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Energy-e�cient spikformer has been proposed by integrating the biologically

plausible spiking neural network (SNN) and artificial transformer, whereby

the spiking self-attention (SSA) is used to achieve both higher accuracy and

lower computational cost. However, it seems that self-attention is not always

necessary, especially in sparse spike-form calculation manners. In this article,

we innovatively replace vanilla SSA (using dynamic bases calculating from

Query and Key) with spike-form Fourier transform, wavelet transform, and

their combinations (using fixed triangular or wavelets bases), based on a key

hypothesis that both of them use a set of basis functions for information

transformation. Hence, the Fourier-or-Wavelet-based spikformer (FWformer) is

proposed and verified in visual classification tasks, including both static image

and event-based video datasets. The FWformer can achieve comparable or even

higher accuracies (0.4%–1.5%), higher running speed (9%–51% for training and

19%–70% for inference), reduced theoretical energy consumption (20%–25%),

and reduced graphic processing unit (GPU)memory usage (4%–26%), compared

to the standard spikformer. Our result indicates the continuous refinement of

new transformers that are inspired either by biological discovery (spike-form), or

information theory (Fourier or Wavelet transform), is promising.

KEYWORDS

spiking neural network, transformer, Fourier/Wavelet transform, visual classification,

computational e�ciency

1 Introduction

Spiking neural network (SNN) is considered the third generation of artificial neural

networks (Maass, 1997) for its biological plausibility of event-driven characteristics. It

has also received extensive attention in the computation area of neuromorphic hardware

(Davies et al., 2018), exhibiting a remarked lower computational cost on various machine

learning tasks, including but not limited to, visual classification (Zhou et al., 2023),

temporal auditory recognition (Wang et al., 2023), and reinforcement learning (Tang

et al., 2021). The progress in SNN is contributed initially by some key computational

modules inspired by the biological brain, for example the receptive-field-like convolutional

circuits, self-organized plasticity propagation (Zhang et al., 2021), and other multi-scale

inspiration from the single neuron or synapse to the network or cognitive functions.

Simultaneously, the SNN also learns from the artificial neural network (ANN) by
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borrowing some mathematical optimization algorithms, for

example the approximate gradients in backpropagation (BP),

various types of loss definitions, and regression configurations.

Even though various advanced architectures have been

proposed and contributed ANN to a powerful framework,

the efforts to promote its training speed and computational

consumption have never been stopped. As the well-known

transformer for example, it contains a rich information

representation formed by multi-head self-attention, which

calculates Query, Key, and Value from the inputs to connect each

token in a sequence with every other token. Although having

achieved rapid and widespread application, the O(N2) complexity

(with N representing the sequence length) results in a huge

training cost in transformer that can not be neglected. Many works

have tried to solve this problem, including but not limited to,

replacing self-attention with unparameterized transform formats,

for example, using Fourier transform (FNet) (Lee-Thorp et al.,

2021) or Gaussian transform (Gaussian attention) (You et al.,

2020). Another attempt is to integrate some key features of ANNs

and SNNs to exhibit their advantages, such as the higher accuracy

performance in ANNs and the lower computational cost in SNNs.

The spikformer (Zhou et al., 2023) explores self-attention in

SNN for more advanced deep learning in visual recognition. It

introduces a spike-form self-attention called spiking self-attention

(SSA). In SSA, the floating Query, Key, and Value signals are

sent to leaky-integrated and fire (LIF) neurons to generate spike

sequences that only contain binary and sparse 0 and 1 vision

information, which results in non-negativeness spiking attention

map. This special map doesn’t require the complex softmax

operation anymore for further normalization, which means a lower

computational consumption is needed compared to that in vanilla

self-attention. However, even though many efforts have been made,

it seems that the SSA still exhibits an O(N2) complexity, for which

further refinement is necessary. Given binary and sparse spikes

for information representation, we here question whether it is still

necessary to retain the original complex structure of Self-Attention

in spikformer. Here, we give a hypothesis that although self-

attention with learning parameters has been generally considered

more flexible, it is still not suitable in the spike stream context,

since the correlation between sparse spike trains is too weak to

form closed similarity. In the field of image processing, Fourier

and wavelet transforms have achieved remarkable success in tasks

such as image denoising (Tian et al., 2023), edge detection (You

et al., 2023), and image compression (Zhang et al., 2020). Fourier

transform specializes in global frequency analysis, while Wavelet

transform adds multi-resolution capabilities for both global and

local feature capture. These techniques not only offer indispensable

tools for feature extraction, enabling precise and efficient analysis,

but also form a solid theoretical foundation for deep learning

models. Hence, an intuitive approach is to convert these sparse

spike trains in spatial domains to the equivalent frequency domains

with the help of Fourier or wavelet transformation.

Here we propose a new hypothesis: Just like the Fourier

transform, self-attention can also be thought of as using a set

of basis frequency functions for information representation. The

main difference between these two methods is that the Fourier

transform uses fixed triangular basis functions to transform signals

into the frequency domain, while on the contrary, the self-attention

calculates higher-order signal representation from compositions

of the input to produce more complex basis functions (Query ×
Key). This understanding may explain why FNet (Lee-Thorp

et al., 2021) performs well, since fixed basis functions may also

work in some cases by offering structured prior information.

Following this perspective, an intuitive plan is to integrate all these

key features together, toward a reduced computational cost and

accelerated running speed, including unparameterized transforms

(e.g., Fourier transform and wavelet transform), and spike-form

sparse representation. Our main contributions can be summarized

as follows:

• We propose a key hypothesis that the self-attention

in transformer works by using a set of basis functions

to transform information from Query, Key, and Value

sequences, which is very similar to the Fourier transform.

Hence, after jointly considering the shortcomings of

spikformer, we replaced SSA with spike-form Fourier

transform and wavelet transform. Mathematical analysis

indicates a reduced time complexity fromO(Nd2) orO(N2d),

to O(N logN) or O(D logD) + O(N logN), under the same

accuracy performance.

• The results validate that our method achieves superior

accuracy on event-based video datasets (improved by

0.3%–1.2%) and comparable performance on spatial image

datasets, compared to spikformer with SSA. Furthermore,

it exhibits significantly enhanced computational efficiency,

reducing memory usage by 4%–26%, reducing theoretical

energy consumption by 20%–25%, and achieving ∼9%–

51% and 19%–70% improvements in training and inference

speeds, respectively.

• We further analyze the orthogonality of self-attention as

a set of basis functions. We find during training that

the orthogonality is continuously decreasing, which inspires

us to use combined different wavelet bases with non-

linear, learnable parameters as coefficients to form structured

non-orthogonal basis functions. In the second round of

experiments, the experiments show even better accuracy

performance on event-based video datasets (improved by

0.4%–1.5% compared to spikformer).

2 Related studies

2.1 Vision transformers

The vanilla transformer architecture, initially designed

for natural language processing (Vaswani et al., 2017), has

demonstrated remarkable success in various other computer-

vision tasks, including image classification (Dosovitskiy et al.,

2020), semantic segmentation (Wang et al., 2021), object detection

(Carion et al., 2020), and low-level image processing (Chen et al.,

2021). The critical component that contributes to the success

of the transformer is the self-attention mechanism. In Vision

transformer (ViT), self-attention can capture global dependencies
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between image patches and generate meaningful representations

by weighting the features of these patches, using the dot-product

operation between Query and Key, followed by the softmax

normalization (Katharopoulos et al., 2020). The structure of ViT

also fits for conventional SNNs, offering potential transformer-type

architectures for achieving higher accuracy performance.

2.2 Spiking neural networks

In contrast to traditional ANNs that employ continuous

floating-point values to convey information, SNNs utilize discrete

spike sequences for communication, offering a promising energy-

efficient and biologically plausible alternative for computation. The

critical components of SNNs encompass spiking neuron models,

optimization algorithms, and network architectures. Spiking

neurons serve as the fundamental non-linear spatial and temporal

information processing units in SNNs, responsible for receiving

from continuous inputs and converting them to spike sequences.

Leaky Integrate-and-Fire (LIF) (Dayan and Abbott, 2005), PLIF

(Fang et al., 2021a), Izhikevich (Izhikevich et al., 2004) neurons

are commonly used dynamic neuron models in SNNs for their

efficiency and simplicity. There are primarily two optimization

algorithms employed in deep SNNs: ANN-to-SNN conversion and

direct training. In ANN-to-SNN conversion (Rueckauer et al.,

2017), a high-performance pre-trained ANN is converted into

an SNN by replacing rectified linear unit (ReLU) activation

functions with spiking neurons. However, the converted SNN

requires significant time steps to accurately approximate the ReLU

activation, leading to substantial latency (Han et al., 2020). In direct

training, SNNs are unfolded over discrete simulation time steps

and trained using backpropagation through time (Shrestha and

Orchard, 2018). Since the event-triggered mechanism in spiking

neurons is non-differentiable, surrogate gradients are employed to

approximate the non-differentiable parts during backpropagation

by using some predefined gradient values to replace infinite

gradients (Lee et al., 2020).

With the advancements in ANNs, SNNs have improved their

performance by incorporating advanced architectures from ANNs.

These architectures include spiking recurrent neural networks

(Lotfi Rezaabad and Vishwanath, 2020), ResNet-like SNNs (Hu

et al., 2021), and spiking graph neural networks (Xu et al., 2021).

Recently, exploring transformer in the context of SNNs has received

a lot of attention. For example, temporal attention has been

proposed to reduce redundant simulation time steps (Yao et al.,

2021). Additionally, an ANN-SNN conversion transformer has

been introduced, but it still retains vanilla self-attention that does

not align with the inherent properties of SNNs (Mueller et al.,

2021). Furthermore, spikformer (Zhou et al., 2023) investigates the

feasibility of implementing self-attention and transformer in SNNs

using a direct training manner.

In this article, we argue that the artificial transformer can

be well integrated into SNNs for higher performance, while at

the same time, the utilization of SSA in spiking transformer

(spikformer) can be further replaced by a special module based

on Fourier transform or wavelet transform, which to some extent,

indicating an alternative more efficient effort to achieve fast,

efficient computation without affecting the accuracy.

3 Background

3.1 Spiking neuron model

The spiking neuron serves as the fundamental unit in SNNs.

It receives the current sequence and accumulates membrane

potential, which is subsequently compared to a threshold to

determine whether a spike should be generated. In this article, we

consistently employ LIF at all spiking neuron layers.

The dynamic model of the LIF neuron is described as follows:

H[t] = V[t − 1]+
1

τ
(C[t]− (V[t − 1]− Vreset )) , (1)

S[t] = G (H[t]− Vth) , (2)

V[t] = H[t](1− S[t])+ Vreset S[t], (3)

where τ represents the membrane time constant, and C[t] denotes

the input current at time step t. When the membrane potential

H[t] exceeds the firing threshold Vth, the spiking neuron generates

a spike S[t]. The Heaviside step function G(v) is defined as 1 when

v ≥ 0 and 0 otherwise. The membrane potentialV[t] will transition

to the reset potential Vreset if there is a spike event, or otherwise it

remains unchanged as H[t].

3.2 Spiking self-attention

The spikformer utilizes the SSA as its primary module for

extracting sparse visual features and mixing spike sequences. Given

input spike sequences denoted as X ∈ R
T×N×D, where T, N, and D

represent the time steps, sequence length, and feature dimension,

respectively, SSA incorporates three key components: Query (Q),

Key (K), and Value (V). These components are initially obtained

by applying learnable matrices WQ,WK ,WV ∈ R
D×D to X.

Subsequently, they are transformed into spike sequences through

spiking neuron layers, formulated as:

Q = SN (BN(XWQ)),K = SN (BN(XWK )),V = SN (BN(XWV )), (4)

where SN denotes the Spiking Neuron Layer, BN denotes batch

normalization and Q,K ,V ∈ R
T×N×D. Inspired by vanilla self-

attention (Vaswani et al., 2017), SSA adds a scaling factor s

to control the large value of the matrix multiplication result,

defined as:

SSA(Q,K ,V) = SN
(

Q KT V ∗ s
)

,

X′ = SN (BN(Dense(SSA(Q,K ,V)))),
(5)

where X′ ∈ R
T×N×D are the updated spike sequences. It should

be noted that SSA operates independently at each time step. In

practice, T represents an independent dimension for the SN

layer. In other layers, it is merged with the batch size. Based on

Equation 4, the spike sequences Q and K produced by the SN

layers SNQ and SNK , respectively, naturally have non-negative

values (0 or 1). Consequently, the resulting attention map is also

non-negative. Therefore, according to Equation 5, there is no need

for softmax normalization to ensure the non-negativity of the
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attention map, and direct multiplication of Q, K , and V can be

performed. This approach significantly improves computational

efficiency compared to vanilla self-attention.

However, it is essential to note that SSA remains an operation

with a computational complexity of O(N2). Although SSA can be

decomposed with anO(N) attention scaling, this complexity hides

large constants, causing limited scalability in practical applications.

For a more detailed analysis, refer to time complexity analysis of

FW vs. SSA section. Within the spike-form frameworks, we are

firmly of the view that SSA is not essential, and there exist simpler

sequence mixing mechanisms that can efficiently extract sparse

visual features as alternatives.

3.3 Fourier transform

The Fourier transform (FT) decomposes a function into its

constituent frequencies. For the input spike features x ∈ R
N×D at a

specific time step in X, we utilize the FT to transform information

from different dimensions, including 1D-FT and 2D-FT.

The discrete 1D-FT along the sequence dimension of x ∈ R
N×D

to extract sparse visual features is defined by function Fseq:

x′n = Fseq(xn) =
N−1
∑

k=0

xke
− 2π i

N kn, n = 0, ...,N − 1, (6)

where i represents the imaginary unit and k represents the

frequency index. For each value of n from 0 to N − 1, the discrete

1D-FT generates a new representation x′n ∈ R
D as a sum of all

the original input spike features xn ∈ R
D. It is important to

note that the weights in Equation 6 are fixed constant and can be

pre-calculated for all spike sequences.

Similarly, the discrete 2D-FT along the feature and sequence

dimensions is defined by function Fseq(Ff):

x′n = Fseq(Ff(xn)), n = 0, ...,N − 1. (7)

Notably, Equations 6, 7 only consider the real part of the result.

Therefore, there is no need to modify the subsequent MLP sub-

layer or output layer to handle complex numbers.

3.4 Wavelet transform

Wavelet transform (WT) is developed based on Fourier

transform to overcome the limitation of Fourier transform in

capturing local features in the spatial domain.

The discrete 1D-WT along the sequence dimension to extract

sparse visual features is defined by functionWseq:

x′n = Wseq(xn) =
1

√
N

[

Tϕ(0, 0) ∗ ϕ(xn)+
J−1
∑

j=0

2j−1
∑

k=0

Tψ (j, k) ∗ ψj,k(xn)
]

,

(8)

Tϕ(0, 0) =
1

√
N

N−1
∑

k=0

xk ∗ ϕ(xk), Tψ (j, k) =
1

√
N

N−1
∑

k′=0

xk′ ∗ ψj,k(xk′ ),

(9)

where n = 0, ...,N − 1, N is typically a power of 2, ∗ denotes

element-wise multiplication, Tϕ(0, 0) are the approximation

coefficients, Tψ (j, k) are the detail coefficients, j represents the

current scale of wavelet transform with values ranging from 0 to J−
1, and k denotes the specific position index of the detail transform.

ϕ(x) is the scaling function, and ψj,k(x) = 2j/2ψ(2jx − k) is the

wavelet function. Here, we use the Haar scaling function and Haar

wavelet function for example, which is defined by the equation:

ϕ(x) =

{

1 0 ≤ x < 1

0 otherwise
, ψ(x) =















1 0 ≤ x < 0.5

− 1 0.5 ≤ x < 1

0 otherwise

, (10)

Similarly, the discrete 2D-WT along the feature and sequence

dimensions is defined by functionWseq(Wf):

x′n = Wseq(Wf(xn)), n = 0, ...,N − 1, (11)

In the subsequent experimental section, we also delve into

the exploration of different basis functions as well as their

potential combinations.

4 Method

Following a standard vision transformer architecture, the

vanilla spikformer incorporates several key components, including

the spiking patch splitting (SPS) module, spikformer encoder

layers, and a classification head for visual classification tasks. Here,

we directly replace vanilla SSA head with the FW head to efficiently

manage spike-form features.

In the following sections, we provide an overview of our

proposed FWformer in Figure 1, followed by a detailed explanation

of the FW head. Finally, we compare the time complexity of both of

these two heads.

4.1 Overall architecture

We provide Figure 1 for an overview of our FWformer. First,

for a given 2D image sequence I ∈ R
T×C×H×W . In the event-

based video datasets, the data shape is I ∈ R
T×C×H×W , where

T, C, H, and W denote the time step, channel, height, and width,

respectively. In static datasets, a 2D image Is ∈ R
C×H×W needs

to be repeated T times to form an image sequence. The goal

of the spiking patch splitting (SPS) module is to linearly project

it into a D-dimensional spike-form feature and split this feature

into a sequence of N flattened spike-form patches P ∈ R
T×N×D.

Following the approach of the vanilla spikformer, the SPS module

employs convolution operations to introduce inductive bias (Xiao

et al., 2021).

Second, to generate spike-form relative position embedding

(RPE), the conditional position embedding (CPE) generator (Chu

et al., 2021) is utilized in the same manner as the spikformer.

The RPE is then added to the patch sequence P, resulting

in X0 ∈ R
T×N×D.
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FIGURE 1

The overall architecture of our proposed FWformer. It mainly consists of three components: (1) spiking patch splitting (SPS) module, (2) FWformer

encoder layer, and (3) classification layer. Additionally, we highlight the similarities between the FW head and SSA head at a single time step, which

inspires us to choose the former as an exploration for more e�cient calculations within the spike-form framework.

Third, the L-layer FW encoder is designed to manage X0.

Different from spikformer encoder layer with SSA head, our FW

encoder layer consists of an FW sub-layer and an MLP sub-

layer, both with batch normalization and spiking neuron layer.

Residual connections are also applied to both the modules. The

FW head in FW sub-layer serves as a critical component in

our encoder layer, providing an efficient method for spike-form

sparse representation. We have provided two implementations

for FW head, including Fourier transform (FT) and wavelet

transform (WT). Many works in the past have used FT and

WT to alternate between the spatial and frequency domains,

allowing for efficient analysis of signals. While in this article we

treat them as structured basis functions with prior knowledge

for information transformation. These implementations will be

thoroughly analyzed in the next section.

Finally, following the processing in spikformer, a global

average-pooling (GAP) operation is applied to the resulting spike

features, generating a D-dimensional feature. The feature is then

fed into the classification module consisting of a spiking fully

connected (SFC) layer, which produces the prediction Y . The

formulation of our FWformer can be expressed as follows:

P = SPS (I) , (12)

RPE = CPE(P), (13)

X0 = P + RPE, (14)

X′
l = SN (BN(FW(Xl−1)))+ Xl−1, (15)

Xl = SN (BN(MLP(X′
l)))+ X′

l , (16)

Y = SFC(GAP(XL)), (17)

where I ∈ R
T×C×H×W , P ∈ R

T×N×D, RPE ∈ R
T×N×D,

X0 ∈ R
T×N×D, X′

l
∈ R

T×N×D, Xl ∈ R
T×N×D and l = 1, ..., L.

Moreover, the membrane shortcut (MS), which has been

applied in many existing works (Chen et al., 2023; Yao et al., 2024),

is also utilized in ourmodel for comparison. It establishes a shortcut

between the membrane potential of spiking neurons in various

layers to enhance performance and increase biological plausibility

(Yao et al., 2024).
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4.2 The FW head

Given input spike sequences X ∈ R
T×N×D, these features are

then transformed into spiking sequences X′ ∈ R
T×N×D through a

SN layer. The formulation can be expressed as:

FW(X) = FT(X) or WT(X),

X′ = SN (BN((FW(X)))),
(18)

In contrast to the SSA head in Equation 5, the FW head does

not involve any learnable parameters or Self-Attention calculations.

Here, we can choose from Fourier transform (FT) and wavelet

transform (WT) with fixed basis functions. We can also combine

different wavelet bases to form a superior function, which is defined

as follows:

Base = a · Base1+ b · Base2+ c · Base3,

FW(X) = Base(X),
(19)

where a, b, and c are learnable parameters, and Base1, Base2,

and Base3 are selected bases. Since wavelet transform is a linear

transformation, Equation 19 can also be written as:

FW(X) = a · Base1(X)+ b · Base2(X)+ c · Base3(X) (20)

Further analysis and experiments will be conducted based on

the proposed FW head in the following sections.

4.3 Time complexity analysis of FW vs. SSA

We make a time complexity analysis between SSA, Fourier

transform (FT), and wavelet transform (WT). The results are

presented in Table 1. In the subsequent experimental section, we

also conduct a more specific comparison of the training and

inference speeds between FW and SSA under the same conditions.

In SSA (Equation 5), since there is no softmax operation, the

order of calculation between Q, K , and V can be changed: either

QKT followed by V , or KTV followed by Q. The former has a

time complexity ofO(N2d), while the latter hasO(Nd2), where d is

the feature dimension per head.In practice, the SSA in Equation 5

can be extended to multi-head SSA. In this case, d = D/H,

where H is the number of heads. The second complexity, O(Nd2),

cannot be simply considered as O(N) due to the large constant

d2 involved. Only when the sequence length N is significantly

larger than the feature dimension per head d does it demonstrate

a significant computational efficiency advantage over the first

complexity,O(N2d).

In our implementation, we utilize the fast Fourier transform

(FFT) algorithm to compute the discrete FT. Specifically, we

employ the Cooley–Tukey algorithm (Cooley and Tukey, 1965),

which recursively expresses the discrete FT of a sequence of length

N = N1N2 in terms of N1 smaller discrete FTs of size N2, reducing

the time complexity to O(N logN) for discrete 1D-FT along the

sequence dimension. Similarly, for discrete 2D-FT first along the

feature dimension and then along the sequence dimension, the time

complexity isO(D logD)+O(N logN). In general, the complexity

of WT is comparable to that of FFT (Gonzales and Wintz, 1987).

5 Experiments

We conduct experiments on event-based video datasets

(CIFAR10-DVS and DvsGesture), as well as static image datasets

(CIFAR10 and CIFAR100). The FWformer is trained from scratch

and compared with existing methods, including spikformer with

SSA and its variant. More analyses are also given about the effects

of different wavelet bases and their combinations.

5.1 Experiment settings

To ensure a fair comparison, we ensure the same configurations

of spikformer with SSA for datasets, implementation details, and

evaluation metrics. To conduct the experiments, we implement

the models using PyTorch and SpikingJelly (Fang et al., 2023). All

experiments are conducted on NVIDIA A100 GPU.

5.1.1 Event-based video datasets
For the CIFAR10-DVS and DvsGesture datasets, which have an

image size of 128×128, we employ the spiking patch splitting (SPS)

module with a patch size of 16 × 16. This configuration splits each

image into a sequence with a lengthN of 64 and a feature dimension

D of 256. We utilize 2 FWformer encoder layers and set the time

step of the spiking neuron to 16. The training process consists

of 106 epochs for CIFAR10-DVS and 200 epochs for DvsGesture.

We employ the AdamW optimizer with a batch size of 16. The

learning rate is initialized to 0.1 and reduced using cosine decay.

Additionally, data augmentation techniques, as described in Li et al.

(2022), are applied specifically to the CIFAR10-DVS dataset.

5.1.2 Static image datasets
For the CIFAR10/100 datasets featuring an image size of 32×32,

we employ the SPS module with a patch size of 4 × 4, which

splits each image into a sequence of length N = 64 and a feature

dimension of D = 384. For the FWformer Encoder, we use four

layers, and the time-step of the spiking neuron is set to 4. During

training, we utilize the AdamW optimizer with a batch size of 128.

The training process spans 400 epochs, with a cosine-decay learning

rate starting at 0.0005. Following the approach outlined in Yuan

TABLE 1 The time complexity for di�erent methods.

Methods SSA (Zhou et al., 2023) 1D-FFT 2D-FFT 2D-WT

Time complexity O(N2d) orO(Nd2) O(N logN) O(D logD)+O(N logN) O(D logD)+O(N logN)

We have N = 64, D = 384 or 256, and d = 32.
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TABLE 2 Accuracy performance comparison of our method with existing methods on CIFAR10-DVS (DVS10), DvsGesture (DVS128), CIFAR10, and

CIFAR100.

Methods Architecture Time step
(DVS10/128)

Top-1 acc.
(DVS10/128)

LIAF (Wu et al., 2021) LIAF-Net 10/60 70.4/97.6

TA-SNN (Yao et al., 2021) TA-SNN 10/60 72.0/98.6

Rollout (Kugele et al., 2020) – 48/240 66.8/97.2

DECOLLE (Kaiser et al., 2020) – – /500 – /95.5

tdBN (Zheng et al., 2021) ResNet-19 10/40 67.8/96.9

PLIF (Fang et al., 2021a) – 20/20 74.8/97.6

D-ResNet (Fang et al., 2021b) Wide-7B-Net 16/16 74.4/97.9

Dspike (Li et al., 2021) – 10/ – 75.4/–

SALT (Kim and Panda, 2021) – 20/ – 67.1/–

DSR (Meng et al., 2022) – 10/ – 77.3/–

SDSA (Yao et al., 2024) Spikformer-2-256 16/16 80.0/99.3

SSA (Zhou et al., 2023) Spikformer-2-256 16/16 80.9/98.3

1D-FFT FWformer-2-256 16/16 80.5/99.0

2D-FFT FWformer-2-256 16/16 80.6/98.4

2D-WT-Haar FWformer-2-256 16/16 81.0/98.5

1D-FFT* FWformer-2-256 16/16 80.8/99.5

2D-FFT* FWformer-2-256 16/16 80.7/98.2

2D-WT-Haar* FWformer-2-256 16/16 81.2/99.1

Methods Architecture Time step Top-1 acc.
(CIFAR10/100)

Hybrid training (Rathi et al., 2020) VGG-11 125 92.22/67.87

Diet-SNN (Rathi and Roy, 2020) ResNet-20 10/5 92.54/64.07

STBP (Wu et al., 2018) CIFARNet 12 89.83/–

STBP NeuNorm (Wu et al., 2019) CIFARNet 12 90.53/–

Dspike (Li et al., 2021) – 6 94.3/74.2

TSSL-BP (Zhang and Li, 2020) CIFARNet 5 91.41/–

STBP-tdBN (Zheng et al., 2021) ResNet-19 4 92.92/70.86

TET (Deng et al., 2022) ResNet-19 4 94.44/74.47

ANNmethods ResNet-19 1 94.97/75.35

transformer-4-384 1 96.73/81.02

SDSA (Yao et al., 2024)* Spikformer-4-384 4 95.6/78.4

SSA (Zhou et al., 2023) Spikformer-4-384 4 95.51/78.21

1D-FFT FWformer-4-384 4 94.9/77.3

2D-FFT FWformer-4-384 4 95.1/77.9

2D-WT-Haar FWformer-4-384 4 95.2/78.1

1D-FFT* FWformer-4-384 4 95.5/78.0

2D-FFT* FWformer-4-384 4 95.0/78.3

2D-WT-Haar* FWformer-4-384 4 95.6/78.2

Our FWformer [∗ means replacing vanilla residual connection with Membrane Shortcut (MS)] outperforms spikformer with SSA on event-based video datasets in terms of Top-1 acc. and

achieves comparable accuracy on static datasets (the text in bold indicates the best results). It is necessary to mention that in the Architecture column, the FWformer-L-D refers to a configuration

with L layers of FW encoder layer and a feature dimension of D, while the spikformer-L-D represents L layers of spikformer encoder block with a feature dimension of D. For event-based video

datasets (DVS10, DVS128), L is set to 2 and D to 256, whereas for static image datasets (CIFAR10, CIFAR100), L is set to 4 and D to 384. For each dataset, all hyperparameters including learning

rate, training epochs, time steps, and optimizer settings, are kept identical for both spikformer and FWformer, ensuring a fair comparison, as detailed in Section 5.1.
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TABLE 3 Memory usage and speed performance comparison of our method with existing methods on CIFAR10-DVS (DVS10), DvsGesture (DVS128) and

CIFAR-static (CIFAR10 and CIFAR100).

Methods Param
(M)

Memory
(DVS10/128)

(GB)

Training speed
(DVS10/128)
(ms/batch)

Inference speed
(DVS10/128)
(ms/batch)

STBP-tdBN (Zheng et al., 2021) 12.63 25.86/25.87 65/194 27/98

TET (Deng et al., 2022) 12.63 36.13/36.17 71/203 22/77

SDSA (Yao et al., 2024) 2.59 9.02/9.03 73/245 29/101

SSA (Zhou et al., 2023) 2.59 9.02/9.03 76/246 30/105

1D-FFT 2.06 8.67/8.71 51/121 11/32

2D-FFT 2.06 8.54/8.74 55/135 21/37

2D-WT-Haar 2.06 8.70/8.73 62/139 21/46

DWT-C 2.06 8.55/8.74 69/158 23/48

Methods Param
(M)

Memory
(CIFAR-static)

(GB)

Training Speed
(CIFAR-static)
(ms/batch)

Inference Speed
(CIFAR-static)
(ms/batch)

STBP-tdBN (Zheng et al., 2021) 12.63 8.02 155 20

TET (Deng et al., 2022) 12.63 8.19 148 23

SDSA (Yao et al., 2024) 9.32 11.69 162 33

SSA (Zhou et al., 2023) 9.32 11.69 166 31

1D-FFT 6.96 8.61 118 12

2D-FFT 6.96 8.75 122 13

2D-WT-Haar 6.96 9.33 121 19

DWT-C 6.96 9.86 136 25

Our FWformer outperforms spikformer with SSA (Zhou et al., 2023) and its variant (Yao et al., 2024) when comparing GPU memory usage, training speed and inference speed under identical

operating conditions. It is important to mention that the model architectures and hyperparameters are consistent with those of the models listed in Table 2.

et al. (2021), we apply standard data augmentation techniques such

as random augmentation, mixup, and cutmix during training.

5.2 Accuracy performance

We evaluate the accuracy performance on visual classification

tasks, utilizing Top-1 accuracy (Top-1 acc.) as the performance

metric. The results of our FWformer, spikformer with SSA, and

other existing methods (both SNNs and ANNs, including the

spikformer variant) (Yao et al., 2024) on event-based video datasets

as well as static image datasets are presented in Table 2.

Our FWformer achieves remarkable accuracy, reaching 81.2%

on CIFAR10-DVS with 2D-WT-Haar, and an impressive 99.5%

on DvsGesture with 1D-FFT. The performances surpass the

spikformer with SSA by 0.3 and 1.2%, respectively. While on static

datasets, our FWformer variants demonstrate comparable Top-1

accuracy. The results demonstrate the advantage of our methods,

particularly on event-based video datasets.

5.3 Computational costs and speed
performance

Furthermore, we conduct a comprehensive comparison

between existing works and our FWformer in terms of GPU

memory usage, training speed, and inference speed, ensuring

identical operating conditions. The training speed represents the

time taken for the forward and back-propagation of a batch of

data, while the inference speed denotes the time taken for the

forward-propagation of a batch of data in milliseconds (ms). To

minimize variance, we calculate the average time spent over 100

batches. The results are presented in Table 3 (DWT-C means

2D-WT combination with learnable parameters, which will be

discussed in the next subsection).

In the case of event-based video datasets, our FWformer

achieves a significant reduction in the number of parameters,

∼20%, under identical hyperparameter configurations and

operating conditions. This reduction, attributed to the absence

of learnable parameters, translates to around 4%–5% memory

savings. Moreover, our FWformer demonstrates remarkable

improvements in both training and inference speeds, showing

increases of ∼ 9%–51% and 33%–70%, respectively, compared

to SSA. While in the case of static datasets, our FWformer

also shows several advantages under identical hyperparameter

configurations and operating conditions. It achieves a notable

reduction in the number of parameters, ∼25%, leading to

memory savings of nearly 26%. Furthermore, our FWformer

enhances both training and inference speeds by ∼18%–29% and

19%–61%, respectively.

We also provide an analysis of energy efficiency. We estimate

the theoretical energy consumption of FWformer mainly according

to Yao et al. (2024), Horowitz (2014), and Zhou et al. (2023). It is
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TABLE 4 The theoretical energy consumption on DVS10 (CIFAR10-DVS),

DVS128 (DvsGesture), CIFAR10, and CIFAR100 dataset.

Methods DVS10
OPs (G)/Power

(mJ)

DVS128
OPs (G)/Power

(mJ)

SDSA (Yao et al., 2024) 1.561/0.816 1.620/0.713

SSA (Zhou et al., 2023) 1.852/0.943 1.914/0.822

1D-FFT 1.547/0.752 1.608/0.650

2D-FFT 1.548/0.752 1.609/0.653

2D-WT 1.549/0.753 1.609/0.651

DWT-C 1.553/0.753 1.613/0.652

Methods CIFAR10
OPs (G)/Power

(mJ)

CIFAR100
OPs (G)/Power

(mJ)

SDSA (Yao et al., 2024) 0.951/0.415 1.446/0.609

SSA (Zhou et al., 2023) 1.186/0.523 1.737/0.748

1D-FFT 0.942/0.392 1.438/0.578

2D-FFT 0.943/0.393 1.438/0.584

2D-WT 0.944/0.393 1.439/0.584

DWT-C 0.947/0.394 1.442/0.586

DWT-C means 2D-WT combination with learnable parameters.

TABLE 5 Accuracy performance of di�erent wavelet bases as well as their

combination with learnable (DWT-C) or fixed (DWT-C-F) parameters on

DVS10 and DVS128 datasets [∗ means replacing vanilla residual

connection with Membrane Shortcut (MS)].

Methods Architecture Time step
DVS10/128

Top-1 acc.
DVS10/128

2D-WT-Haar FWformer-2-256 16/16 81.0/98.5

2D-WT-Haar* FWformer-2-256 16/16 81.2/99.1

Db1 FWformer-2-256 16/16 81.0/98.7

Bior1.1 FWformer-2-256 16/16 80.9/98.2

Rbio1.1 FWformer-2-256 16/16 80.4/98.1

DWT-C-F FWformer-2-256 16/16 80.6/98.2

DWT-C-F* FWformer-2-256 16/16 81.1/98.9

DWT-C FWformer-2-256 16/16 81.3/99.1

DWT-C* FWformer-2-256 16/16 81.2/99.8

The text in bold indicates the best results.

calculated by the following two equations:

SOPs(l) = Rate× T × FLOPs(l), (21)

EFWformer = EMAC × EL1Conv

+ EAC × (

K
∑

k=2

SOPkConv +
M

∑

m=1

SOPmFC +
N

∑

n=1

SOPnFW),

(22)

SOPs(l) means synaptic operations [the number of spike-based

accumulate (AC) operations] of layer l,Rate is the average firing rate

of input spike train to layer l, T is the time window of LIF neurons,

and FLOPs(l) refers to the floating point operations [the number of

multiply-and-accumulate (MAC) operations] of layer l. We assume

that the MAC and AC operations are implemented on the 45nm

hardware (Horowitz, 2014), with EMAC = 4.6pJ and EAC = 0.9pJ.

EL1Conv represents the FLOPs of convolution module in ANNs.

It is used for the first layer to convert static images into spike

trains, which can also be written as SOP1Conv for event-based video

datasets, and SOPlNet (SOP
k
Conv, SOP

m
FC, SOP

n
FW) is for the rest of

FWformer.

The experimental settings are the same as in the main text.

Each cell in Table 4 contains results presented in the form of

OPs(G)/Power(mJ), where OPs refers to the total SOPs in a

SNN model, and Power refers to the average theoretical energy

consumption when predicting one sample from the datasets.

The results indicate that ourmethods can achieve a reduction in

energy consumption of ∼20%–25% compared to SSA (Zhou et al.,

2023) and 4%–9% compared to its variant (Yao et al., 2024). This is

primarily due to lower computational complexity of the FW head,

as reflected in fewer total SOPs (OPs). Our FWformer demonstrates

enhanced energy efficiency.

5.4 From orthogonal to non-orthogonal
bases

In the previous experiments, the Haar base was used as the

default choice for wavelet transform. We have also compared the

performance of some other wavelet bases including Db1, Bior1.1,

and Rbio1.1, each having different functions for deconstructing the

spike-form feature while maintaining orthogonality. The results

on CIFAR10-DVS and DvsGesture are presented in Table 5.

Interestingly, most alternative basis functions yield similar Top-

1 accuracy. Their performance is comparable to or even better

than that of spikformer. It is essential to highlight that wavelet

transform offers numerous different basis function options, and our

exploration has not been exhaustive. Investigating the influence of

more basis function choices on accuracy, as well as the possibility

of identifying superior basis functions, is an avenue for future

research.

However, a more interesting question arises: Is it always

necessary to pursue orthogonality? Although in many cases,

orthogonality signifies sparse and efficient information

representation, neural networks may show the opposite

phenomenon in the actual training process, that is, parameters

naturally tend toward overlapping representations, and SSA is no

exception. To illustrate this, we treat SSA as basis functions as

proposed in the previous sections, and then quantitatively measure

changes in their orthogonality during training. We calculate the

inner product of each row vector (one base) in Q × K with others

(other bases) and sum them in each training step. The variation

trend is shown in Figure 2A. Initially, network parameters are

nearly orthogonal at initialization, but their orthogonality is

continuously decreasing during training. A diagram visualizing

how the basis functions change during training is provided in

Figure 2B. Inspired by this phenomenon, we further explore

the combination of different wavelet bases to form fixed non-

orthogonal basis functions, as depicted in Figure 2C. We assume
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FIGURE 2

(A) We treat spiking self-attention as a set of basis functions and proceed to measure the changes in their orthogonality throughout the training

process. (B) A diagram visualizing how the basis functions, spanning a feature space, are transformed from orthogonal to non-orthogonal, with only

two axes used for simplification. (C) A diagram visualizing our endeavor to employ fixed non-orthogonal bases.

TABLE 6 Ablation studies examining the impact of varying layer

configurations on accuracy.

Methods Layer
number

Top-1 acc.
(DVS128)

No FW or SSA – 95.4

Spikformer

SSA (Zhou et al., 2023)

1 97.2

2 98.3

3 98.3

4 97.6

FWformer

2D-WT-Haar*

1 98.2

2 99.1

3 99.1

4 98.2

FWformer

1D-FFT*

1 99.7

2 99.5

3 98.4

4 98.4

FWformer

DWT-C*

1 98.6

2 99.8

3 99.9

4 99.0

∗Means we replace vanilla residual connection with Membrane Shortcut (MS).

that the pre-trained dynamic bases may serve an equivalent

function to the fixed non-orthogonal bases.

Here we choose Bior1.1, Haar, and Db1 for further exploration.

In practice, we introduced dynamics to the coefficients of different

wavelet bases using the following formulation: a = p11, b = p22, c =
p33. To search for the optimal coefficients for their combinations,

we initialized the learnable parameters p1, p2 and p3 at 0.5 and then

conducted training. The new FW head will have three parameters

to learn, which exert minimal influence on the overall computation

of the network but play a crucial role in finding suitable

combinations. After training, these parameters were optimized

to 0.9683, 1.0895, and 1.2445, respectively, demonstrating a joint

optimization process with the network parameters. The results

are presented in Table 5. Consistent with our hypothesis, the

use of fixed non-orthogonal basis functions further improves

accuracy performance (0.4%–1.5% improvements on event-based

video datasets, compared to vanilla spikformer). We have also set

fixed values of p1, p2, and p3 to 0.5 (DWT-C-F), the results were

inferior to DWT-C and resembled the performance of using only a

single wavelet base. This highlights the effectiveness of introducing

learnable parameters. A possible explanation is that manually

tuning these parameters would involve an excessively large search

space, whereas the learnable approach significantly improves

search efficiency.

We attempt to conduct a preliminary analysis of the situations

in which our FWformer is applicable: In contrast to conventional

signal processing, complex tasks such as Natural Language

Processing (NLP) and Automatic Speech Recognition (ASR) need

the designed models to learn diverse syntactic and semantic

relationships, which can hardly be represented simply by fixed basis

functions such as Fourier bases. For this reason, the network has

to form dynamic higher-order basis functions, which are adjusted

by not only the changing inputs but also the parameter learning of

the network itself. We can regard these basis functions in networks

as hyper-parameters that need continuous adjustment. However,

this also means each time the basis functions change, the rest of

the network has to adapt accordingly, which is understandable in

complex tasks but not necessary in some other cases (e.g. event-

based video tasks). Moreover, within spike-form frameworks, the

features are represented by such sparse spiking signals that the

correlation between them is too weak to form closed similarity,

so it is more suitable to use structured fixed basis functions (e.g.

Fourier bases and wavelet bases) containing prior knowledge to get

a simplified network.
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5.5 Ablation studies

In this section, we conduct ablation studies on the impact of

different layers of FW encoder layer or SSA block. The experiments

were conducted on the DVS128 dataset, and the results are

presented in Table 6. The hyperparameters are consistent with

those of the models listed in Table 2.

The results reveal that while adding layers of FW encoder

layer can enhance accuracy, there is an optimal point beyond

which increasing the number of layers does not yield better results.

This trend also holds true for SSA layers. Within the spike-form

frameworks, too many layers might lead to overfitting. Overall,

an optimal performance is achieved with two FW layers for the

DVS128 dataset.

6 Conclusion

We present the FWformer that replaces SSA with spike-

form FW head, based on the hypothesis that both of them use

dynamic or fixed bases to transform information. The proposed

model achieves comparable or better accuracy, higher training

and inference speed, and reduced computational cost, on both

event-based video datasets and static datasets. We analyze the

orthogonality in SSA during training and assume that the pre-

trained dynamic bases serve an equivalent function to the fixed

bases, which inspires us to explore non-orthogonal combined

bases and get even higher accuracy. Additionally, we provide

an analysis of why and under what scenarios our FWformer is

effective, indicating the promising refinement of new transformers

in the future, which is inspired by biological discovery and

information theory.
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