
fnins-19-1409107 April 12, 2025 Time: 14:20 # 1

TYPE Original Research
PUBLISHED 17 April 2025
DOI 10.3389/fnins.2025.1409107

OPEN ACCESS

EDITED BY

Adeel Razi,
Monash University, Australia

REVIEWED BY

Marlene Bönstrup,
National Institute of Neurological Disorders
and Stroke (NIH), United States
Shay Ofir-Geva,
Loewenstein Hospital Rehabilitation Center,
Israel

*CORRESPONDENCE

Monica N. Toba
monica.n.toba@gmail.com

Caroline Malherbe
c.malherbe@uke.de

†These authors have contributed equally to
this work

‡These authors have contributed equally to
this work and share senior authorship

RECEIVED 29 March 2024
ACCEPTED 05 March 2025
PUBLISHED 17 April 2025

CITATION

Toba MN, Malherbe C, Zavaglia M, Arnoux A,
Barbay M, Hilgetag CC and Godefroy O
(2025) Analysis of clinical anatomical
correlates of motor deficits in stroke by
multivariate lesion inference based on game
theory.
Front. Neurosci. 19:1409107.
doi: 10.3389/fnins.2025.1409107

COPYRIGHT

© 2025 Toba, Malherbe, Zavaglia, Arnoux,
Barbay, Hilgetag and Godefroy. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Analysis of clinical anatomical
correlates of motor deficits in
stroke by multivariate lesion
inference based on game theory
Monica N. Toba1*†, Caroline Malherbe2,3*†, Melissa Zavaglia2,4†,
Audrey Arnoux1, Mélanie Barbay1, Claus C. Hilgetag2,5‡ and
Olivier Godefroy1‡

1Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens, University
of Picardie Jules Verne, Amiens, France, 2Department of Computational Neuroscience, Hamburg
Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
3Department of Neurology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf,
Hamburg, Germany, 4MIRMI - Munich Institute of Robotics and Machine Intelligence, Technische
Universität München, Munich, Germany, 5Department of Health Sciences, Boston University, Boston,
MA, United States

Introduction: The exploration of causal functional inferences on the basis

of deficits observed after neurological impairments is often based on the

separate study of gray matter regions or white matter tracts. Here, we aimed

at jointly analysing contributions of gray matter and white matter by using

the domain of motor function and the approach of iterative estimated Multi-

perturbation Shapley Analysis (MSA), a multivariate game-theoretical lesion

inference method.

Methods: We analyzed motor scores assessed by the National Institute of Health

Stroke Scale (NIHSS) together with corresponding lesion patterns of 272 stroke

patients using a finely parcellated map of 150 gray matter regions and white

matter tracts of the brain.

Results: MSA revealed a small set of essential causal contributions to motor

function from the internal capsule, the cortico-spinal tract, and the cortico-

ponto-cerebellum tract.

Discussion: These findings emphasize the connectional anatomy of motor

function and, on the methodological side, confirm that the advanced

multivariate method of iterative estimated MSA provides a practical strategy for

the characterization of brain functions on the basis of finely resolved maps of

the brain.

KEYWORDS

game theory, Multi-perturbation Shapley value Analysis (MSA), stroke, lesion inference,
motor function, NIHSS

1 Introduction

A wide variety of gray matter regions and white matter connections of the brain interact
in order to produce complex movements. Specifically, the motor system includes gray
matter structures, such as the premotor and motor cortices, basal ganglia, the cerebellum,

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1409107
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1409107&domain=pdf&date_stamp=2025-04-17
https://doi.org/10.3389/fnins.2025.1409107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1409107/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1409107 April 12, 2025 Time: 14:20 # 2

Toba et al. 10.3389/fnins.2025.1409107

areas of the association cortex and portions of the thalamus,
as well as white matter bundles, such as the corticospinal tract
(traditionally considered the principal mediator of voluntary
movements), the vestibulospinal, reticulospinal, rubrospinal and
tectospinal tracts (Nolte, 2009).

A frequently used technique for defining the anatomical
correlates of functions in stroke patients is voxel-based lesion-
symptom mapping (VLSM) (Bates et al., 2003). This method
indicates the univariate association of damaged voxels with
a particular deficit. Previous studies showed that VLSM
maps obtained, for instance, for speech fluency and language
comprehension (Bates et al., 2003), as well as such derived
for the orienting of attention (Toba et al., 2017; Verdon
et al., 2010) were in agreement with findings from functional
brain imaging. However, several studies have emphasized
that VLSM is sensitive to the distribution of lesions within
vascular territories and the frequency of impaired voxels (Mah
et al., 2014; Arnoux et al., 2018), emphasizing the need to
use newly developed lesion inference approaches, particularly
anchored in multivariate inferences (Karnath and Smith,
2014; Khalilian et al., 2024; Nachev, 2015). Specifically, such
techniques are capable of defining and calculating the interrelated
contributions of network elements from a dataset of multiple
perturbations (or lesions) (Keinan et al., 2004a). Multivariate
machine learning approaches, such as classification by support
vector machines (SVMs), can be used to map brain functions
onto cerebral structures (Corbetta et al., 2015; Forkert et al.,
2015; Smith et al., 2013; Zavaglia et al., 2015; Zhang et al.,
2014). As a further alternative, the Multi-perturbation Shapley
value Analysis (MSA) represents a lesion inference approach
based on game theory, designed to calculate the contribution
of the network elements (specifically, brain regions) and the
interactions existing between them, based on a dataset of
multiple lesions. Brain regions are considered as “players”
in a game who interact to achieve a behavioral outcome.
This approach was validated in ground truth simulations as
a better-performing option for lesion inference than VLSM
(Zavaglia et al., 2024) and has already been applied to lesion
inference in studying brain functions (Zavaglia et al., 2015;
Malherbe et al., 2021) as well as specifically in the context
of attentional functions (Kaufman et al., 2009; Zavaglia and
Hilgetag, 2016; Malherbe et al., 2018; Toba et al., 2017; Toba et al.,
2020c).

At the behavioral level, a very widely used measure of the
motor function in stroke patients is the National Institute of
Health Stroke Scale (NIHSS) (Brott et al., 1989). This scale is
used to generally characterize the clinical or functional status
of stroke patients and, to this end, regroups items testing
different functions, such as the level of consciousness, horizontal
eye movements, visual field, facial palsy, motor arm, motor
leg, limb ataxia, sensory, language, dysarthria, extinction and
inattention. NIHSS provides an efficient measure with strong
clinical validity to quantify stroke severity. However, the detailed
assessment of each function included in the NIHSS requires
investigations of different functional elements and this aim cannot
be accomplished with a global rating score such as the NIHSS.
Because its validity in assessing deficits with known anatomy
(such as motor function) has been demonstrated, the NIHSS

has previously been used in new methods examining clinico-
anatomical correlations (e.g., Arnoux et al., 2018; Menezes et al.,
2007; Zavaglia et al., 2015; Malherbe et al., 2021). It has been
shown that in the analyses conducted on behavioral results
obtained with traditional scales, such as the NIHSS and the
modified Rankin scale, a better prediction of stroke severity
could be obtained only when considering both the volume and
the lesion location obtained on structural magnetic resonance
imaging (MRI) data (Forkert et al., 2015; Menezes et al., 2007).
By analysing the global NIHSS and lesions of 148 acute stroke
patients with a multivariate approach and focusing solely on gray
matter structures, Zavaglia et al. (2015) inferred various locations
underlying functions tested by the NIHSS, such as the bilateral
caudate, left insula and bilateral parietal and frontal lobes. Of
note in these results was the presence of bilateral frontal regions
(also comprising primary and supplementary motor brain areas)
and basal ganglia involved in the motor system, likely linked
to the fact that motor symptoms result in high score values
of the NIHSS (specifically, they can explain up to 18 of 42
possible score points). However, in order to more specifically
explore motor functions, an individual sub-score of the NIHSS
that focuses on motor tasks should be considered. Moreover, data
available in Zavaglia et al. (2015) allowed only the analysis of
functional inferences of gray matter structures while white matter
connections should also be considered in order to completely
characterize causal functional inferences in a given system (see
also Toba et al., 2020a; Toba et al., 2020b; Godefroy et al., 1998).
Malherbe et al. (2021) considered a high resolution parcellation
of the brain into 294 white matter and gray matter regions in
a large population of 394 acute stroke patients. These authors
reduced the number of regions to only those that significantly
inferred some brain functions (specifically the “left motor function,”
“the right motor function” and the “language and consciousness
function”) issued from NIHSS factors previously published by
Lyden et al. (2004). Specifically, the VLSM approach was used
to first reduce the regions to one hemisphere. Then, the study
used an iterative loop performing MSA and discarding the region
with the smallest contribution to a function. As a result, Malherbe
et al. (2021) inferred for each function a base set of causally
contributing regions. Concretely, the dorsolateral putamen and
the posterior limb of the left and right internal capsule were
related to the motor functions right and left, respectively. Whereas
the left motor function was also associated with the superior
corona radiata and the paracentral lobe of the right hemisphere
as well as the right caudal area of the cingulate gyrus, the
right motor function was related to the prefrontal gyrus, the
external capsule and the sagittal stratum fasciculi of the left
hemisphere.

In the present paper, by taking advantage of the well-
characterized anatomical and functional model of the motor
system and an improved estimated MSA algorithm, we aimed
to explore causal functional contributions of both, gray matter
structures as well as white matter connections, without any
preselection of a subset of regions. To this aim, we used the newly
developed approach of iterative estimated MSA in a large sample
of 272 patients with motor impairments assessed by the NIHSS
motor sub-score.
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2 Materials and methods

2.1 Participants

We analyzed clinical behavioral and MRI data of 272
patients (mean age 64.1 years, SD 11.3, 59.6% male) included
in the GRECogVASC study (NCT01339195) assessing post-stroke
cognitive and motor status and its determinants in French-
speaking patients (Arnoux et al., 2018; Barbay et al., 2018;
Godefroy et al., 2012). All patients gave their written informed
consent to participation. The study was performed in accordance
with institutional guidelines and was approved by the regional
investigational review board (Comité de Protection de Personnes
Nord-Ouest II, Amiens, France; reference: 2010/25). Table 1
reports the demographic and clinical characteristics of the study
cohort. We included patients presenting unilateral and bilateral
strokes due to both cerebral infarct and hemorrhage, because
hemorrhage may extend outside the arterial territories, and
consequently, the association of both stroke subtypes decreases
multicollinearity (i.e., data correlations among neighboring voxels)
(Kreisler et al., 2000). All patients were assessed at 6 months
post-stroke, using MRI and the NIHSS to quantify symptom
severity in stroke (Brott et al., 1989). NIHSS is composed of
11 items concerning specific functional abilities (see section “1
Introduction”). By using the NIHSS motor sub-scale, we assessed
the presence of hemiparesis, a deficit frequently used in clinico-
anatomical correlations studies because of its known anatomical
basis centered on the motor system, including the corticospinal
tract and the precentral cortex (Godefroy et al., 1998; Kassubek
et al., 2005; Zhu et al., 2010). To this aim, we derived a global
limb motor score able to quantify the motor deficit linked
to dysfunction in the motor system (the facial paresis score
was not included, as we focused on limb paresis). The score
corresponded to 10 minus the sum of the upper and lower
limb items in the NIHSS; a score of 10 corresponded to no
impairment in the limbs motor system, whereas a score of two
indicated major impairment. Left hemiparesis was defined by
a left limb motor score < 10. We restricted our analyses to
the left motor score, as the motor deficit was more frequent
on the left side (n = 30) than on the right side (n = 24)
(Table 1).

2.2 Neuroimage processing

Magnetic resonance imaging scans included high-resolution
T1-weighted images (inversion-recovery ultrafast gradient echo
with magnetization preparation; fields of view (x, z): 205, 256;
acquisition matrix (x, z): 256, 512; voxel size (x, y, z): 0.8 mm,
2 mm, 0.5 mm; sequence parameters: TR/TE: 13/4.5 ms; inversion
time: 400 ms; flip angle: 15◦; receiver bandwidth: 20.83 kHz;
acquisition time: 3 mn 28 s), FLAIR, T2 and T2∗-weighted
sequences obtained at 6 months after stroke on a 3T machine
(HDXt, General Electric Medical System) equipped with an eight-
channel head coil. MRI datasets were registered into a template for
older individuals (Rorden et al., 2012), using the pyramidal block-
matching Diffeomorphic Demons algorithm (Garcia et al., 2010)

TABLE 1 Demographical and clinical characteristics of patients
included in the study.

Patients (n = 272)

Age (years, mean± SD) 64.1± 11.3

Male (%) 59.6

Handedness (right/other) (%) 92.3/7.7

Stroke subtype (infarct/hemorrhage) (%) 90.1/9.9

Post-stroke delay (days) (mean± SD) 174± 18

Lesion side (Left / Right / Bilateral) (%) 27.6/33.8/38.6

First / Recurrent stroke (%) 81.6/18.4

NIHSS 6 months (mean± SD) 1.71± 2.8

Motor score: right/left (mean± SD) 9.82± 0.66/9.64± 1.29

Rankin (0/1/2/3/4) (%) 19.1/24.6/20/27.9/8.4

Antidepressant treatment (%) 18.75

Expressed as percentage (%) or mean± standard deviation (SD).

implemented in the MedINRIA software package1 (Toussaint et al.,
2007). Lesion delineation was performed manually (by trained
neurologists: M.B., A.A., O.G.) on 3DT1 MRI datasets by applying
the levelset algorithm in Medical Image Processing, Analysis
and Visualization software (Covington et al., 2010). Lesions were
defined as cavitations on T1 sequence. Normalized lesioned
brain structures (further called regions of interest, ROIs) were
determined using NiiStatV9 (Rorden et al., 2007) and Automatic
Anatomical Labelling (AAL) (Tzourio-Mazoyer et al., 2002) and
NatbrainLab (Catani and Thiebaut de Schotten, 2008) templates,
representing both gray and white matter structures (see Figure 1)
and put together in the AALCAT atlas. The entire methodological
pipeline is summarized in Figure 2.

2.3 Multi-perturbation Shapley value
Analysis (MSA)

2.3.1 General MSA approach
As previously described (Kaufman et al., 2009; Keinan et al.,

2004b; Zavaglia et al., 2015), the MSA approach assesses causal
function localization from multiple perturbation data, based on
coalitional game theory (Shapley, 1953). The system elements (here,
the 150 areas from the AALCAT atlas, and a region representing the
“rest of the brain,” RoB) can be seen as players in a coalition game.
The RoB is computed in order to capture potential contributions of
ROIs not included a priori in the analysis. For each configuration,
the performance of the system is obtained. The aim of the analysis
is to assign values, representing the ROIs’ contribution to, or
importance for, overall (neural) function. The contribution value of
a player, formalized as the Shapley value (Shapley, 1953), represents
the difference between the worth of all coalitions that contain the
element and the worth of all coalitions that do not contain it. For
further information concerning the technical details and a more
detailed description of the MSA see Keinan et al. (2004b).

1 http://med.inria.fr/
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FIGURE 1

Lesion overlap of 272 patients. Reprinted from Neuropsychologia, 121/ 218, Arnoux, A., Toba, M.N., Daouk, J., Constans, J.-M., Puy, L., Diouf, M.,
Barbay, M., Godefroy, O., Is VLSM a valid tool for determining the functional anatomy of the brain? The need for an additional multivariate step,
69–78, Copyright (2025), with permission from Elsevier.

FIGURE 2

Schematic representation of the methodological approach of the study. Magnetic resonance imaging (MRI) images of 272 patients were normalized
on a template adapted for older individuals (Rorden et al., 2012) and lesions were then delineated. In order to prepare the data for the application of
the Multi-perturbation Shapley value Analysis (MSA), an estimation of the absolute and relative number of lesioned voxels was performed on the
regions of interests (ROIs) used in the analyses. We generated the original-graded dataset [272 patients, 150 ROIs and one ROI designing the rest of
the brain (RoB)] and then applied to random forest classifier in order to compute the performance scores [inverse binary motor National Institute of
Health Stroke Scale (NIHSS) scores]. Finally, the iterative estimated MSA approach included the computation of ROIs contributions and was
conducted until we found the smallest set of regions with a negligent contribution of the rest of the brain. ROI, region of interest; MSA,
Multi-perturbation Shapley value analysis.

2.3.2 Data preparation for MSA - from
original-graded dataset to complete-predicted
dataset

For each patient of the dataset, the graded measure of
relative lesion size of each ROI (that is, the percentage of
lesioned voxels within each of the 151 ROIs, from zero to

100% of lesion) was associated with the binarized motor
NIHSS score. Specifically, motor NIHSS scores equal to 10
were considered “normal” (1), whereas scores smaller than
10 were considered “pathological” (0). Since the binary scores
represent the severity of neurologic deficit, while MSA requires
a score representing behavioral ability, we used the inverse
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of each score as an indicator of functional performance (1 –
current score).

We then computed pairwise Pearson correlation coefficients
using MATLAB (Mathworks Inc., Natick, United States2) for the
relative regional lesion patterns (i.e., correlations between all pairs
of relative lesion sizes), across the 151 ROIs.

In order to characterize the contribution of each ROI for
the motor NIHSS values, and to find the smallest set of ROIs
with a negligent contribution of the RoB, we used the iterative
estimated MSA approach. The dataset, composed of 272 graded
lesion configurations (describing relative lesion size) for 150
AALCAT brain regions and the RoB as well as the corresponding
performance scores did not represent the full set of possible
combinations of binary states of the N = 151 ROIs, as is typical
for opportunistic samples (original-graded dataset). In this study,
a total of 2N of binary lesion configurations would have to be
generated for an exhaustive analysis, which was not practically
possible. Therefore, we used the approach of an estimated MSA
analysis. Specifically, the MSA was run iteratively until the
smallest set of ROIs contributions to motor deficits with a non-
significant contribution of the RoB was found (Malherbe et al.,
2021). The estimated Shapley value is calculated on a random
sample of permutations (selection of a set of multi-perturbation
configurations), whose performance should be measured. Here
we chose 1,000 permutations for 151 regions. Since this is an
unrealistic scenario for available data, a machine-learning-based
approach, using random forest, was applied before MSA to estimate
the set of clinical phenotypes according to the lesion pattern
configurations (Malherbe et al., 2018; Malherbe et al., 2021;
Zavaglia et al., 2015; Zavaglia et al., 2016). All analyses were
performed using Python in-house scripts available here: https://
github.com/ShreyDixit/MSA-App/. The analysis comprised three
steps, as illustrated in the Figure 2:

(1) Optimization of the random forest parameters prior to
MSA: From the graded matrix containing clinical and
lesion data of all patients, random forest parameters were
optimized. Random forest hyperparameter selection was
based on the number of trees, the tree depth, the number of
features, if we used bootstrap and minimum number of leaf
and split. All possible combinations of these parameters
were tuned for the datasets. Random forest parameters
selection was based on F1-scores.

(2) Computation of an estimated MSA with a bootstrap
procedure to ensure the robustness of the results: This
step aimed to quantify the causal functional contributions
of the ROIs for the motor score, by using an objective
value characterizing the contributions of ROIs across all
possible lesion configurations, the Shapley value (Shapley,
1953). We used the estimated MSA to derive the Shapley
value (Keinan et al., 2006; Malherbe et al., 2021). The
optimized random forest parameters from (1) were used
in this step to define functional behavior related to a set
of configurations needed in the estimated MSA procedure.
To ensure the robustness of the obtained contributions and
to define the standard error, we performed 1,000 samples

2 www.mathworks.com/matlabcentral

of bootstrapping the estimated MSA approach with 1,000
permutations. Specifically, from the available database,
we chose 1,000 random samples with replacements, with
the size of the original dataset. We then performed the
estimated MSA on each of these 1,000 new bootstrap
samples (with the size of the original dataset). Finally, the
functional contributions and standard error of each ROI
were averaged across the 1,000 samples.

(3) Discarding of the ROIs with the smallest contribution
to behavior and those with a negligible amount of
contribution to behavior, and update of the RoB
accordingly (by adding the discarded ROIs in the RoB).

Steps 1–3 were repeated until we found the smallest set of ROIs
with a non-significant contribution of the RoB [refer to Malherbe
et al. (2021) for more details]. This set of ROIs was considered to
comprise brain regions causally contributing to motor deficits.

We assessed the classifier performance of the predictor by
computing a classification (prediction) accuracy applying a “leave-
one-out” cross-validation on the original-graded dataset for every
test, using in turn each single case from the training data as the
validation data and all the remaining cases as the training data.
Specifically, classification accuracy was computed by counting the
number of successful predictions (i.e., the number of times that
the real binary score was predicted correctly) in the “leave-one-
out” cross-validation. In this procedure, a value of 100% indicated
that the random forest predicted correctly the scores for all the
∼272 clinical cases. The result of this process yielded a prediction
classification accuracy of 95%. The accuracy level was substantially
and significantly higher than the statistical chance level (80%). The
statistical chance level was performed by using the true binary
motor score that we shuffled across all patients to obtain the
performance of a totally arbitrary classifier (by chance) on the
data. As an additional measure of the performance of the binary
prediction, we computed the F1-score. This estimate is computed
as F1− score = 2∗Precision∗Recall

Precision+Recall , with Precision = TP
TP+FP and

Recall = TP
TP+FN , with TP: true positive, FP: false positive, TN: true

negative. A value of 1 indicates a perfect precision and recall in the
prediction, whereas a value of 0 indicates that precision and recall
have a value of 0. The F1-score for the inverse motor NIHSS was
0.88. We summarize the entire methodological pipeline in Figure 2.

3 Results

Figure 3 displays patterns of relative lesion sizes of positive
contributors and associated binary motor NIHSS values for the 272
patients. Performance scores were associated with different sizes of
lesion in the set of selected ROIs. Consequently, patients with large
lesions as well as patients with small lesions in a given ROI could
present pathological scores.

Our analyses showed that the internal capsule, the corticospinal
tract and the cortico-ponto-cerebellum bundles in the right
hemisphere made the strongest positive contributions (Figure 4).
The MSA contribution values were significantly different from
0, except for the RoB. In line with the employed methodology,
the RoB did not present a significant contribution. Positive
contributions indicate that a region or a set of regions supports
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FIGURE 3

Patterns of relative lesion sizes of positive contributors and associated binary motor National Institute of Health Stroke Scale (NIHSS) values in the
patients’ sample. The left panel represents the relative lesion size [in % of damaged voxels with respect to the total number of voxels for each regions
of interest (ROI)] for the most lesioned ROIs, plus one additional region representing the “rest of the brain,” RoB in the 272 patients’ sample. Relative
lesion patterns are associated with inverse binary motor NIHSS scores (right panel). Patient cases are shown sorted in descending order from largest
to smallest lesion sizes. The color-coded scale displays the relative lesion size (from 0, in blue hues, to 100% of lesioned voxels in red hues). The
binary motor inverse NIHSS values of the clinical tests are represented in blue (0: “pathological”) or dark red (1: “normal”) in the rightmost
color-coded scale.

the performance in a given clinical test. Thus, if these regions
were injured, performance would decrease. By contrast, a negative
contribution indicates that a region hinders performance and
implies that damage of the region may actually improve clinical
performance scores in brain-damaged patients. However, one
should note that the lesion of negative contributors might
improve a given function only in patients with specific lesional
patterns, without being generalizable to all brain-damaged patients.
Supplementary Figures 1, 2 present the same analyses performed by
leaving out the patients with bilateral and recurrent strokes.

Figure 5 presents cross-correlations of lesion patterns across
the positive contributors for the 272 patients. All correlations were
statistically significant (p < 0.05). These results allowed us to assess
the covariance of lesion patterns across ROIs, which could be
caused by their dependence on a common source of blood supply
(i.e., co-localization within the same vascular territory). The results
obtained for regions that have largely independent lesion patterns
(i.e., showing correlation between lesion sizes being lower than
0.5), are important for the interpretation of genuine functional
overlap indicated by redundant functional interactions. A strong
correlation was observed between the cortico-spinal tract and the
internal capsule. Weaker correlations were observed between the
cortico-spinal tract and the cortico-ponto-cerebellum bundle, and
between the internal capsule and the cortico-ponto-cerebellum
bundle.

4 Discussion

The aim of the present study was to use a multivariate
(estimated MSA) approach in order to quantify functional
contributions of both gray matter regions and white matter
connections in motor function. To address this issue, we analyzed
a sizable cohort of 272 stroke patients and evaluated their motor
NIHSS values in conjunction with the brain lesion patterns. Our
results showed that MSA was able to quantify different motor
contributors, particularly emphasizing the roles of the corticospinal
tract, the internal capsule and the cortico-ponto-cerebellum
bundle as positive contributors. No negative contributions were
highlighted. As expected, the RoB contribution was not significant.

4.1 MSA results

The present study reflects the iterative estimated MSA, a novel
MSA-based approach to characterize contributions of both gray
matter structures and white matter connections simultaneously in a
given function. A similar method has been used by Malherbe et al.
(2021) in combination with VLSM, which allowed to pre-select a
subset of regions in order to reduce the number of regions for the
subsequent MSA. Due to methodological advances in computing
the MSA, in the present study no preselection of ROIs needed to
be performed. This advance allowed us to test directly the ability of
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FIGURE 4

(A) Regional Multi-perturbation Shapley value Analysis (MSA) functional contributions to motor function. Smallest set of regions with a negligent
contribution of the rest of the brain (RoB). Estimated MSA contribution values (+/− standard deviation, SD) provided by the iterative estimated MSA
method computed using the original-graded dataset based on the random forest prediction of performance scores. The contributions and standard
deviations were derived from the average of 1,000 random samples with replacement (bootstrap approach). Positive values indicate positive
contributions (hence injury of the respective regions leads to decreased performance). Most of the contributions were statistically significant (except
for the RoB). (B) Anatomical representation of regional MSA contributions to motor function. MSA contributions represented in brain regions defined
by the AALCAT atlas. Red color represents the Cortico-Ponto-Cerebellum Right Tract, blue color represents the Cortico-Spinal Tract Right and the
green color represents the Internal Capsule Right. Results are illustrated on a brain template in MNI standard space oriented in neurological
convention (right hemisphere on the right side). MNI coordinates of each section (z-axis) are shown.

the iterative estimated MSA approach for making causal functional
inferences in motor function based on brain lesion deficits.

The MSA quantified relative contributions of both gray matter
structures and white matter connections. Positive contributions
obtained with MSA emphasized the roles of the internal capsule,
corticospinal tract and cortico-ponto-cerebellum as principal
contributors in motor function. First, the key roles of the
corticospinal tract and internal capsule confirm previous findings
reported in the motor function analysis by using alternative
methods (Arnoux et al., 2018; Godefroy et al., 1998; Kassubek
et al., 2005; Malherbe et al., 2021; Zhu et al., 2010) and
emphasize the importance of white matter connections. These
results suggest that the iterative MSA was able to rank positive
contributors when jointly analysing gray matter structures and
white matter connections as previously described (Kaufman et al.,
2009; Malherbe et al., 2021; Ofir-Geva et al., 2023). Second, we
inferred contributions of structures that had not been evident
as playing a key role in motor deficit (Corbetta et al., 2015;
Karnath and Rennig, 2017; Rorden et al., 2009). These structures
involved the cortico-ponto-cerebellum bundle as a positive
contributor. This pathway originates in the motor cortex, the
prefrontal and temporal cortices (Salmi et al., 2010). The
characterization of the cortico-ponto-cerebellum white matter
network functional role in human is still challenging, but

current findings suggest an involvement in both motor and
cognitive functions (Palesi et al., 2017), although we cannot
exclude that multicollinearity might also account for the present
association.

We should note that the contribution of the RoB was non-
significant in our MSA analyses. Specifically, the contribution of
the RoB is a strong indicator of the absence of other potential
structures involved in motor function that would have not been
considered as regions of interest in the analyses. Of note, an
important RoB contribution would indicate that the analyzed
function is dependent on brain regions potentially missing from
the analysis. However, we should note that the RoB reflects the
different lesion patterns of many distinct regions. Small but critical
regions may become “diluted,” preventing the RoB from reaching
a significant level (Ofir-Geva et al., 2023). Alternatively, it can
be hypothesized that the lack of a RoB contribution could be
related to the inconsistency of lesion locations and to the weak
signal of lesion load in regions that are functionally related to the
deficit. As a result, this signal cannot be of much utility to the
model. While this explanation is also possible, one should consider
the substantial size of 272 patients’ sample in the present study,
limiting such alternative explanations. Furthermore, the F1-score
(considering recall and precision in the analyses) was very high
(0.88).
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FIGURE 5

Cross-correlations of lesion patterns across the positive contributors for the 272 patients. The strength of the Pearson correlation of pairs of regions
of interest (ROIs) is color-coded from low (blue) to high (red). All correlations are statistically significant (p < 0.05).

It could be argued that regions such as the precentral gyrus
(primary motor cortex) should also be involved in the motor
function. Given that the present study has been conducted in
chronic patients, it could be that the presence of lesions in
these regions in the acute stage is potentially compensated by
an intact corticospinal tract or internal capsule. Thus, lesions
inducing temporary motor impairment resolve after the acute
stage (Karnath and Rennig, 2017) and this may account for
the absence of an independent effect of precentral lesions (el
Quessar et al., 1999; Godefroy et al., 1998). Other possible
explanations include the fact that isolated lesions in the primary
motor cortex often recover in the chronic phase, leading to
impaired dexterity that the NIHSS does not assess. Additionally,
the combined NIHSS sub-scores for upper and lower limbs may
dilute the signal, as the primary motor cortex may play a lesser
role in lower limb function. Finally, this outcome might be
due to an insufficient representation of primary motor cortex
lesions in the cohort (10 out of 272 patients presented lesions
of the superior corona radiata, including premotor and primary
motor cortices lesions), which can occur even in large study
populations.

4.2 MSA and brain-behavior relationships

Multi-perturbation Shapley Analysis was previously used in
order to define brain-behavior relationships. Specifically, MSA was
initially used in datasets from cooling deactivation experiments and
permanent lesion experiments (e.g., Keinan et al., 2004b; Zavaglia
et al., 2016) and results proved to be robust in ground truth

simulations (Zavaglia et al., 2024). The plausibility of applying
MSA on lesion data was also demonstrated in studies conducted
in cohorts of stroke patients with visuospatial neglect (Malherbe
et al., 2018; Toba et al., 2017; Toba et al., 2020c) that confirmed
and specified contributions of fronto-parietal and occipital systems
to visuospatial attentional behavior (Corbetta et al., 2008; He et al.,
2007; Hilgetag et al., 2001; Kincade et al., 2005; Thiebaut de
Schotten et al., 2005; Toba et al., 2018; Verdon et al., 2010; Toba
et al., 2022; Toba et al., 2024; Kaufmann et al., 2025). However,
caution is needed when interpreting MSA results. While MSA was
proposed to address lesion-dependencies, this assumption holds
mainly in theoretical scenarios where complete empirical data is
available. In practice, MSA heavily depends on predictors and
classifiers which can be biased by interdependencies within the
data.

Generally, MSA results have been interpreted in the framework
of inter-hemispheric rivalry theories (Keinan et al., 2004a; Keinan
et al., 2004b) and find applications in studies conducted with
non-invasive methods able to stimulate or disrupt different brain
structures (see for details Valero-Cabre et al., 2019). Specifically,
positive contributors (such as the corticospinal tract, the internal
capsule, the cortico-ponto-cerebellum tract) represent structures
that facilitate the performance and thus a clinical goal may be
to enhance them. However, interpretations are more complex,
because brain structures have intrinsic dynamics that allow them
to compete for processing resources in order to accomplish brain
functions. As a result, they may be at the same time positive and
negative contributors in related functions.
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4.3 Limitations

Several limitations of the present study should be discussed.
First, our analyses purposely concerned a well-known functional
system (the motor system). While this choice allows to discuss the
efficacy of the iterative estimated MSA in identifying important
motor regions, it also limits the novelty of our results. Moreover,
the use of a relatively coarse measure for motor function (i.e.,
NIHSS upper and lower limb scores), even in a large cohort, is
not ideal for contributing novel biological insights. More precise
measures should provide a finer-grained understanding of the
motor system’s condition.

Second, the lesion-based approach used in this study is
not the definitive gold standard for computing lesions-symptom
mapping analyses. However, motor function is among the best-
understood functions in terms of functional anatomy. For
this reason, we chose to use it as a model to evaluate our
methodological approach.

Third, the train-set to predict the behavior was performed
with a graded database, whereas the test-set was binarized. This
choice respects the need to use different train and test set of
data but also involves that the model performance should be
treated with caution.

Another limitation of this study concerns the choice of ROIs
in MSA. ROIs are defined anatomically but not functionally. As a
result, chosen ROIs can combine different functional units and thus
the computation of a lesion load may not be entirely informative on
the functional role of the region.

Last, another limitation of this study is represented by the
inclusion of patients with a history of prior strokes and bilateral
strokes, potentially confounding the results. However, additional
analyses emphasized only minor results changes when these
patients were left out.

5 Conclusion

In summary, in the present study we successfully assessed
the possibility of using the iterative estimated MSA in order
to specify the contribution of gray matter structures and white
matter connections in a well-known functional system. Based on
these results, we argue that lesion inference approaches based on
MSA are suited to contribute further to defining the functional
neuroanatomy of the human brain.
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