al., 1981; Nakamura et al., 2008; Sato and 
Kawamura, 1984), support the idea that the SPZ serves as a major 
conduit for output signals emanating from the SCN. Importantly, the 
SPZ consists of mainly GABAergic neurons (Lein et al., 2007) which 
are found within its regionalized subdivisions: namely, dorsal-medial, 
dorsal-lateral, ventral-medial, and ventral-lateral (Costa et al., 1999; 
Gooley et al., 2001; Johnson et al., 1988; Leak et al., 1999; Leak and 
Moore, 2001; Levine et al., 1991; Lu et al., 2001; Moore et al., 2002; for 
review, see Aton and Herzog, 2005; Canteras et al., 2011). In a study 
published by Vujovic et al. (2015), the differences in projections from 
these various SPZ sub-compartments were examined in mice using 
both anterograde and retrograde tracing techniques. They found that 
the SPZ projects to the basal forebrain, pons and brainstem, thalamus, 
habenula, cortex, and hypothalamus, including the mPOA. The 
dorsolateral SPZ also shows extremely dense projects to the 
dorsomedial and central VMH. Given that the SPZ serves as a key 
output of the SCN (as noted above), and that efferent fibers from the 
SPZ project to both the mPOA and VMH, these results raise the 
prospect that a circuit comprising the SCN→SPZ→VMH or 
SCN→SPZ→mPOA may regulate time-of-day dependent sexual 
behaviors, two topics discussed below.

6.2 Ventromedial hypothalamus

For the past several decades, the VMH has been known to be an 
integral player for many neuroendocrine functions within mammals, 
including sexual behavior. First, in Mathews and Edwards (1977) 
lesioned discrete areas of the hypothalamus and determined the VMH 
was involved in the regulation of sexual behavior within female rats 
given that these lesions eliminated sexual receptivity. Later in the same 
decade, researchers determined the VMH was critical in regulating 
female lordotic behavior (Goy and Phoenix, 1963; Pfaff and Sakuma, 
1979b, Pfaff and Sakuma, 1979a), and in males, it was shown to 
modulate scent marking and partner preference, though limited 
effects on mounting behaviors were noted (Harding and McGinnis, 
2003, 2005).

With respect to subtypes of neurons within the VMH, it is 
important to consider the fact that many VMH neurons are sexually 
dimorphic (Yang et al., 2013). Though a detailed depiction of sexual 
dimorphism is outside the scope of this review, we direct readers to 
several excellent, recently published articles that describe sexual 
dimorphic subpopulations within the VMH: Cortes et al. (2023) and 
Khodai and Luckman (2021). In brief, PR number, distribution, and 
projection(s) vary by sex within the mouse brain, and in female mice, 
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ablation of PR-expressing neurons in the ventrolateral division of the 
ventromedial hypothalamus (VMHvl) diminished sexual receptivity, 
while in male mice, it led to deficits in mating behaviors (Yang et al., 
2017). In addition to PR, a recent study also showed that 
cholecystokinin A receptor (Cckar)-expressing cells within the VMHvl 
are key regulators of female sexual behaviors. Indeed, inactivation of 
these cells in female mice decreases their interest in males and 
decreases female sexual receptivity, and activating these cells increases 
their sexual behavior (Yin et al., 2022). These results, coupled with the 
fact that female mice lacking Cckar show deficits in female-specific 
sexual behaviors (Xu X. et al., 2012), raise the prospect that VMHvlCckar 
neurons could potentially control circadian-dependent female 
sexual behaviors.

Interestingly, VMH circuitry drives both aggression and sexual 
behaviors. Indeed, optogenetic stimulation of VMHvl neurons 
positive for ERα—a nuclear receptor and transcription factor derived 
from the Esr1 gene, has been shown to increase male mounting 
behaviors at low-intensity stimulations, while higher intensity 
stimulation was shown to increase aggressive behaviors (Lee et al., 
2014; Lin et al., 2011). However, it should be noted that male mice 
emit ultrasonic vocalizations (USVs) when courting female mice (for 
review, see Egnor and Seagraves, 2016), and a recently published paper 
indicated that male mounting evoked by such weak activation of 
VMHvlEsr1 neurons actually represents a form of aggression (Karigo 
et  al., 2021). One study conducted in the lab of Clif Saper, 
demonstrated that there exists time-of-day dependent (i.e., circadian) 
aggression behavior in male mice (Todd et al., 2018). While the SCN 
weakly projects to the VMH, Todd et al. (2018) found an SCN relay 
through the dorsal SPZ to the VMHvlEsr1 neurons, which influences 
time-of-day dependent aggression behaviors. Hence, it is possible that 
the same pathway also modulates circadian dependent sexual 
behaviors in males and females (see Figure 1).

6.3 Medial preoptic area

The mPOA is another candidate brain region that may modulate 
time-of-day dependent sexual behaviors in both males and females 
(for excellent reviews regarding the mPOA and sexual behavior, see 
Hull and Dominguez, 2007; Hull and Rodríguez-Manzo, 2009; 
Rodríguez-Manzo and Canseco-Alba, 2017). The mPOA receives a 
wide range of afferent input, especially from the olfactory system and 
genitals (Hull and Dominguez, 2007). Damage to the mPOA impairs 
sexual behavior in rodent models of both sexes (Christensen et al., 
1977; De Jonge et al., 1989; Gray and Brooks, 1984; Hansen, 1982; 
Klaric and Hendricks, 1986; Larsson and Heimer, 1964; Liu et al., 
1997; for review see Paredes and Baum, 1997) and stimulation of the 
mPOA enhances sexual behaviors (Malsbury, 1971; Rodríguez-Manzo 
et al., 2000; for review see Paredes, 2003).

Similar to the VMH, the mPOA is also one of the most widely-
accepted sexually dimorphic brain regions. Indeed, the mPOA differs 
between males and females in most species (humans included; Allen 
et al., 1989; Hofman and Swaab, 1989; Swaab and Fliers, 1985; Xu 
Z. et  al., 2012), and various genes within this brain region may 
be responsible for circadian-dependent sexual behaviors. Interestingly 
(as briefly noted above), it has been shown that in male mice, the 
mPOAEsr1 hypothalamic subpopulation is enriched with neurons that 
induce a reproductive-like state within males, characterized by 

USV-positive vocalizations when stimulated, while stimulation of 
VMHvlEsr1 neuronal subpopulations promote USV-negative mounting 
and likely represent an aggressive-like state (Karigo et  al., 2021). 
Hence, in male mice (and likely in female mice too), a circuit spanning 
the SCN–SPZ–mPOAEsr1 may regulate time-of-day dependent sexual 
behaviors. However, it is important to note that these mPOAEsr1 are 
characterized by different subpopulations involved in either parenting 
and/or mating. Along these lines, a transcriptomic study conducted 
by Moffitt et al. (2018) reported that, while 6 different subpopulations 
are enriched in males after mating, only 2 are enriched in females. 
Thus, it is important to keep in mind that this circuitry seems to 
be  quite complex, especially when interpreting which Esr1 
subpopulation is being directly regulated by the circadian system. 
Consistent with the idea that a circuit from the SCN to mPOA 
modulates circadian sexual behavior, Schwartz et  al. (2011) 
demonstrated a direct projection exists from the SCN to the 
mPOA. Their results also show that projections of both the SCN and 
the vSPZ are conserved in both diurnal and nocturnal rodents. 
Vujovic et al. (2015) also reported modest projections from the dSPZ 
to the mPOA within mice (Vujovic et al., 2015). Hence, a direct or 
indirect pathway from the SCN→mPOA may be regulating circadian 
sexual behaviors. Identification of the cell population chemotype 
involved with circadian regulation of sexual behavior will be critical 
as Ribeiro et  al. (2012) showed that viral-vector mediated RNA 
interference in female mice, used to silence ERα/ESR1 expression 
specifically in the mPOA, leads to deficits in maternal care and sexual 
behavior. The fact that mPOAEsr1 cells play crucial roles in maternal 
behaviors in female mice (Fang et al., 2018), coupled with the fact that 
the mPOA expresses some of the highest levels of Esr1 within the 
brain (Mitra et al., 2003; Shughrue et al., 1997), advances the prospect 
that an SCN–SPZ–mPOAEsr1 circuit could also modulate circadian 
dependent sexual behaviors (Figure 1).

7 Significance to human sexual 
behavior and reproduction

7.1 Time-of-day differences in human 
sexual behavior

While there is mixed literature as to what time-of-day men and 
women typically desire to have sex, a circadian variation in sexual 
activity has been reported (also see Figure 2). For example, a study of 
78 young married couples demonstrated a major peak in sexual 
activity in the evening and another peak in the morning (Palmer et al., 
1982a). A study by Refinetti (2005) drew similar results, showing two 
large peaks of sexual encounters among a study conducted on 15 
university students. One peak occurred between 11:00 PM and 
1:00 AM, and the second peak occurred between 6:00 AM and 
8:00 AM. In another study, it was found that coital events in 
adolescents were most likely to occur after 6 PM compared to other 
times of day (Fortenberry et al., 2006). However, it is likely that the 
major reason for this timing choice was partner availability. This idea 
is supported by a study conducted by Jankowski et al. (2014), which 
showed that the timing of the desire of sexual activity is only modestly 
positively associated with the actual timing of when the sex takes 
place. Hence, while rhythms in reproductive hormones and 
chronotype of both sexual partners presumably plays a role in sexual 

https://doi.org/10.3389/fnins.2024.1516767
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Aten et al. 10.3389/fnins.2024.1516767

Frontiers in Neuroscience 11 frontiersin.org

behavior across the day (Jocz et al., 2018), it is likely that temporal 
restrictions brought upon by social engagements has a significant 
effect on what time-of-day humans choose (and most desire) to 
engage in sexual intercourse. Future studies aimed at teasing apart the 
precise time-of-day as to when men and women are most sexually 
aroused (in the absence of social or light timing cues) would be of 
interest. Such a study would help determine whether sexual behavior 
is truly modulated in a ‘circadian’ manner within humans. Further, 
testing whether such a peak in sexual desire may coincide or overlap 
with a peak time-of-day for conception may be an interesting future 
study, especially with regards to maximizing fertility, described below. 
Along these lines, it would be worthwhile to identify whether having 
sexual intercourse in the morning (when male testosterone levels are 
highest) leads to better chances for an ovulating female to conceive. 
Additionally, whether sexual behavior may serve as a zeitgeber for 
men and women would be an interesting area of inquiry to further 
understand the interaction of circadian rhythmicity and sexual activity.

7.2 Circadian dysfunction function and 
human fertility and reproduction

Large scale assessment of gene expression with spatial 
transcriptomics has the potential to illuminate coordinated molecular 
relationships, not only by spatial, functional or pathological themes, 
but by temporal dimension (Zhang et al., 2023). Researchers have 
been able to highlight genetic underpinnings of male infertility 
(Llavanera et al., 2022; Singh Jamwal, 2023; Liu Q. et al., 2022) and 
female reproductive function, such as expression of the proliferative 
marker MKI67 (Rubel et  al., 2012; Knoedler et  al., 2022). The 
contribution of circadian control over or across multiple cell types, 
spatial relationships, functional synchrony and pathological states is 
critical to dissecting the complexity of successful reproduction. As 
described by Rubel et  al. (2012) with their results of microarray 
analysis from uterine cells from mice, the role of progesterone in 
circadian rhythm gene expression in the uterus may have profound 
indications of multi-levels of circadian influence on peripheral 
reproductive organs. We anticipate that genes regulating the priming 
of reproductive organs, such as Wnt7A to support the endometrium, 
and hyaluronan binding protein 4 involved in chromatin remodeling 
during male germ cell development, to support health of sperm 
(Sutovsky and Lovercamp, 2010; Sutovsky et al., 2024; Zhang et al., 
2023), will be under circadian control, and their respective apex will 
occur prior to peak sexual behavior. Investigation into proper 
temporal alignment between central and peripheral reproductive 
structures will provide great insight for therapy or treatment of 
infertility and/or reproductive organ dysfunction. Furthermore, 
central influence of sex hormones may regulate cell type-specific 
transcriptome to modulate sexual behavior (Knoedler et al., 2022).

Circadian disruption, most often due to rotating and night shift 
work, leads to irregular menstrual cycles and hormone 
abnormalities (as noted previously in this review). Such disruption 
has also been shown to increase the risk of pre-term birth and lead 
to a decrease in fecundity in women (Lawson et  al., 2011; 
Nurminen, 1998; for excellent reviews, see Baker and Driver, 2007; 
Reschke et al., 2018). Epidemiological studies have also shown that 
maternal chrono-disruption leads to other adverse pregnancy 
outcomes such as smaller fetus size (for the gestational age) and an 

increased chance for miscarriage and spontaneous abortions 
(Abeysena et al., 2009; McDonald et al., 1988; Whelan et al., 2007; 
Zhu et  al., 2004; for review, see Knutsson, 2003). Furthermore, 
genetic polymorphisms in the core circadian clock genes Npas2 and 
Bmal1 are known to contribute to adverse fertility outcomes 
(Kovanen et al., 2010). Future studies should examine clock gene 
expression changes in older women (>35 yrs) trying to conceive, 
and whether chrono-disruption, which negatively impacts a host of 
biological processes including sleep, temperature, and blood 
pressure, is more detrimental (in terms of fertility and pregnancy 
outcomes) in women >35 yrs. trying to become pregnant. Such 
information could prove beneficial in advising women who wish 
to conceive.

With regards to dysfunction of the circadian timing system on 
male reproduction, in addition to alterations in testosterone levels 
and rhythm following chrono-disruption (described earlier in this 
review), several studies have teased apart the influence of circadian 
desynchrony on spermatogenesis. For example, a statistically 
significant correlation between sleep duration and testis volume has 
been reported (Zhang et al., 2018). Importantly, sleep is one of many 
circadian-modulated processes that may confound circadian 
disruption of reproductive function. Furthermore, in a meta-
analysis, Zhong et  al. (2022) showed that sleep disorders were 
associated with reduced sperm count, reduced sperm concentration, 
and reduced sperm morphology and motility. Interestingly, 
bioinformatic mining in this same study revealed that circadian 
clock genes Per1, Per2, Cry2, Nr1d1, and Npas2 were also decreased 
in males who lacked sperm in ejaculate (azoospermia; Zhong et al., 
2022). Similar genetic variations have been reported in men 
experiencing infertility. For example, a homozygous mutation in 
Npas2 has been reported in a Turkish family with nonobstructive 
azoospermia (Ramasamy et  al., 2015a). Additionally, variability 
within the Clock gene is also associated with reduced semen quality 
and idiopathic infertility in men (Hodžić et al., 2013; Shen et al., 
2015; Zhang et  al., 2012). Such studies raise the prospect that 
alterations in clock genes may serve as a molecular marker for male 
infertility, and they highlight the fact that therapeutic interventions 
aimed at stabilizing circadian rhythms may be potential treatments 
for cases of male infertility. These results also raise interesting 
questions regarding the ability to modulate clock timing to improve 
fertility in aging men. Along these lines, though females are typically 
thought to have a ‘ticking biological clock’, studies suggest that 
increasing male age is also associated with a significant decline in 
fertility (for reviews, see Pasqualotto et al., 2008; Ramasamy et al., 
2015b). Hence, gaining a better understanding of how changes in 
clock genes might signal the alarm of declining fertility in aging men 
may prove of value to couples trying to conceive.

7.3 Summary

Overall, gaining a better understanding of how circadian rhythms 
modulate male and female hormones, sexual behavior, and ultimately 
reproduction will prove fruitful in improving fertility outcomes, 
particularly in those individuals struggling to conceive. Future studies 
that aim at investigating which brain circuits control such sexual and 
reproductive behaviors as a function of time-of-day will help to 
advance our knowledge of mammalian fertility and could provide new 
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avenues for therapeutic interventions and drug targets for 
fertility medications.
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