
TYPE Original Research

PUBLISHED 05 February 2025

DOI 10.3389/fnins.2024.1523331

OPEN ACCESS

EDITED BY

Amirreza Yousefzadeh,

University of Twente, Netherlands

REVIEWED BY

Anirban Das,

Intel, United States

Alexander Andreopoulos,

IBM Research, United States

*CORRESPONDENCE

Elias Arnold

elias.arnold@kip.uni-heidelberg.de

Philipp Spilger

philipp.spilger@kip.uni-heidelberg.de

RECEIVED 05 November 2024

ACCEPTED 30 December 2024

PUBLISHED 05 February 2025

CITATION

Arnold E, Spilger P, Straub JV, Müller E,

Dold D, Meoni G and Schemmel J (2025)

Scalable network emulation on analog

neuromorphic hardware.

Front. Neurosci. 18:1523331.

doi: 10.3389/fnins.2024.1523331

COPYRIGHT

© 2025 Arnold, Spilger, Straub, Müller, Dold,

Meoni and Schemmel. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Scalable network emulation on
analog neuromorphic hardware

Elias Arnold1*, Philipp Spilger1*, Jan V. Straub1, Eric Müller1,

Dominik Dold2, Gabriele Meoni3 and Johannes Schemmel1

1European Institute for Neuromorphic Computing, Kirchho� Institute for Physics, Heidelberg

University, Heidelberg, Germany, 2Advanced Concepts Team, European Space Research and

Technology Centre, European Space Agency, Noordwijk, Netherlands, 3Faculty of Aerospace

Engineering, Delft University of Technology, Delft, Netherlands

We present a novel software feature for the BrainScaleS-2 accelerated

neuromorphic platform that facilitates the partitioned emulation of large-

scale spiking neural networks. This approach is well suited for deep spiking

neural networks and allows for sequential model emulation on undersized

neuromorphic resources if the largest recurrent subnetwork and the required

neuron fan-in fit on the substrate. We demonstrate the training of two deep

spiking neural network models—using the MNIST and EuroSAT datasets—that

exceed the physical size constraints of a single-chip BrainScaleS-2 system.

The ability to emulate and train networks larger than the substrate provides

a pathway for accurate performance evaluation in planned or scaled systems,

ultimately advancing the development and understanding of large-scale models

and neuromorphic computing architectures.

KEYWORDS

modeling, neuromorphic, spiking neural networks, virtualization, accelerator

abstraction

1 Introduction

For traditional deep learning algorithms, whether simulated on conventional hardware

or accelerated using GPUs and specialized hardware, the seamless integration of machine

learning frameworks such as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al.,

2015) has simplified modeling and accelerated research. Recent years have seen a parallel

evolution in the field of spiking neural networks (SNNs), where specialized modeling

interfaces (Pehle and Pedersen, 2021; Manna et al., 2023) have begun to play a key role in

streamlining the model development process. While the creation of a scaffold for building

software support within machine learning libraries for general-purpose processing units is

well established (Facebook Inc., 2021; Lattner et al., 2021), it is still an open research topic

in the context of custom digital neuromorphic hardware (Shrestha et al., 2022), and even

more so for the time-continuous nature of many analog neuromorphic systems, where the

path to seamless integration is considerably more intricate.

In this work, we address typical model size limitations imposed by small substrates

such as the BrainScaleS-2 (BSS-2) accelerated mixed-signal neuromorphic system (Pehle

et al., 2022), which is currently only deployed in its single-chip variant. Initially, the

BSS-2 architecture has been designed as a research vehicle for computational neuroscience,

offering specialized features tailored to address the intricacies of neural dynamics and

plasticity. The inclusion of multi-compartmental neurons, complex synapse dynamics,

adaptive exponential integrate-and-fire (AdEx) compartment dynamics (Brette and

Gerstner, 2005; Billaudelle et al., 2022), as well as short-term and long-term plasticity,

positions BSS-2 as a versatile platform for exploring diverse neural phenomena. Beyond

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1523331
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1523331&domain=pdf&date_stamp=2025-02-05
mailto:elias.arnold@kip.uni-heidelberg.de
mailto:philipp.spilger@kip.uni-heidelberg.de
https://doi.org/10.3389/fnins.2024.1523331
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1523331/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

computational neuroscience, BSS-2 also extends its reach

into machine-learning-inspired applications, where functional

modeling often draws inspiration from machine learning.

Deep neural networks (DNNs) are often significantly larger

than neuromorphic ASICs. While small-scale multi-chip system

prototypes using an EXTOLL-based FPGA-mediated interconnect

have been demonstrated (Thommes et al., 2022; Thommes,

2023), production BSS-2 system resources operate in single-

chip configurations. However, networks with limited fan-in

requirements that either comprise a pure feed-forward topology

or sufficiently local recurrence allow for the partitioning into

subnetworks that individually fit onto single ASICs. In general,

partitioning introduces sequence points where emulation can be

paused while the data flow still determines the execution order,

i.e., subnetwork partitions of early layers are emulated before later

layers, but the execution order within a layer is arbitrary. This

therefore enables the sequential evaluation of networks larger than

the existing neuromorphic substrate without having to resort to

software simulation. Especially with regard to the typical costs

and time required for hardware development, this enables early

analysis and thus optimization of future hardware substrates.

The reuse of “computational units” (neurons, synapses, routing,

and other resources) is analogous to the way conventional von-

Neumann architectures utilize computational resources and can

be understood as a form of virtualization of the neuromorphic

substrate. This departs from traditional neuromorphic systems,

which allocate dedicated resources for each component of spiking

neural networks. Recent work (Mysore et al., 2022) laid out

a partitioning method for mapping large-scale neural network

models onto neuromorphic hardware. Along these lines, for

hardware supporting non-time-continuous operation, Song et al.

(2020) describes a complete workflow from model specification

to hardware execution. Previous work by the authors provided

similar functionality for the activation-based —i.e. non-spiking—

operation mode of BSS-2 (Spilger et al., 2020).

The BSS-2 software stack aims to provide a user-friendly

modeling API that abstracts away from hardware-specific

intricacies (Müller et al., 2022). Over the course of its development,

machine learning inspired training approaches have become

increasingly popular. However, until recently, our modeling efforts

were mostly limited to the size constraints of single BSS-2 ASICs. In

this work, we focus on providing a framework for integrating such

partitioning methods more generally, particularly for large-scale

SNNs, into the BSS-2 software stack. The method not only applies

to single-chip substrates, but generalizes also to larger substrates

by concurrently placing multiple partitions.

In this work, extend the capabilities of the BSS-2 platform

to emulate larger-than-substrate-sized networks efficiently and

seamlessly, thereby advancing the overarching goal to automate

the process of making BSS-2 amenable for large-scale network. For

this, we focus on scenarios, such as feed-forward networks or those

with sufficiently small recurrent subnetworks, where hardware

reuse becomes a practical proposition. Our new software feature

introduces the manual partitioning into subnetworks for implicit

sequential hardware execution, effectively abstracting away all

hardware-related data flow of partitioned hardware runs from the

top-level machine learning framework. We discuss our approach

in the context of commonly used datasets and network topologies.

Finally, we demonstrate the training and emulation of larger,

multi-partition networks on single-chip BSS-2 substrates using

the MNIST (LeCun et al., 1998b) dataset of handwritten digits

and the EuroSAT (Helber et al., 2017) dataset for land use and

land cover classification. The latter is of particular relevance for

future applications in space (Izzo et al., 2022), as energy-efficient

compute infrastructure such as neuromorphic hardware represents

a promising candidate for neural solutions onboard spacecraft—

especially miniaturized ones like CubeSats. We present the first

results on BSS-2 for training functional networks larger than the

hardware substrate.

2 Methods

In this work, the latest BSS-2 ASIC (Pehle et al., 2022) is used

as a mixed-signal neuromorphic substrate, depicted in Figure 1A.

It features 512 (single-compartment) neurons implementing the

AdEx neuron equation in analog circuits (see Pehle et al., 2022

for details). The AdEx circuits can be configured to implement the

leaky-integrate and fire (LIF) neuron dynamics used in this work,

see Equations 1, 2 used in this work,

τmv̇ = (v− El) +
1

gl
I, (1)

with v being the membrane potential, τm the membrane time

constant, gl the leak conductance, and El the leak potential. The

neurons support both conductance- and current-based synaptic

input, here we use the latter. There, each neuron can receive input

events at times tsi from 256 pre-synaptic neurons {i} via synapses

with weight wi, resulting in the synaptic input current I,

I(t) =
∑

{tsi }

wi2(t − tsi ) exp−
t − tsi

τs
, (2)

where τs is the synaptic time constant. If the membrane potential

exceeds the neuron’s threshold ϑ , the neuron emits a spike event

and v is reset to the reset potential Er. Using on-chip routing,

the maximum on-chip fan-out of a single neuron on BSS-2 is

2 × 32 × 2 × 256 = 32, 768 synapses.1 Each neuron supports a

fan-in of 256, however, the fan-in can be increased by shortening

multiple neuron circuits (see below). Events are propagated via

digital signals, while the post-synaptic neuron dynamics evolve

in the analog domain. Using the current default FPGA-ASIC link

speed, the maximum sustained bandwidth is 250MHz for both

input and output events. Therefore, SNNs on BSS-2 are emulated

time-continuously on an physical computing substrate and in

real-time—in contrast to numerical simulation, the experiment in

general cannot be paused. Hence, the network size which can

be concurrently (and interdependently) emulated is limited by

the number of neuron and synapse circuits, and other resources.

However, concurrent placement and emulation is only required for

tightly-coupled recurrent network subgraphs, while feed-forward

network subgraphs can be partitioned and run in parts. Figure 1C

sketches the partitioning of the feed-forward network in Figure 1B.

1 Using o�-chip routing, the maximum fan-out is typically limited by finite

routing tables and link bandwidths.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

FIGURE 1

(A) A photo of the BSS-2 chip with its schematic overlaid on top. (B) A larger-scale network, exceeding the size of a single BSS-2 substrate. To

emulate the full network, it can be partitioned into smaller subnetworks and executed concurrently on a multi-chip setup as displayed in (C) or all

subnetworks are emulated sequentially by reusing the same chip resource. The concept of sequential execution also applies to networks that exceed

scaled multi-chip system in size where the scaled system then becomes the largest sequentially allocatable entity. Dashed lines correspond to

recurrent dependencies. (D) Upper: On BSS-2 convolutions need to be unrolled spatially thereby demanding excessive hardware resources and

partitioning. Here, W and H corresponds to the width and height of the kernel, Ci and Co are the number of input resp. output feature planes. Lower:

For sequential network emulation, recurrent dependencies need to fit on a single substrate which reduces external fan-in. However, this limitation

does not apply for concurrent network emulation. (E) Software API of explicitly partitioned network indicated by the dotted red line in (B, C).

ExecutionInstances are the software representation of a network topology and parameterization, which can be executed concurrently on the

substrate, e.g., here one chip. For execution on hardware, first, the complete network topology is created. Execution is separated from the topology

description by yielding promises to future result data in x {1− 7}. Only after execution on the hardware via run() are they filled with data and the

loss can be calculated. Annotated backpropagation functions can then be used for gradient estimation.

Using a multi-chip substrate, the network can be emulated in

continuous time. If there are no recurrent inter-chip dependencies

(omitting dotted line in Figure 1B), the inter-chip communication

does not need to happen in real time, and can be buffered. In

that case, the whole network can also be emulated sequentially

by reusing a single chip. Since convolutions need to be spatially

unrolled on BSS-2 (see Figure 1D), spiking convolutional networks

on BSS-2 will benefit from the presented feature.

Splitting networks into multiple partitions and emulating

them sequentially requires the events in-between executions to

be recorded and played back in dependent executions. This

increases the required communication of events from and to

the system compared to direct forwarding of events within the

hardware. However, for typical machine-learning-inspired training

the readout of events from hidden layers is required in any case.

Partitioning projections does not necessarily decrease the fan-

in for the post-synaptic layer, since neuron dynamics are not linear.

Thus, we take advantage of the hardware’s ability to combine

neuron circuits, resulting in an increased fan-in capability of

“256 · #neuron circuits per neuron,” up to the complete chip, i.e.,

256 × 512 = 131,072 unsigned weights. We use two 6 bit-weight

hardware synapses to represent a signed weight, therefore the

maximum number of signed input weights is 65,536. Consequently,

this decreases the number of “logical” neurons available per

single execution by #neurons = 512/#neuron circuits per neuron, possibly

increasing the number of required partitions.

We base our work on the existing BSS-2 software stack,

which provides multiple abstraction layers, see Müller et al.

(2022) for details. Specifically, we integrated partitioned execution

functionality into the layer that represents experiments as a

signal flow graph. Even before this support was added, the

signal flow graph had an understanding of data input and

output operations, so the addition of temporary readout and data

reinsertion functionality was a natural extension. To take advantage

of developments in the machine learning community, the user-

facing hxtorch API (Spilger et al., 2023) is based on PyTorch data

structures and integrates with its auto-differentiation functionality.

2.1 Training

The MNIST and EuroSAT models are trained using well-

established surrogate gradient-based learning methods (Neftci

et al., 2019). Class scores are optimized by minimizing the

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

cross-entropy loss, using the Adam optimizer (Kingma and Ba,

2014) with (surrogate) gradients obtained by the backpropagation

through time (BPTT) algorithm. To approximate the networks’

gradients on BSS-2, we apply the hardware-in-the-loop (ITL)

training procedure (Schmitt et al., 2017) and record and read

out the network observables, i.e., membrane voltages and spikes.

These observables are mapped to PyTorch tensor data structures

with a fixed time grid with resolution δt. For this, we calculate

the factor which scales the membrane dynamics on BSS-2

to the corresponding dynamics in software, that are idealized

for gradient estimation. Synapse and neuron dynamics are

numerically integrated on this time lattice in the case of simulated

(sub-)networks. Each part of the network is run, or simulated

respectively, for T = 30 µs in the case of MNIST and 64 µs for

the EuroSAT task per image. The measured/simulated membrane

traces vk in the readout layer are converted into scores sk via a

max-over-time decoding, sk = maxt(vk(t)) (Cramer et al., 2022) for

MNIST, or by taking the last observed membrane value sk = vk(T)

for the EuroSAT dataset. The partitioning of the considered SNNs

is explained in Section 3.

2.2 MNIST

The MNIST (LeCun et al., 1998b) dataset contains 70 000 28×

28 gray scale images of handwritten digits that are categorized into

10 classes (0 to 9). 60,000 images are meant for training purposes,

the rest for testing the model. We consider a fully connected feed-

forward network with 256 LIF units in the hidden layer and 10

leaky integrators (LIs) in the readout layer. A time-to-first spike

(TTFS) encoding scheme, described in Section 3.2.1, transfers the

images from a pixel-value representation to spike events. The

dataset is augmented by using random rotations up to 25◦ which

are applied with a probability of 50%, additionally we normalize

images. For improved generalization we also use dropout with a

probability of 15% in the hidden layer, resulting in some of the

hidden spikes not being injected into the readout layer during

training. To keep the network’s dynamics and parameters within

the system capabilities, we use regularization terms for the firing

rate in the hidden layer whichmight exceed the system’s bandwidth,

the readout membrane traces which might saturate due to the

limited range of the columnar ADC (CADC) and the weights

which are also limited in range on hardware. The training process

spans 100 epochs during which the learning rate and firing rate

regularization constant decrease exponentially. At the end of the

training, the model’s performance is evaluated with the test set.

The final performance is the averaged over different pseudorandom

number generator (PRNG) seeds. A summary of the used training

and model parameters is given in Supplementary Table 1.

2.3 EuroSAT

The EuroSAT dataset consists of 27.000 64 × 64 × 3 RGB2

images of the Earth’s surface taken by the satellite mission

2 We only consider the RGB bands out of the 13 provided spectral bands.

Sentinel-2, categorized into 10 classes. We split the dataset in

training, validation, and test set by ratios 0.7, 0.1, and 0.2. For

regularization, random flips are applied to the training images.

For its classification, we consider a network with two hidden LIF

layers consisting of 484 and 128 units, and one LI readout layer

to infer decisions. For spike encoding of the input images we

use a TTFS encoding, described by Equation 4. In addition to the

training procedure outlined in Section 2.1, we halve the learning

rate after the epochs {10, 20, . . . , 60}. Training is performed for a

maximum of 500 epochs in simulations, or 100 on BSS-2. If there

is no improvements on the validation accuracy for 25 epochs in

simulation or 15 epochs on BSS-2, the training is stopped. We save

the best performing model on the validation set and use it for later

evaluation on the test set. A summary of all model and training

parameters is given in Supplementary Table 2.

3 Results

In this section we describe our implementation, which

introduces software support for model partitioning and sequential

execution on BSS-2. We demonstrate its use on the MNIST and

EuroSAT datasets.

3.1 Software

While the user of a machine learning framework does not

need to know the partitioning, this information is required in the

intermediate representation used for scheduling execution on the

hardware. In the high-level experiment description, networks are

comprised of populations of neurons and projections of synapses.

We use a signal-flow graph to represent multiple executions

and their data-flow dependencies. This representation can be

used to represent partitioned networks. To this end, network

entities are annotated with information regarding their associated

execution (ExecutionInstance in Figure 1E). The inter-

execution projection represents the forwarding of events from one

execution to another. It receives recorded events from the source

execution and injects these events into the target execution. The

host computer is used for the translation of the events, which

allows for the complete decoupling of event routing constraints

between executions.

In ourmachine learning frontendhxtorch.snn, each layer is

assigned to a specific execution via a parameter upon construction.

The inter-execution dependencies are then automatically extracted

from the network topology. This enables explicit (manual)

partitioning as well as employing user-defined partitioning

algorithms, which can also be used for mixed hardware-emulated

and software-simulated networks, see Section 3.2.2. Figure 1E

shows a frontend API example.

It is anticipated that the utilization of multiple partially

sequential executions and the increased required data transfer

when using multiple partitions in contrast to executing a network

in a single hardware run will result in a reduction in runtime

performance. The hardware runtime scales linearly with the depth

of the partitioned network, since these executions are required

to be run sequentially due to inter-partition data dependencies.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

TABLE 1 Wall-clock duration measurements (top) and user-requested

minimal realtime runtimes (bottom) for the model classifying MNIST, cf.

Section 3.2.1, for a single batched execution of 100 images with 30 µs
experiment runtime each.

Experiment step Duration Data

Host computer compilation & post-processing 692ms

Event encoding 0.3ms 721 spikes

Event decoding 0.7ms 909 spikes

Membrane recording decoding 100ms 8,445 samples

Hardware experiment total 248ms

ML front end data handling, backward pass 810ms

Total 1,800ms

Partitioned hardware runtime (5 partitions) 40ms

Realtime hardware runtime (per partition) 3ms

Inter-batch-entry hardware wait (per

partition)

5ms

In-between batch entries, for relaxing the analog neuron dynamics, a wait period of 50 µs

is added additionally, resulting in a minimal hardware runtime of 8ms. Since the model is

partitioned into five sequential executions, this minimal runtime is scaled linearly to 40ms.

The difference to the measured total hardware runtime of 248ms is attributed predominantly

to recording the neuron’s membrane potential during the experiment, which also additionally

yields 100ms of host computer runtime. Event decoding is required for training, only event

encoding of 0.3ms is attributed to partitioning and sequential execution, which is deemed

insignificant. While this results in an overall overhead of a factor of 600 (or 225 when

accounting for the relaxation/wait time) between the minimal experiment runtime and the

training wall-clock runtime using partitioning, we expect the same experiment to run a factor

of five faster (same as number of partitions) on a sufficiently large substrate that allows

training without partitioned sequential execution.

Partitions without data dependencies, e.g., multiple partitions of the

same layer, can be executed concurrently. The choice of whether

to execute the partitions concurrently or sequentially depends on

the available hardware resources. Therefore, runtime additionally

scales linearly with the ratio of concurrently executable partitions

to available hardware. When using partitioning, all events between

partitions are recorded and translated on the host computer. In

contrast, networks executed in a single non-partitioned hardware

run only require complete event recording during training, as

only the data from the last layer is typically of interest during

inference. In addition, event recording and translation overhead

is expected to impair runtime performance in comparison to

non-partitioned experiments. A dedicated inter-execution memory

buffer in some field-programmable gate array (FPGA)-managed

dynamic random-access memory (DRAM) could at least eliminate

the software overhead at the cost of additional FPGA development

effort to support additional translation and playback of recorded

data. Table 1 shows wall-clock runtime measurements of the

MNIST experiment, cf. Section 3.2.1, broken down to evaluate the

performance impairment attributed to partitioned execution. Here,

membrane potential recording dominates the hardware runtime,

which is potentiated by the linear scaling with the number of

partitions. Event recording and playback via the host computer on

the other hand is insignificant.

In Figure 2, we project the single-chip runs required for our

presented approach for various network topologies, i.e., LeNet

(LeCun et al., 1998a), VGG (Simonyan and Zisserman, 2015), and

ResNet (He et al., 2016), including those used in the referenced

publications. The considered datasets are Spiking Heidelberg Digits

(SHD), MNIST (LeCun et al., 1998b), CIFAR-10 (Krizhevsky,

2009), its event-based version CIFAR10-DVS (Cheng et al.,

2020), DVS128 Gesture (Amir et al., 2017), and ImageNet (Deng

et al., 2009). These network topologies and datasets represent a

broad spectrum of different input sizes and required topological

complexities. We assume all convolutional layers need to be

spatially unrolled, with pooling operations and normalization,

e.g., batch normalization, either integrated into the weight layers

or processed in the event domain. Furthermore, the presented

numbers are subject to optimization through advanced mapping

algorithms and may vary based on the implementation of certain

operations (e.g., pooling or residual connections) in future large-

scale neuromorphic hardware. The significant number of single-

chip runs required to emulate common model topologies for

real-world problems underscores the critical importance of our

approach to partitioning and sequential model execution—even as

large-scale multi-chip hardware becomes available in the future.

3.2 Examples

We exemplify our support for partitioning using SNN models

with topologies that otherwise would not be emulatable on a

single-chip BSS-2 system.

3.2.1 MNIST
Executing the network described in Section 2.2 with the single-

chip BSS-2 system is only possible after partitioning it into five

parts as the 28 × 28 inputs require multiple neuron circuits to be

connected, see Figure 3A. Specifically, the 784 pixels are mapped

to the same number of signed weights per neuron, requiring two

hardware synapses each, thereby requiring eight3 combined neuron

circuits. By partitioning the hidden layer of 256 units into four

parts, the 64 units per partition comply with the BSS-2 substrate

(64 × 8 = 512, the number of neuron circuits on the chip)

so that each of the parts can be executed in one run. For each

run, the input events need to be provided, as indicated by the

dashed lines in Figure 3B, which showcases a schematic view of

the network and the necessary partitions for execution on BSS-2.

Once the spike events have been read out from the four parts of the

hidden layer they are reassembled in software which is required to

emulate the readout layer. The observed spikes on BSS-2 for each

partition and the membrane traces of the output layer are shown in

Figure 3C.

The particular TTFS encoding used here assigns spike times tsi
to pixel values xi in a linear manner,

xi → tsi =

(

T −

⌊

T

δt
·

xi − xmin

xmax − xmin

⌉

· δt

)

(3)

where T is the sequence length per image, that together with the

time interval δt determines the encoding resolution. The mixed

3 Actually seven, but to simplify the mapping onto BSS-2, eight circuits are

used.

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

FIGURE 2

Projected single-chip runs needed for di�erent networks topologies used for di�erent datasets. The resources required for convolutional networks

depend on the size of the inputs. We assume that the convolutional layers are unrolled spatially. For Bittar and Garner (2022), the first two bars

correspond to networks with 128 hidden neurons, the last two have 1,024 neurons. The experiments indicated by the first and third bar use

feed-forward networks, the ones represented by the second and forth bars use networks with recurrent connections.

FIGURE 3

(A) Schematic network topology for a network of 28 × 28 → 256 → 10 neurons. Partitions that can be run consecutively on hardware are marked.

The four partitions in the first layer are interchangeable. (B) Data flow of the model from (A) using five partitions, where the additional need to record

and play back events to/from the host computer in-between layers is visualized by dashed lines. (C) Measured spikes and membrane potentials of

each hardware run. To run the fifth partition, the spikes from the first four partitions need to be known. On a multi-chip setup with at least five chips,

all parts could be run in parallel.

flooring and ceiling brackets indicate rounding to the next integer

and xmin/max are the minimum/maximum pixel values of the

dataset. All previous publications reporting on this benchmark

on BSS-2 used a scaled-down image size of 16 × 16 to reduce

input dimensionality in order to fit the whole network on a

single chip instance, compare Table 2. Our model is the first

implementation using the full resolution of 28 × 28 on BSS-2—

and a slightly larger hidden layer (256 compared to 246 before; see

Figure 3A)—and reaches 97.9(1)% using similar training methods.

Although the slight improvement in classification performance

does not indicate the necessity for the development of means to

run larger-scale models, it represents an important milestone in the

validation of our implementation and hardware operation against

previous results.

3.2.2 EuroSAT
We trained the model described in Section 2.3 to classify

the EuroSAT dataset (Helber et al., 2017). Its partitioning and

placement on BSS-2 is visualized in Figure 4B. Instead of densely

projecting the large input space onto the first hidden layer, each

neuron in the layer has a small receptive field of 3×3×3 pixels. The

receptive fields are moved over the spatial coordinates (height and

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

width) of the image with stride 3, resulting in each neuron receiving

a unique set of input pixels. For the BSS-2 system this encoding is

particularly convenient since it makes uses of the system’s intrinsic

support for placing sparse connections. With the given size of the

receptive field, the first hidden layer has a size of 484 neurons

with 27 inputs each. Each synapse row on BSS-2 can distinguish

64 event labels, hence, we uniquely address a maximum of 64

neurons through the same row. This allows to map the sparse

projection in blocks of 27 × 64 “signed” hardware synapses onto

BSS-2 and thus run the whole first layer at once. The large input

space in conjunction with the used TTFS encoding scheme still

results in a fair amount of spikes, hence, means for reducing the

number of input events are applied—also by partitioning of the

first hidden layer, thereby reducing the number of input neurons

required per execution (see red box in Figure 4B). We execute

this layer in 8 parts, resulting in 10 runs needed to emulate the

whole network. The remaining projections between layers have all-

to-all connectivity. The second hidden layer of size 128, can be

emulated within one run by connecting four neuron circuits on

BSS-2 to form one neuron in order to support a fan-in of 484

from the previous layer. The readout layer is implemented with

single-circuit neurons.

To avoid the on-chip spike event rate to exceed the system’s

bandwidth, we use an TTFS input encoding scheme, see Figure 4A.

Each pixel value xi ∈ [0, 1] is interpreted as a constant current onto

a LIF neuron with an infinite refractory period, i.e., the neuron

can only spike once at tsi (cf. Cramer et al., 2022). This yields an

TABLE 2 MNIST experiments on BSS-2.

Publication Input size Test accuracy [%]

Göltz et al. (2021) 16× 16 96.9± 0.1

Cramer et al. (2022) 16× 16 97.6± 0.1

This work 28× 28 97.9 ± 0.1

Bold indicates the best result.

early spike time for stronger pixel intensities and no input spike if

the pixel value is too small. We add a bias value xmin to xi to bias

the inputs toward early spiking. The spike times tsi are numerically

computed according to

xi → tsi = t|vi(t)=ϑen
with v̇i(t) = −

1

τen
vi(t)+ xi + xmin, (4)

with vi being a membrane state, and ϑen a threshold. See Figure 4A

for an example. Using this encoding, we achieve an average spike

count per time bin of 162 (averaged over training set and time

bins) and the maximum average spike count encountered in a bin

(averaged over training set) to 527.

The BSS-2 FPGA only processes two spikes per clock

cycle, i.e. simultaneous sends might get delayed. If the

maximum bandwidth is exceeded for longer time spans,

spikes are dropped. To minimize simultaneous events, we

compute the spike times at FPGA resolution. However, since

the dataset is constituted of only 252 unique pixel values

only the same number of unique spike times will occur. In

the forward direction, we therefore jitter the pixel images

by adding Gaussian noise, xi + N(µ= 0, σin). For gradient

optimization we assume the same resolution δt as in the

simulations. All parameters are summarized in Supplementary

Table 2.

In Figure 5 we show the training (dotted) and validation (solid)

accuracy and loss of our model on the EuroSAT dataset.We achieve

a test accuracy of 69.6% (blue) in a software-only training. When

emulating the whole model on BSS-2 (green) the test accuracy is

60.65%. We showcase an example of mixed numerical simulation/

BSS-2 emulation where only the first hidden layer is run on BSS-2

(orange). A penalty of approximately 9% is observed on BSS-2, with

approximately 50% of this value attributable to the first hidden

layer, as indicated by the mixed simulation/BSS-2 experiment.

This emphasizes the importance of support for mixed execution

to investigate and improve the performance of future models

and systems.

FIGURE 4

(A) (left) Example image of the EuroSAT dataset. (middle) The image TTFS encoded. (B) Partitioning and placement of the network used to classify the

EuroSAT dataset. The basic synapse and neuron layout of the BSS-2 ASIC is shown in each column: in the center, two rows of neuron circuits are

located; each neuron row is fed from the adjacent synapse array (top/bottom rectangles). Neuron circuits can be combined to form larger logical

neurons, supporting larger fan-in. On the left of each hardware instance, the source and size of the fan-in are indicated. Each neuron in the first

hidden layer has a receptive field of 3× 3× 3 and can be mapped to one BSS-2 instance. To reduce the number of input spikes, we run it in multiple

parts (indicated by the red box). The neurons in the second layer consist of four connected neuron circuits. This layer, as well as the readout layer, is

executed in a single run each.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

FIGURE 5

Accuracy (left) and loss (right) of the model on the EuroSAT dataset in simulation and/or on BSS-2. The dotted lines correspond to the training set,

the solid to the validation set. Blue corresponds to a fully simulated network, green to the whole SNN partitioned emulated on BSS-2, and orange to

mixed simulation/BSS-2 execution with only the first layer being emulated on BSS-2.

4 Discussion

This paper emphasizes the role of software in enabling

the partitioned emulation of large-scale SNNs on the BSS-2

neuromorphic substrate. While manual partitioning of suitable

SNN topologies has always been a viable approach, the integration

of software support into the BSS-2 software stack enables

researchers to shift their focus from system handling to modeling.

The present work is concerned with enabling the expression of

manually partitioned networks, with the aim of enabling a rapid

adoption by modelers. Future developments will aim to provide

automated algorithms for partitioning, thereby relieving users of

this task and enabling the creation of more complex partitioned

network topologies.

We demonstrated partitioned emulation on SNN models

classifying theMNIST and EuroSAT datasets, which require the use

of many single BSS-2 chip instances. While the training processes

used surrogate gradient-based learning methods (Neftci et al.,

2019), an event-driven training approach, e.g., using the EventProp

algorithm (Wunderlich and Pehle, 2021) and the event-driven

BSS-2 modeling API jaxsnn (Müller et al., 2024), could provide

further efficiency gains by exploiting sparsity in observables,

thereby minimizing data transfers between host and neuromorphic

hardware, as well as in numerical computations.

To validate our implementation, we used the MNIST dataset,

as there are several publications using single-chip BSS-2 systems.

Our model performs slightly better on 28 × 28 image resolution

than the smaller models on 16 × 16 images, achieving 97.9(1)%

test accuracy. For further details, please see Section 3.2.1. This

represents the best performance on MNIST recorded on BSS-2 to

date. We acknowledge that this improvement may also be partially

attributable to a more efficient input encoding and training setup.

This is the first time the full-scale benchmark has been run on

BSS-2. The capacity to benchmark systems without the necessity for

extensive pre-processing and downscaling ensures fair comparison

to other systems, thereby underscoring the importance of facilitated

partitioned emulation of SNNs on small-scale systems.

For the larger EuroSAT task, we present the first results

obtained on BSS-2. We showcase the emulation of the largest SNN

to date on BSS-2 through the partitioning into subnetworks, each

of which is executable on the available hardware substrate. The

sparse input projection enables us to map a 12288-dimensional

input space to the hardware. Due to connectivity sparsity, the first

hidden layer is emulated in eight parts, resulting in ten partitions

for the whole network. In the future, sufficiently large multi-chip

systems will be capable of emulating all partitions concurrently.

The sequential execution of the model on BSS-2 resulted in a

test accuracy of 60.65%, thus supporting our presented approach

for large-scale model emulation. The performance gap to the

numeric simulation is assumed to be not intrinsic to the analog

nature of the system. Potential causes for the observed performance

degradation on BSS-2 include suboptimal hardware operation

points and training setup, in addition to spike loss in the input

layer due to bandwidth constraints. We are optimistic to resolve the

latter by stretching the experiment in time to minimize the number

of simultaneous events and by increasing the number of partitions

of the first hidden layer. Our support for emulating only parts of

the network on BSS-2 and numerically simulating the remaining

parts is a crucial feature for identifying hardware-specific intricacies

and debugging the model’s performance, e.g., by identifying which

dynamics of the SNN are emulated at a suboptimal hardware

operation point.

While partitioned emulation is typically superlinearly slower

than on a sufficiently large substrate, the ability to explore

larger networks is valuable, especially when considering typical

hardware development cycle times and costs. We have shown

this superlinearity for the MNIST experiment, where the inter-

execution data transfer via the host however is insignificant, leaving

the linear scaling to the preparation, execution and post-processing

of the sequential executions.

Due to the mixed-signal nature of the BSS-2 architecture—

and many other neuromorphic systems (Thakur et al., 2018)—

the partitioning of SNNs does not affect the emulation fidelity

compared to a system with network-matching system size: spikes

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

are events in time that can be reliably recorded (within the

constraints of the system’s I/O bandwidth) and played back at later

points in time, thereby providing deterministic communication

between subnetworks. The ability to facilitate answering questions

about the desired model and hardware system size with the

confidence of a realistic emulation is a key outcome of this

work. This not only addresses the immediate need to understand

the behavior of larger networks on existing hardware, but also

provides valuable insight into the feasibility and performance

expectations for future, more expansive —and expensive—

neuromorphic systems.

Data availability statement

Publicly available datasets were analyzed in this study.

The EuroSAT dataset can be found here: https://github.com/

phelber/EuroSAT. Researchers can use the EBRAINS research

infrastructure to access BrainScaleS-2 systems: https://www.

ebrains.eu/nmc. An MNIST example can be found in the

BrainScaleS-2 tutorial collection: https://electronicvisions.github.

io/documentation-brainscales2/latest/brainscales2-demos.

Author contributions

EA: Conceptualization, Investigation, Methodology, Software,

Visualization, Writing – original draft, Writing – review &

editing. PS: Conceptualization, Methodology, Software, Writing

– original draft, Writing – review & editing. JVS: Investigation,

Methodology, Visualization, Software,Writing – original draft. EM:

Conceptualization, Methodology, Software, Supervision, Writing

– original draft, Writing – review & editing. DD: Methodology,

Resources, Validation, Writing – original draft, Writing – review

& editing. GM: Methodology, Resources, Validation, Writing –

original draft, Writing – review & editing. JS: Funding acquisition,

Methodology, Resources, Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work has received funding from the EC Horizon 2020

Framework Programme under grant agreements 785907 (HBP

SGA2) and 945539 (HBP SGA3), the EC Horizon Europe

Framework Programme under grant agreement 101147319

(EBRAINS 2.0), the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence

Strategy EXC 2181/1-390900948 (the Heidelberg STRUCTURES

Excellence Cluster), the German Federal Ministry of Education

and Research under grant number 16ES1127 as part of the

Pilotinnovationswettbewerb “Energieeffizientes KI-System”, the

Helmholtz Association Initiative and Networking Fund [Advanced

Computing Architectures (ACA)] under Project SO-092, and the

Lautenschläger-Forschungspreis 2018 for Karlheinz Meier. This

study has been supported by the European Space Agency’s Ariadna

scheme (Study Ref. 4000136024/21/NL/GLC/my).

Acknowledgments

The authors wish to thank all present and former members

of the Electronic Vision(s) research group contributing to the

BrainScaleS-2 neuromorphic platform.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2024.

1523331/full#supplementary-material

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
Whitepaper. Available at: http://download.tensorflow.org/paper/whitepaper2015.pdf

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al.
(2017). “A low power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 7243–7252.
doi: 10.1109/CVPR.2017.781

Billaudelle, S., Weis, J., Dauer, P., and Schemmel, J. (2022). “An accurate
and flexible analog emulation of AdEx neuron dynamics in silicon,” in 29th
IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4.
doi: 10.1109/ICECS202256217.2022.9971058

Bittar, A., and Garner, P. N. (2022). A surrogate gradient spiking baseline for
speech command recognition. Front. Neurosci. 16:865897. doi: 10.3389/fnins.2022.86
5897

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://github.com/phelber/EuroSAT
https://github.com/phelber/EuroSAT
https://www.ebrains.eu/nmc
https://www.ebrains.eu/nmc
https://electronicvisions.github.io/documentation-brainscales2/latest/brainscales2-demos
https://electronicvisions.github.io/documentation-brainscales2/latest/brainscales2-demos
https://www.frontiersin.org/articles/10.3389/fnins.2024.1523331/full#supplementary-material
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/ICECS202256217.2022.9971058
https://doi.org/10.3389/fnins.2022.865897
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arnold et al. 10.3389/fnins.2024.1523331

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Cheng, W., Luo, H., Yang, W., Yu, L., and Li, W. (2020). Structure-aware network
for lane marker extraction with dynamic vision sensor. arXiv:2008.06204.

Cramer, B., Billaudelle, S., Kanya, S., Leibfried, A., Grübl, A., Karasenko, V., et al.
(2022). Surrogate gradients for analog neuromorphic computing. Proc. Natl. Acad. Sci.
U.S.A. 119:e2109194119. doi: 10.1073/pnas.2109194119

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: a
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (IEEE), 248–255. doi: 10.1109/CVPR.2009.5206848

Facebook Inc. (2021). PyTorch on XLA Devices. Facebook. Available at: https://
pytorch.org/xla/release/1.9/index.html (accessed December 30, 2024).

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), 2641–2651. doi: 10.1109/ICCV48922.2021.00266

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., et al.
(2021). Fast and energy-efficient neuromorphic deep learning with first-spike times.
Nat. Mach. Intell. 3, 823–835. doi: 10.1038/s42256-021-00388-x

Hammouamri, I., Khalfaoui-Hassani, I., and Masquelier, T. (2023). Learning delays
in spiking neural networks using dilated convolutions with learnable spacings. arXiv
[Preprint]. doi: 10.48550/arXiv.2306.17670

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). doi: 10.1109/CVPR.2016.90

Helber, P., Bischke, B., Dengel, A., and Borth, D. (2017). EUROSAT: a
novel dataset and deep learning benchmark for land use and land cover
classification. IEEE J. Selected Topics Appl. Earth Observ. Rem. Sens. 12, 2217–2226.
doi: 10.1109/JSTARS.2019.2918242

Izzo, D., Hadjiivanov, A., Dold, D., Meoni, G., and Blazquez, E. (2022).
“Neuromorphic computing and sensing in space,” in Artificial Intelligence for Space:
AI4SPACE (CRC Press), 107–159. doi: 10.1201/9781003366386-4

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic plasticity dynamics for deep
continuous local learning (decolle). Front. Neurosci. 14. doi: 10.3389/fnins.2020.00424

Kingma, D. P., and Ba, J. (2014). “Adam: a method for stochastic optimization,” in
International Conference on Learning Representations.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny image. Tech.
rep., University of Toronto. Available at: https://www.cs.toronto.edu/kriz/learning-
features-2009-TR.pdf (accessed December 30, 2024).

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., et al.
(2021). “MLIR: scaling compiler infrastructure for domain specific computation,”
in 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2–14. doi: 10.1109/CGO51591.2021.9370308

LeCun, Y., Bottou, L., Bengioa, Y., and Haffner, P. (1998a). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

LeCun, Y., Cortes, C., and Burges, C. J. C. (1998b). The MNIST database
of handwritten digits. Available at: https://yann.lecun.com/exdb/mnist/ (accessed
November 5, 2024).

Manna, D. L., Vicente-Sola, A., Kirkland, P., Bihl, T. J., and Di Caterina, G.
(2023). “Frameworks for SNNs: a review of data science-oriented software and an
expansion of SpykeTorch,” in Engineering Applications of Neural Networks, eds. L.
Iliadis, I. Maglogiannis, S. Alonso, C. Jayne, and E. Pimenidis (Cham: Springer Nature
Switzerland), 227–238. doi: 10.1007/978-3-031-34204-2_20

Müller, E., Althaus, M., Arnold, E., Spilger, P., Pehle, C., and Schemmel,
J. (2024). “JAXSNN: Event-driven gradient estimation for analog neuromorphic
hardware,” in Neuro-inspired Computational Elements Workshop (NICE 2024).
doi: 10.1109/NICE61972.2024.10548709

Müller, E., Arnold, E., Breitwieser, O., Czierlinski, M., Emmel, A., Kaiser, J., et al.
(2022). A scalable approach to modeling on accelerated neuromorphic hardware.
Front. Neurosci. 16:884128. doi: 10.3389/fnins.2022.884128

Mysore, N., Hota, G., Deiss, S. R., Pedroni, B. U., and Cauwenberghs, G.
(2022). Hierarchical network connectivity and partitioning for reconfigurable large-

scale neuromorphic systems. Front. Neurosci. 15:797654. doi: 10.3389/fnins.2021.
797654

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.29
31595

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, eds. H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc.),
8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y., et al.
(2022). The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity.
Front. Neurosci. 16:795876. doi: 10.3389/fnins.2022.795876

Pehle, C., and Pedersen, J. E. (2021). Norse – A deep learning library for spiking
neural networks. Zenodo. doi: 10.5281/zenodo.4422025

Perez-Nieves, N., Leung, V. C. H., Dragotti, P. L., and Goodman, D. F. M.
(2021). Neural heterogeneity promotes robust learning. Nat. Commun. 12:5791.
doi: 10.1038/s41467-021-26022-3

Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Güttler, M., Hartel, A., et al.
(2017). “Neuromorphic hardware in the loop: training a deep spiking network
on the brainscales wafer-scale system,” in Proceedings of the 2017 IEEE
International Joint Conference on Neural Networks. doi: 10.1109/IJCNN.2017.79
66125

Shrestha, A., Fang, H., Mei, Z., Rider, D. P., Wu, Q., and Qiu, Q. (2022). A survey
on neuromorphic computing: models and hardware. IEEE Circ. Syst. Magaz. 22, 6–35.
doi: 10.1109/MCAS.2022.3166331

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on Learning
Representations (ICLR 2015). Computational and Biological Learning Society.

Song, S., Balaji, A., Das, A., Kandasamy, N., and Shackleford, J. (2020).
“Compiling spiking neural networks to neuromorphic hardware,” in The 21st ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems, LCTES’20 (New York, NY, USA: Association for Computing Machinery),
38–50. doi: 10.1145/3372799.3394364

Spilger, P., Arnold, E., Blessing, L., Mauch, C., Pehle, C., Müller, E., et al.
(2023). “hxtorch.SNN: machine-learning-inspired spiking neural network modeling
on BrainScaleS-2,” in Neuro-inspired Computational Elements Workshop (NICE
2023) (New York, NY, USA: Association for Computing Machinery), 57–62.
doi: 10.1145/3584954.3584993

Spilger, P., Müller, E., Emmel, A., Leibfried, A., Mauch, C., Pehle, C., et al.
(2020). “hxtorch: PyTorch for BrainScaleS-2 – perceptrons on analog neuromorphic
hardware,” in IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and
Mobile for Embedded Machine Learning (Cham: Springer International Publishing),
189–200. doi: 10.1007/978-3-030-66770-2_14

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., et al.
(2018). Large-scale neuromorphic spiking array processors: a quest to mimic the brain.
Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.00891

Thommes, T. (2023). Interconnect technologies for very large spiking neural networks.
PhD thesis, Ruprecht-Karls-Universität Heidelberg.

Thommes, T., Bordukat, S., Grübl, A., Karasenko, V., Müller, E., and
Schemmel, J. (2022). “Demonstrating BrainScaleS-2 inter-chip pulse communication
using EXTOLL,” in Neuro-inspired Computational Elements Workshop (NICE
22) (New York, NY, USA: Association for Computing Machinery), 98–100.
doi: 10.1145/3517343.3517376

Wunderlich, T. C., and Pehle, C. (2021). Event-based backpropagation can
compute exact gradients for spiking neural networks. Sci. Rep. 11, 1–17.
doi: 10.1038/s41598-021-91786-z

Xiao, M., Meng, Q., Zhang, Z., He, D., and Lin, Z. (2022). “Online training through
time for spiking neural networks,” in Advances in Neural Information Processing
Systems, Vol. 35, eds. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (Curran Associates, Inc.), 20717–20730. Available at: https://proceedings.
neurips.cc/paper_files/paper/2022/file/82846e19e6d42ebfd4ace4361def29ae-Paper-
Conference.pdf

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1523331
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1073/pnas.2109194119
https://doi.org/10.1109/CVPR.2009.5206848
https://pytorch.org/xla/release/1.9/index.html
https://pytorch.org/xla/release/1.9/index.html
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.48550/arXiv.2306.17670
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/JSTARS.2019.2918242
https://doi.org/10.1201/9781003366386-4
https://doi.org/10.3389/fnins.2020.00424
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/5.726791
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-031-34204-2_20
https://doi.org/10.1109/NICE61972.2024.10548709
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.3389/fnins.2021.797654
https://doi.org/10.1109/MSP.2019.2931595
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1109/MCAS.2022.3166331
https://doi.org/10.1145/3372799.3394364
https://doi.org/10.1145/3584954.3584993
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1145/3517343.3517376
https://doi.org/10.1038/s41598-021-91786-z
https://proceedings.neurips.cc/paper_files/paper/2022/file/82846e19e6d42ebfd4ace4361def29ae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82846e19e6d42ebfd4ace4361def29ae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82846e19e6d42ebfd4ace4361def29ae-Paper-Conference.pdf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Scalable network emulation on analog neuromorphic hardware
	1 Introduction
	2 Methods
	2.1 Training
	2.2 MNIST
	2.3 EuroSAT

	3 Results
	3.1 Software
	3.2 Examples
	3.2.1 MNIST
	3.2.2 EuroSAT


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


